1
|
Karthick Rajan D, Mohan K, Rajarajeswaran J, Divya D, Thanigaivel S, Zhang S. Toxic effects of organophosphate pesticide monocrotophos in aquatic organisms: A review of challenges, regulations and future perspectives. ENVIRONMENTAL RESEARCH 2024; 244:117947. [PMID: 38109962 DOI: 10.1016/j.envres.2023.117947] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
In recent times, usage of pesticide, herbicides and synthetic fertilizers in farming lands has made the environment worse. The pesticide residues and toxic byproducts from agricultural lands were found to contaminate the aquatic ecosystem. The misuse of synthetic pesticide not only affects the environment, but also affects the health status of aquatic organisms. The organophosphate pesticide pollutants are emerging contaminants, which threatens the terrestrial and aquatic ecosystem. Monocrotophos (MCP) is an organophosphate insecticide, utilized on crops including rice, maize, sugarcane, cotton, soybeans, groundnuts and vegetables. MCP is hydrophilic in nature and their solubilizing properties reduce the soil sorption which leads to groundwater contamination. The half-life period of MCP is 17-96 and the half-life period of technical grade MCP is 2500 days if held stable at 38 °C in a container. MCP causes mild to severe confusion, anxiety, hyper-salivation, convulsion and respiratory distress in mammals as well as aquatic animals. The MCP induced toxicity including survival rate, behavioural changes, reproductive toxicity and genotoxicity in different aquatic species have been discussed in this review. Furthermore, the ultimate aim of this review is to highlight the international regulations, future perspectives and challenges involved in using the MCP.
Collapse
Affiliation(s)
- Durairaj Karthick Rajan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, PR China.
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu, 638 316, India.
| | - Jayakumar Rajarajeswaran
- Department of Nanobiomaterials, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | - Dharmaraj Divya
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamilnadu, 630003, India
| | - Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur Campus, 603 203, Tamilnadu, India
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, PR China
| |
Collapse
|
2
|
Hu S, Jin X, Chen X, Lv B, Xi W, Lan Y, Han W, Xu Z, Cheng C. Butachlor (BTR) degradation by dielectric barrier discharge plasma in soil: Affecting factors, degradation route, and toxicity assessment. CHEMOSPHERE 2023:139414. [PMID: 37423413 DOI: 10.1016/j.chemosphere.2023.139414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Over the past few decades, the frequent and excessive usage of pesticides has had detrimental effects on the soil and other habitats. In terms of removing organic contaminants from soil, non-thermal plasma has become one of the most competitive advanced oxidation methods. The study used dielectric barrier discharge (DBD) plasma to repair soil contaminated by butachlor (BTR). BTR degradation was investigated in actual soil under various experimental parameters. According to the results, DBD plasma treatment at 34.8 W destroyed 96.10% of BTR within 50 min, and this degradation was consistent with the model of first order kinetics. Boosting the discharge power, lowering the initial BTR concentration, using appropriate soil moisture content and air flow rate, and using oxygen as the working gas for discharge are all beneficial to the degradation of BTR. The changes in soil dissolved organic matter (DOM) before and after plasma treatment were assessed using a total organic carbon (TOC) analyzer. A Fourier transform infrared (FTIR) spectroscopy and an Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS) were employed to investigate the degradation of BTR. A wheat growth test showed that the best growth was achieved at 20 min of plasma soil remediation, but too long treatment would lower soil pH and thus affect wheat growth.
Collapse
Affiliation(s)
- Shuheng Hu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province, 230009, PR China
| | - Xin Jin
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province, 230009, PR China; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Xueyan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province, 230009, PR China; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Bin Lv
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province, 230009, PR China; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Wenhao Xi
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Yan Lan
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, PR China; Institute of Health and Medical Technology/Anhui Province Key Laboratory of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, PR China
| | - Wei Han
- Institute of Health and Medical Technology/Anhui Province Key Laboratory of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Zimu Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province, 230009, PR China.
| | - Cheng Cheng
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, PR China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, PR China.
| |
Collapse
|
3
|
Kumar V, Swain HS, Roy S, Das BK, Upadhyay A, Ramteke MH, Kumar V, Kole RK, Banerjee H. Integrated biomarker approach strongly explaining in vivo sub-lethal acute toxicity of butachlor on Labeo rohita. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109427. [PMID: 35944825 DOI: 10.1016/j.cbpc.2022.109427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022]
Abstract
Butachlor herbicide belongs to the family of chloroacetanilide group, widely used for control of grass and broadleaf weeds in paddy fields however, its repeated application may result in aquatic pollution. Butachlor residue has been detected in aquatic environments, which may produce toxic effects on non-target organisms including fish. Keeping this in mind, the present study was designed to estimate the LC50 of butachlor (Shaktiman®), and to evaluate the sub-lethal toxicity at two concentrations (12.42 μg L-1 and 62.10 μg L-1) in Labeo rohita for a period of 24, 48, and 72 h. Fish exposed to butachlor reduced the counts of red blood cells (RBC), haemoglobin (HGB), hematocrit (HCT), and white blood cells (WBC). A significant (p < 0.05) increase in the antioxidant enzyme (superoxide dismutase-SOD, glutathione-s-transferase-GST), and hepatic enzyme (glutamate-oxaloacetate transaminase-GOT, glutamate-pyruvate transaminase-GPT) were noticed in butachlor exposed fish. Heat shock protein 70 (HSP70) and HSP90 in gill; cortisol, protein, albumin, globulin, and triglyceride in serum were increased upon exposure of butachlor. On the contrary, complement 3 (C3) and immunoglobulin (IgM) in serum was found to be decreased compared to control fish. The findings thus suggest that the fish upon exposure to butachlor disrupts the biomarkers which ultimately leads to growth retardation in fish.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Agricultural Chemicals, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India; ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Himanshu Sekhar Swain
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Sankhajit Roy
- Department of Agricultural Chemicals, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India.
| | - Aurobinda Upadhyay
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Mitesh Hiradas Ramteke
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Vikash Kumar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Ramen Kumar Kole
- Department of Agricultural Chemicals, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India
| | - Hemanta Banerjee
- Department of Agricultural Chemicals, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India
| |
Collapse
|
4
|
Bruckmann FS, Schnorr C, Oviedo LR, Knani S, Silva LFO, Silva WL, Dotto GL, Bohn Rhoden CR. Adsorption and Photocatalytic Degradation of Pesticides into Nanocomposites: A Review. Molecules 2022; 27:6261. [PMID: 36234798 PMCID: PMC9572628 DOI: 10.3390/molecules27196261] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
The extensive use of pesticides in agriculture has significantly impacted the environment and human health, as these pollutants are inadequately disposed of into water bodies. In addition, pesticides can cause adverse effects on humans and aquatic animals due to their incomplete removal from the aqueous medium by conventional wastewater treatments. Therefore, processes such as heterogeneous photocatalysis and adsorption by nanocomposites have received special attention in the scientific community due to their unique properties and ability to degrade and remove several organic pollutants, including pesticides. This report reviews the use of nanocomposites in pesticide adsorption and photocatalytic degradation from aqueous solutions. A bibliographic search was performed using the ScienceDirect, American Chemical Society (ACS), and Royal Society of Chemistry (RSC) indexes, using Boolean logic and the following descriptors: "pesticide degradation" AND "photocatalysis" AND "nanocomposites"; "nanocomposites" AND "pesticides" AND "adsorption". The search was limited to research article documents in the last ten years (from January 2012 to June 2022). The results made it possible to verify that the most dangerous pesticides are not the most commonly degraded/removed from wastewater. At the same time, the potential of the supported nanocatalysts and nanoadsorbents in the decontamination of wastewater-containing pesticides is confirmed once they present reduced bandgap energy, which occurs over a wide range of wavelengths. Moreover, due to the great affinity of the supported nanocatalysts with pesticides, better charge separation, high removal, and degradation values are reported for these organic compounds. Thus, the class of the nanocomposites investigated in this work, magnetic or not, can be characterized as suitable nanomaterials with potential and unique properties useful in heterogeneous photocatalysts and the adsorption of pesticides.
Collapse
Affiliation(s)
- Franciele S. Bruckmann
- Laboratório de Materiais Magnéticos Nanoestruturados, LaMMaN, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
- Programa de Pós-Graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
| | - Carlos Schnorr
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Atlántico, Colombia
| | - Leandro R. Oviedo
- Programa de Pós-Graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
| | - Salah Knani
- College of Science, Northern Border University, Arar 91431, Saudi Arabia
- Laboratory of Quantum and Statistical Physics, Faculty of Sciences of Monastir, University of Monastir, Monastir 5079, Tunisia
| | - Luis F. O. Silva
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Atlántico, Colombia
| | - William L. Silva
- Programa de Pós-Graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
| | - Guilherme L. Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Department of Chemical Enginnering, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Cristiano R. Bohn Rhoden
- Laboratório de Materiais Magnéticos Nanoestruturados, LaMMaN, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
- Programa de Pós-Graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
| |
Collapse
|
5
|
von Ameln Lovison O, Jank L, de Souza WM, Ramalho Guerra R, Lamas AE, da Costa Ballestrin RA, da Silva Morais Hein C, da Silva TCB, Corção G, Martins AF. Identification of pesticides in water samples by solid-phase extraction and liquid chromatography-electrospray ionization mass spectrometry. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2670-2680. [PMID: 34355448 DOI: 10.1002/wer.1621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
The Contaminants of Emerging Concern (CECs), including pesticides, have been a trending topic and Brazil is the country with the highest usage of pesticides worldwide. This study aimed to measure the presence of pesticide residues in the water from different sources in the city of Porto Alegre. We analyzed 55 samples from drinking water treatment plants, public water sites, and sewage treatment plants from winter 2018 to summer 2020 by solid-phase extraction and high-performance liquid chromatography-electrospray ionization mass spectrometry. Among 184 pesticides evaluated, 107 matched validation criteria (linearity, trueness, accuracy, repeatability, reproducibility) and 15 of them were detected in different water samples, including seven insecticides, five antifungals, and three herbicides, with a wide range of toxicity levels and noticeable seasonal differences. For the worst-case scenario evaluation, 20 out of 22 (90.9%) samples exceeded the Risk Quotient of 1. The sum of pesticide concentrations exceeded 100 ng L-1 in 66.7% of samples in February 19 and in 75% of samples in February 20 and the total pesticide concentration has reached the worrisome mark of 1615 and 954.96 ng L-1 respectively. Therefore, our results make evident the need to promote public policies to achieve better water quality monitoring. PRACTITIONER POINTS: Among 184 pesticides evaluated, 107 matched validation criteria (linearity, trueness, accuracy, repeatability, reproducibility). A total of 55 different water samples were analyzed, and 15 pesticides were detected and five quantified. For the worst-case scenario evaluation, 20 out of 21 samples exceeded the Risk Quotient of 1 on Feb/20. The pesticide concentrations sum exceeded 100 ng L-1 in 66.7% of samples on February 19 and in 75% of samples on February 20. It is mandatory to improve water monitoring to guide the development of public policies concerning its quality.
Collapse
Affiliation(s)
- Otávio von Ameln Lovison
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Louise Jank
- Laboratório Federal de Defesa Agropecuária - LFDA/RS, Ministério da Agricultura, Pecuária e Abastecimento, Porto Alegre, Brazil
| | - William Machado de Souza
- Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafaela Ramalho Guerra
- Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alex Elias Lamas
- Coordenadoria Geral de Vigilância em Saúde de Porto Alegre, Diretoria Geral de Vigilância em Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rogerio Antonio da Costa Ballestrin
- Coordenadoria Geral de Vigilância em Saúde de Porto Alegre, Diretoria Geral de Vigilância em Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila da Silva Morais Hein
- Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Gertrudes Corção
- Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andreza Francisco Martins
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
6
|
Singh S, Kumar V, Kanwar R, Wani AB, Gill JPK, Garg VK, Singh J, Ramamurthy PC. Toxicity and detoxification of monocrotophos from ecosystem using different approaches: A review. CHEMOSPHERE 2021; 275:130051. [PMID: 33676273 DOI: 10.1016/j.chemosphere.2021.130051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Monocrotophos (MCP) is an organophosphate insecticide with broad application in agricultural crops like rice, maize, sugarcane, cotton, soybeans, groundnut and vegetables. MCP solubilize in water readily and thus reduced sorption occurs in soil. This leads to MCP leaching into the groundwater and pose a significant threat of contamination. The MCP's half-life depends on the temperature and pH value and estimated as 17-96 d. But the half-life of technical grade MCP can exceed up to 2500 days if properly stored at 38 °C in a glass or polyethylene container in a stable condition. It causes abnormality, ranging from mild to severe confusion, agitation, hypersalivation, convulsion, pulmonary failure, senescence in mammals and insects. MCP affects humans by inhibiting the activity of the acetylcholine esterase enzyme. MCP is accountable for the catalytic degradation of acetylcholine and affects the neurotransmission between neurons. This review discusses MCP's various aspects and fate on aquatic and terrestrial life forms, quantification methods for monitoring, various degradation processes, and their mechanisms. Different case studies related to its impact on the human population in different parts of the world have been discussed. Efforts have also been made to summarize and present different microbial population's role in its degradation and mineralization.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Sciences, Bangalore, 560012, India
| | - Vijay Kumar
- Department of Chemistry, Regional Ayurveda Research Institute for Drug Development, Gwalior, 474009, India
| | - Ramesh Kanwar
- Department of Agricultural and Biosystems Engineering, Iowa State University, USA
| | - Abdul Basit Wani
- Department of Chemistry, School of Bioengineering and Biosciences, Lovely Professional University, Delhi-Jalandhar Highway, Phagwara, 144411, Punjab, India
| | | | - Vinod Kumar Garg
- Department of Environmental Sciences and Technology, Central University of Punjab, Mansa Road, Bathinda, 151001, Punjab, India.
| | - Joginder Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Delhi-Jalandhar Highway, Phagwara, 144411, Punjab, India.
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Sciences, Bangalore, 560012, India.
| |
Collapse
|
7
|
Current insights into the microbial degradation for butachlor: strains, metabolic pathways, and molecular mechanisms. Appl Microbiol Biotechnol 2021; 105:4369-4381. [PMID: 34021814 DOI: 10.1007/s00253-021-11346-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 01/08/2023]
Abstract
The herbicide butachlor has been used in huge quantities worldwide, affecting various environmental systems. Butachlor residues have been detected in soil, water, and organisms, and have been shown to be toxic to these non-target organisms. This paper briefly summarizes the toxic effects of butachlor on aquatic and terrestrial animals, including humans, and proposes the necessity of its removal from the environment. Due to long-term exposure, some animals, plants, and microorganisms have developed resistance toward butachlor, indicating that the toxicity of this herbicide can be reduced. Furthermore, we can consider removing butachlor residues from the environment by using such butachlor-resistant organisms. In particular, microbial degradation methods have attracted much attention, with about 30 kinds of butachlor-degrading microorganisms have been found, such as Fusarium solani, Novosphingobium chloroacetimidivorans, Chaetomium globosum, Pseudomonas putida, Sphingomonas chloroacetimidivorans, and Rhodococcus sp. The metabolites and degradation pathways of butachlor have been investigated. In addition, enzymes associated with butachlor degradation have been identified, including CndC1 (ferredoxin), Red1 (reductase), FdX1 (ferredoxin), FdX2 (ferredoxin), Dbo (debutoxylase), and catechol 1,2 dioxygenase. However, few reviews have focused on the microbial degradation and molecular mechanisms of butachlor. This review explores the biochemical pathways and molecular mechanisms of butachlor biodegradation in depth in order to provide new ideas for repairing butachlor-contaminated environments. KEY POINTS: • Biodegradation is a powerful tool for the removal of butachlor. • Dechlorination plays a key role in the degradation of butachlor. • Possible biochemical pathways of butachlor in the environment are described.
Collapse
|
8
|
Protective effect of coenzyme Q10 nanoparticles against monocrotophos induced oxidative stress in kidney tissues of rats. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00732-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Riveros AF, Jut Solórzano JC, Monaco IDA, Lima Cardoso CA, Súarez YR, Viana LF. Toxicogenetic effects on fish species in two sub-basins of the upper Paraguay river, Southern Pantanal - Brazil. CHEMOSPHERE 2021; 264:128383. [PMID: 33017705 DOI: 10.1016/j.chemosphere.2020.128383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to evaluate water quality using limnological parameters in two sub-basins of the Negro and Apa Rivers, along with the composition and structure of the landscape around the locations sampled in the two sub-basins and their possible contribution to the loss of water quality. We also set out to identify the genotoxic effects on the erythrocytes of Prochilodus lineatus and Leporinus friderici. In particular, we quantified total Cr, Ni and Pb in the muscle of these fish species to determine which genotoxic changes are related to the concentration of metals detected in the fish from these two sub-basins of the Paraguay River Basin. The sub-basin of the Apa River presented a greater proportion of surrounding pastureland in relation to the basin of the Negro River. The erythrocytes of P. lineatus showed a significant difference between the sub-basins for nuclear pyknosis, binucleated cells and lobed nuclei (p < 0.05). In L. friderici, vacuolated nuclei, nuclear pyknosis and lobed nuclei alterations also showed a significant difference between the sub-basins (p < 0.05). The genotoxicity index of the Apa River sub-basin presented higher frequencies of nuclear alterations in P. lineatus and L. friderici (p < 0.05), compared to the Negro River sub-basin. The concentration of total Cr, Ni and Pb in the muscles of P. lineatus and L. friderici in the Negro River sub-basin leads to genotoxic damage, mainly from the induction of lobed nuclei. Based on our results, it can be concluded that toxicogenetic effects in native fish species are an important source of environmental diagnosis in the Upper Paraguay River Basin.
Collapse
Affiliation(s)
- Adriana Fernandes Riveros
- Mato Grosso Do Sul State University (UEMS), Natural Resources Study Center (CERNA), Laboratory of Ecology, Brazil
| | - Julio César Jut Solórzano
- Mato Grosso Do Sul State University (UEMS), Natural Resources Study Center (CERNA), Laboratory of Ecology, Brazil; Postgraduate Program in Natural Resources, Mato Grosso Do Sul State University, Rod. Dourados Itahum Km 12, Dourados, MS, 79804-970, Brazil
| | - Isabelle de Almeida Monaco
- Mato Grosso Do Sul State University (UEMS), Natural Resources Study Center (CERNA), Laboratory of Ecology, Brazil; Postgraduate Program in Natural Resources, Mato Grosso Do Sul State University, Rod. Dourados Itahum Km 12, Dourados, MS, 79804-970, Brazil
| | - Claudia Andrea Lima Cardoso
- Mato Grosso Do Sul State University (UEMS), Natural Resources Study Center (CERNA), Laboratory of Instrumental Analysis, Brazil
| | - Yzel Rondon Súarez
- Postgraduate Program in Natural Resources, Mato Grosso Do Sul State University, Rod. Dourados Itahum Km 12, Dourados, MS, 79804-970, Brazil
| | - Lucilene Finoto Viana
- Postgraduate Program in Natural Resources, Mato Grosso Do Sul State University, Rod. Dourados Itahum Km 12, Dourados, MS, 79804-970, Brazil.
| |
Collapse
|
10
|
Xiang Q, Xu B, Ding Y, Liu X, Zhou Y, Ahmad F. Oxidative Stress Response Induced by Butachlor in Zebrafish Embryo/Larvae: The Protective Effect of Vitamin C. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:208-215. [PMID: 29236155 DOI: 10.1007/s00128-017-2245-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
The widespread contamination and persistence of the herbicide butachlor in the environment resulted in the exposure of non-target organisms. The present study investigated the toxicity effect of butachlor (1-15 µmol/L) and the protective effect of vitamin C (VC) against butachlor-induced toxicity in zebrafish. It was found that butachlor significantly increased the mortality and malformation rates in a dose-dependent manner, which caused elevation in reactive oxygen species (ROS) and malondialdehyde (MDA) after 72 h exposure. Compared with butachlor treatment group, the protective effect of VC against butachlor-induced toxicity were observed after adding 40, 80 mg/L VC respectively. VC significantly decreased the mortality, malformation rates, ROS, MDA, and normalized antioxidant enzymes activities of zebrafish after 72 h exposure. The result shows VC has mitigative effect on butachlor-induced toxicity and it can be used as an effective antioxidant in aquaculture.
Collapse
Affiliation(s)
- Qingqing Xiang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Bofan Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Yilun Ding
- Montverde Academy Shanghai, Shanghai, 201702, China
| | - Xiaoyi Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
| | - Farooq Ahmad
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, China
| |
Collapse
|
11
|
Dwivedi S, Kumar M, Trivedi SP. Mitigating potential of Melissa officinale against As 3+-induced cytotoxicity and transcriptional alterations of Hsp70 and Hsp27 in fish, Channa punctatus (Bloch). ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:306. [PMID: 28573351 DOI: 10.1007/s10661-017-6002-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
The mitigating potential of Melissa officinale (MO) (Lamiaceae) against arsenite (As3+)-induced oxidative stress, cytogenotoxicity, and expression of stress genes in fish, Channa punctatus (Bloch), teleost, was explored. After confirming the composition of MO extract, caffeic acid (0.96%), hesperidin (1.73%), naringenin (7.70%), lutenolin (3.29%), kaempferol (11.46%) and hesperetin (6.24%), by HPLC-PDA analysis, the experiment was set up in six groups (G1-G6), each containing 10 specimens. Blood, muscle, gills and liver tissues of control and treated fishes were excised at an interval of 24 till 96 h. Ameliorative potential of MO was confirmed by satisfactory restoration of altered activities of malondialdehyde, hydrogen peroxide, superoxide dismutase, catalase, glutathione peroxidise, glutathione reductase, reduced glutathione and ascorbate peroxidase in G4, G5 and G6, co-exposed with 96 h-LC50/10 As3+ with MO. A significant (p < 0.05) recovery in the frequencies of cytogenotoxic markers, micronuclei, disintegrated nucleus and echinocytes, which were expressed significantly (p < 0.05) in G3 exposed to sub-lethal concentration of ATO alone, was recorded in fish groups (G4, G5 and G6) together treated with 96 h-LC50/10 of ATO and 2, 4 and 8 ppm of MO, respectively. Moreover, the expression of Hsp70 gene was downregulated (2.29-fold); whereas, Hsp27 gene was upregulated (1.16-fold) in G6, the group co-exposed with 96 h-LC50/10 As3+ with 8 ppm of MO in comparison with G3 (3.11-fold for Hsp70; 0.51-fold for Hsp27) after 96 h of exposure period. Thus, it can be inferred that the MO at its tested concentration can be effectively used to mitigate As3+ generated toxicities in C. punctatus.
Collapse
Affiliation(s)
- Shraddha Dwivedi
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Manoj Kumar
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Sunil P Trivedi
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India.
- ETBL, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India.
| |
Collapse
|
12
|
Comprehensive spectroscopic probing the interaction and conformation impairment of bovine serum albumin (BSA) by herbicide butachlor. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:332-339. [DOI: 10.1016/j.jphotobiol.2016.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 11/27/2022]
|