1
|
Zhang X, Yao Z, Yang W, Zhang W, Liu Y, Wang Z, Li W. Distribution, sources, partition behavior and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the waters and sediments of Lake Ulansuhai, China. MARINE POLLUTION BULLETIN 2024; 200:116072. [PMID: 38290363 DOI: 10.1016/j.marpolbul.2024.116072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
This study represents the first comprehensive investigation of 16 polycyclic aromatic hydrocarbons (PAHs) in the waters and sediments of Lake Ulansuhai. It explores their occurrence, sources, transport behavior, and associated risks to human health and ecosystems. The results revealed that concentrations of ∑PAHs in dissolved phase and sediment with no significant seasonal differences. In contrast, ∑PAHs concentrations in suspended particulate matter were significantly higher during the ice-free period compared to the ice period. Spatially, the northern part of Lake Ulansuhai displayed higher PAHs content. Diagnostic isomeric ratios and PMF models indicated that the PAHs were primarily derived from combustion sources. The distribution of PAHs within water-sediment demonstrated that non-equilibrium status. Fugacity calculations indicated that 2-4 rings PAHs acted as secondary sources of sediment emissions. Toxicity assessment, indicated that PAHs posed no significant carcinogenic risk to humans. Risk quotient values showed that PAHs as low to high ecological risk.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014000, China; Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China
| | - Zhi Yao
- Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China; School of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou, 014000, China
| | - Wenhuan Yang
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014000, China; Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China.
| | - Wenxing Zhang
- Inner Mongolia Ecological Environment Research Institute Co., Ltd, Hohhot, 010000, China
| | - Yizhe Liu
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014000, China; Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China
| | - Zhichao Wang
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014000, China; Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China
| | - Weiping Li
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014000, China; Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China.
| |
Collapse
|
2
|
Xia Y, Zhang Y, Ji Q, Cheng X, Wang X, Sabel CE, He H. Sediment core records and impact factors of polycyclic aromatic hydrocarbons in Chinese lakes. ENVIRONMENTAL RESEARCH 2023; 235:116690. [PMID: 37474088 DOI: 10.1016/j.envres.2023.116690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Lake sediment is a natural sink for polycyclic aromatic hydrocarbons (PAHs). PAH sedimentation characteristics and their impact factors of Chinese lakes have mainly been qualitative assessed. However, quantitative impacts of PAH sedimentation from different factors have not been well analyzed. To fill this gap, we screened PAH sedimentation records from the literature, for 51 lakes in China and other regions of the world, to identify historical concentration variation and the impact factors of PAHs in different regions, in lake sediment. The results show that PAH concentrations in the sediment core in the selected Chinese lakes (478 ± 812 ng/g dry weight (dw)) were significantly lower than those in North America (5518 ± 6572 ng/g dw) and Europe (3817 ± 4033 ng/g dw). From 1900 to 2015, most of the lakes in China showed an increasing trend of PAH sedimentation concentrations, with the lakes in Southeastern China showed a decreasing trend of PAH concentration in the period of 2001-2015, which was later than the peak times shown in Western countries (1941-1970). The 2-3-ring PAHs were the main components in the sediment core of Chinese lakes, but the proportion to the total PAHs decreased from 72% in 1900-1940 to 55% in 2001-2015. Generalized additive modeling (GAM) was adopted to simulate the associations between PAH sedimentation records and the impact factors. There are large regional variations of economic and industrial development in China. The impact factors of PAH accumulation in the lake sediments differ in different regions. However, population and the consumption of coal, pesticides, and fertilizer were identified to be the most important impact factors influencing PAH sedimentation. The Chinese government needs to strengthen control measures on pollutant discharge to reduce the anthropogenic impact of PAH sedimentation in lakes.
Collapse
Affiliation(s)
- Yubao Xia
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, PR China
| | - Yanxia Zhang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, PR China; Aarhus Institute of Advanced Studies, Aarhus University, 8000, Aarhus, Denmark; BERTHA - Big Data Centre for Environment and Health, Department of Public Health, Aarhus University, 8000, Aarhus, Denmark.
| | - Qingsong Ji
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, PR China
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, PR China
| | - Xinkai Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Clive E Sabel
- BERTHA - Big Data Centre for Environment and Health, Department of Public Health, Aarhus University, 8000, Aarhus, Denmark; Department of Public Health, Aarhus University, 8000, Aarhus, Denmark
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, PR China; College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, Fujian, 354300, PR China.
| |
Collapse
|
3
|
Nahar A, Akbor MA, Sarker S, Bakar Siddique MA, Shaikh MAA, Chowdhury NJ, Ahmed S, Hasan M, Sultana S. Dissemination and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in water and sediment of Buriganga and Dhaleswari rivers of Dhaka, Bangladesh. Heliyon 2023; 9:e18465. [PMID: 37560670 PMCID: PMC10407051 DOI: 10.1016/j.heliyon.2023.e18465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023] Open
Abstract
Concentration, source, ecological and health risks of sixteen polycyclic aromatic hydrocarbons (PAHs) were estimated for water and sediment samples of two urban rivers namely Buriganga River (BR) and Dhaleswari River (DR). The mean concentration of ∑PAHs in BR water and sediment were 9619.2 ngL-1 and 351.6 ngg-1, respectively. Furthermore, the average PAH concentrations detected in DR water and sediment were 1979.1 ngL-1 and 792.9 ngg-1, respectively. The composition profile showed that 3-ring PAHs were dominant in the water matrix; however, 5-ring PAHs were prevalent in the sediment samples of both rivers. Sources apportion study of PAHs indicated that mixed combustion and petroleum sources are responsible for PAHs contamination in the rivers. Ecological risk study of water suggested that the aquatic lives of both rivers are threatened by Fla, BbF, BkF, DahA, and IcdP, as presented above the threshold level. Comparison with sediment quality guidelines (SQGs) indicated that adverse effects might cause occasionally in the sediment ecosystem in DR at certain sampling sites for Nap, Acy, Fl, Phe, Ant, Pyr, Chr, BaP, and DahA. On the other hand, the presence of Nap, Acy and DahA might occasionally cause adverse biological effects in the BR sediment ecosystem. Estimated hazard quotient (HI > 1) and carcinogenic risk (CRtotal > 10-4) values indicated that local inhabitants living in the vicinity of the rivers are prone to high health risks.
Collapse
Affiliation(s)
- Aynun Nahar
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Md. Ahedul Akbor
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Shudeepta Sarker
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC, 27695, USA
| | - Md. Abu Bakar Siddique
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Md. Aftab Ali Shaikh
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
- Department of Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nushrat Jahan Chowdhury
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Shamim Ahmed
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Mehedi Hasan
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Shahnaz Sultana
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| |
Collapse
|
4
|
Vievard J, Alem A, Pantet A, Ahfir ND, Arellano-Sánchez MG, Devouge-Boyer C, Mignot M. Bio-Based Adsorption as Ecofriendly Method for Wastewater Decontamination: A Review. TOXICS 2023; 11:toxics11050404. [PMID: 37235220 DOI: 10.3390/toxics11050404] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Intense human activities have for years contributed to the pollution of the environment by many dangerous pollutants such as heavy metals, pesticides, or polycyclic aromatic hydrocarbons. There are many conventional methods used to control pollution, with practical and/or financial drawbacks. Therefore, in recent years, an innovative, easy-to-implement and inexpensive adsorption method has been developed to recover waste and clean up water from micropollutants. Firstly, this article aims to summarize the issues related to water remediation and to understand the advantages and disadvantages of the methods classically used to purify water. In particular, this review aims to provide a recent update of the bio-based adsorbents and their use. Differently from the majority of the reviews related to wastewater treatment, in this article several classes of pollutants are considered. Then, a discussion about the adsorption process and interactions involved is provided. Finally, perspectives are suggested about the future work to be done in this field.
Collapse
Affiliation(s)
- Juliette Vievard
- University Le Havre Normandie, UNIHAVRE, UMR 6294 CNRS, LOMC, 76600 Le Havre, France
- University Rouen Normandie, UNIROUEN, COBRA UMR CNRS 6014, INSA, Avenue de l'Université, 76800 Saint-Etienne-du-Rouvray, France
| | - Abdellah Alem
- University Le Havre Normandie, UNIHAVRE, UMR 6294 CNRS, LOMC, 76600 Le Havre, France
| | - Anne Pantet
- University Le Havre Normandie, UNIHAVRE, UMR 6294 CNRS, LOMC, 76600 Le Havre, France
| | - Nasre-Dine Ahfir
- University Le Havre Normandie, UNIHAVRE, UMR 6294 CNRS, LOMC, 76600 Le Havre, France
| | - Mónica Gisel Arellano-Sánchez
- University Rouen Normandie, UNIROUEN, COBRA UMR CNRS 6014, INSA, Avenue de l'Université, 76800 Saint-Etienne-du-Rouvray, France
| | - Christine Devouge-Boyer
- University Rouen Normandie, UNIROUEN, COBRA UMR CNRS 6014, INSA, Avenue de l'Université, 76800 Saint-Etienne-du-Rouvray, France
| | - Mélanie Mignot
- University Rouen Normandie, UNIROUEN, COBRA UMR CNRS 6014, INSA, Avenue de l'Université, 76800 Saint-Etienne-du-Rouvray, France
| |
Collapse
|
5
|
Shang N, Wang C, Kong J, Yu H, Li J, Hao W, Huang T, Yang H, He H, Huang C. Dissolved polycyclic aromatic hydrocarbons (PAHs-d) in response to hydrology variation and anthropogenic activities in the Yangtze River, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116673. [PMID: 36375425 DOI: 10.1016/j.jenvman.2022.116673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Owing to their bioavailability and toxicity, the dissolved polycyclic aromatic hydrocarbons (PAHs-d) loaded in rivers are harmful to both inland and marine ecosystems. Thus, exploring the changes in PAHs-d levels and sources is important for controlling PAHs pollution. In this study, the concentration of PAHs-d in the mainstream of the Yangtze River during dry and wet seasons was investigated and the source was analyzed using the positive matrix factorization (PMF) model to assess the response of PAHs-d to hydrological and anthropogenic activities changes. The concentration of PAHs-d in the wet season (166.2 ± 52.51 ng/L) was significantly higher than that in the dry season (89.05 ± 20.89 ng/L) (ANOVA, P < 0.001), and the sampling sites with high pollution were mainly distributed in the downstream urban agglomeration. Herein, 2-3 rings were identified to play a dominant role in the composition of PAHs-d. Compared with the dry season, the proportion of the low molecular weight (LMW) PAHs-d were relatively depleted and the high molecular weight (HMW) PAHs-d were accumulated in the wet season. Coal and coke combustion were identified as the main sources of PAHs-d (65.9% in the dry season and 59.2% in the wet season), followed by vehicle emissions, petroleum sources, and biomass combustion. Owing to the change in energy consumption structure and climate characteristics, the sources of PAHs-d displayed seasonal variation and spatial heterogeneity. Further, flow was identified as the most important factor affecting PAHs-d in the hydrological parameters. Increases of flow, pH, and SPM decreased the proportion of LMW PAHs-d, and increased that of HMW PAHs-d. The increase in anthropogenic activities intensified the residual levels of 2-3rings and 5-6 rings in water, but had no significant impact on the levels of 4 rings.
Collapse
Affiliation(s)
- Nana Shang
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Chuan Wang
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Jijie Kong
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China; School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Heyu Yu
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Jianhong Li
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Weiyue Hao
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tao Huang
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, China.
| | - Hao Yang
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resource Engineering, Wuyi University, Wuyishan, 354300, China
| | - Changchun Huang
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210023, China
| |
Collapse
|
6
|
Li Z, Zhang W, Shan B. Effects of organic matter on polycyclic aromatic hydrocarbons in riverine sediments affected by human activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152570. [PMID: 34954165 DOI: 10.1016/j.scitotenv.2021.152570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Organic matter (OM) is an important component of riverine environments and a major factor in the migration and transformation of hydrophobic organic substances, such as polycyclic aromatic hydrocarbons (PAHs), to sediments. We studied the distributions, sources, and correlations between PAHs and OM in sediments from the Duliujian and the Beiyun rivers in North China. Sixteen PAHs were detected in the surface sediments at total concentrations ranging from 356 to 4652 ng·g-1 dry weight, which caused a moderate to high level of pollution. The PAH distributions were significantly and positively correlated with OM (p < 0.01) and higher concentrations were detected downstream of areas affected by human activity. Petroleum, coal, and wood combustion were the main sources of PAHs in riverine sediments, and the sources of OM in sediment included terrestrial and aquatic higher plants, soil, and sewage discharge. The OM accumulated and aged along the river, with increases in the degree of aromaticity and condensation, which led to stronger adsorption of PAHs. Our results will help to promote the management and restoration of contaminated riverine sediments.
Collapse
Affiliation(s)
- Zhenhan Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wenqiang Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Baoqing Shan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
7
|
Zhao C, Xu J, Shang D, Zhang Y, Zhang J, Xie H, Kong Q, Wang Q. Application of constructed wetlands in the PAH remediation of surface water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146605. [PMID: 34030309 DOI: 10.1016/j.scitotenv.2021.146605] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose adverse risks to ecosystems and public health because of their carcinogenicity and mutagenicity. As such, the extensive occurrence of PAHs represents a worldwide concern that requires urgent solutions. Wastewater treatment plants are not, however, designed for PAH removal and often become sources of the PAHs entering surface waters. Among the technologies applied in PAH remediation, constructed wetlands (CWs) exhibit several cost-effective and eco-friendly advantages, yet a systematic examination of the application and success of CWs for PAH remediation is missing. This review discusses PAH occurrence, distribution, and seasonal patterns in surface waters during the last decade to provide baseline information for risk control and further treatment. Furthermore, based on the application of CWs in PAH remediation, progress in understanding and optimising PAH-removal mechanisms is discussed focussing on sediments, plants, and microorganisms. Wetland plant traits are key factors affecting the mechanisms of PAH removal in CWs, including adsorption, uptake, phytovolatilization, and biodegradation. The physico-chemical characteristics of PAHs, environmental conditions, wetland configuration, and operation parameters are also reviewed as important factors affecting PAH removal efficiency. Whilst significant progress has been made, several key problems need to be addressed to ensure the success of large-scale CW projects. These include improving performance in cold climates and addressing the toxic threshold effects of PAHs on wetland plants. Overall, this review provides future direction for research on PAH removal using CWs and their large-scale operation for the treatment of PAH-contaminated surface waters.
Collapse
Affiliation(s)
- Congcong Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Dawei Shang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Yanmeng Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Technology, Shandong University, Jinan 250100, China.
| | - Huijun Xie
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Qian Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
8
|
Zhao Z, Gong X, Zhang L, Jin M, Cai Y, Wang X. Riverine transport and water-sediment exchange of polycyclic aromatic hydrocarbons (PAHs) along the middle-lower Yangtze River, China. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123973. [PMID: 33265014 DOI: 10.1016/j.jhazmat.2020.123973] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
We examined the riverine transport of polycyclic aromatic hydrocarbons (PAHs) based on their spatial-temporal distributions in water and sediments from the mainstream along the middle and lower Yangtze River. According to the fugacity fraction (ff) estimation, sediments performed as a secondary emission source of two-, three-, and four-ringed PAHs and as a sink for five- and six-ringed congeners, leading to higher ecological and human health risks especially towards the lower reaches. The higher PAH levels observed in the more developed delta and megacities were highly linked to economic parameters. This was further supported by the source apportionment performed using the principal component analysis-multiple linear regression (PCA-MLR) model, which showed major contributions of coal and coke combustions along with vehicle emissions. The spatial-temporal distribution revealed that water runoff was the major contribution to PAHs transport along the middle-lower Yangtze River, whereas a sharp decrease in sediment discharge due to the dam impoundment along the upper reaches would lead to an increase in the catchment retention effect of PAHs. Hence, the biogeochemical processes of PAHs and their impacts on the fragile ecosystems as a consequence of the further modification of the sedimentary system in rivers need to be fully explored.
Collapse
Affiliation(s)
- Zhonghua Zhao
- State Key Laboratory of Lake Science and Environment Research, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xionghu Gong
- State Key Laboratory of Lake Science and Environment Research, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment Research, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Miao Jin
- State Key Laboratory of Lake Science and Environment Research, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongjiu Cai
- State Key Laboratory of Lake Science and Environment Research, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaolong Wang
- State Key Laboratory of Lake Science and Environment Research, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
9
|
Estimation of Polycyclic Aromatic Hydrocarbons Pollution in Mediterranean Sea from Volturno River, Southern Italy: Distribution, Risk Assessment and Loads. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041383. [PMID: 33546201 PMCID: PMC7913333 DOI: 10.3390/ijerph18041383] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022]
Abstract
This study reports the data on the contamination caused by polycyclic aromatic hydrocarbons (PAHs) drained from the Volturno River. The seasonal and spatial distribution of PAHs in water and sediment samples was assessed. The 16 PAHs were determined in the water dissolved phase (DP), suspended particulate matter (SPM), and sediments. A multidimensional statistical approach was used to identify three pollution composite indicators. Contaminant discharges of PAHs into the sea were calculated in about 3158.2 kg/year. Total concentrations of PAHs varied in ranges 434.8 to 872.1 ng g−1 and 256.7 to 1686.3 ng L−1 in sediment samples and in water (DP + SPM), respectively. The statistical results indicated that the PAHs mainly had a pyrolytic source. Considering the sediment quality guidelines (SQGs), the water environmental quality standards (USEPA EQS), and risk quotient (RQ), the Volturno River would be considered as an area in which the environmental integrity is possibly at risk.
Collapse
|
10
|
Zainal PNS, Alang Ahmad SA, Abdul Aziz SFN, Rosly NZ. Polycyclic Aromatic Hydrocarbons: Occurrence, Electroanalysis, Challenges, and Future Outlooks. Crit Rev Anal Chem 2020; 52:878-896. [PMID: 33155481 DOI: 10.1080/10408347.2020.1839736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The past several decades have seen increasing concern regarding the wide distribution of polycyclic aromatic hydrocarbons (PAHs) in environmental matrices. Primary toxicological data show PAHs' persistent characteristics and possible toxicity effects. Because of this pressing global issue, electroanalytical methods have been introduced. These methods are effective for PAH determination in environmental waters, even outclassing sophisticated analytical techniques such as chromatography, conventional spectrophotometry, fluorescence, and capillary electrophoresis. Herein, the literature published on PAHs is reviewed and discussed with special regard to PAH occurrence. Moreover, the recent developments in electrochemical sensors for PAH determination and the challenges and future outlooks in this field, are also presented.
Collapse
Affiliation(s)
| | - Shahrul Ainliah Alang Ahmad
- Faculty of Science, Department of Chemistry, Universiti Putra Malaysia, Selangor, Malaysia.,Institute of Advanced Technology, Universiti Putra Malaysia, Selangor, Malaysia
| | | | - Nor Zida Rosly
- Institute of Advanced Technology, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
11
|
Jiang Y, Yuan L, Wen H, Zhang Q, Liu L, Wu Y. Distribution, Composition, Sources, and Potential Ecological Risks of PAHs in the Sediments of the Lanzhou Reach of the Yellow River, China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:613-619. [PMID: 32964273 DOI: 10.1007/s00128-020-02998-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The distribution, composition, sources, and potential ecological risks of polycyclic aromatic hydrocarbons (PAHs) in the sediments of the Lanzhou Reach of the Yellow River, China were investigated. The total concentration of the 18 individual PAHs (∑18PAHs) in the sediments ranged from 638 to 1620 ng/g, with a mean value of 901 ng/g. The pollution level of PAHs in the sediments was low to moderate. Spatially, the distribution of PAHs in the sediments showed an increasing trend along the direction of water flow. ∑18PAHs predominantly consisted of low molecular weight PAHs. The principal component analysis and isomer ratios of PAHs suggested the mixed sources of petroleum and those from the combustion of petroleum, coal, and biomass. The results showed that the PAHs in the sediments of the Lanzhou Reach of the Yellow River have a low ecological risk. However, the BaP equivalent exposure values suggested a potential cancer risk.
Collapse
Affiliation(s)
- Yufeng Jiang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Longmiao Yuan
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Hong Wen
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Qian Zhang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Lanlan Liu
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yingqin Wu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
12
|
Zhou J, Zheng D, Jin S, Wang X, Zhuo H, Gang DD. Analysis and Risk Assessment of Organic Pollutants in Surface Water from Xujiahe Basin, China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:453-459. [PMID: 32840649 DOI: 10.1007/s00128-020-02970-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
In this study, organic compounds were screened in surface water collected from Xujiahe basin, China by gas chromatography-mass spectrometry (GC-MS). A total of 51 compounds were identified including 14 organochlorine pesticides (OCPs), 9 organophosphorus pesticides (OPs), 16 polycyclic aromatic hydrocarbons (PAHs) and 12 chlorobenzene (CBs). The concentrations of OCPs, PAHs and CBs were generally low. The concentrations of OCPs in Xujiahe reservoir ranged from N.D. to 35.6 ng/L, the concentrations of PAHs ranged from N.D. to 19.8 ng/L and the concentrations of CBs ranged from 10.3 to 124.6 ng/L. The Ecological Structure Activity Relationships (ECOSAR) model was employed to directly predict the integrated toxicity indexes of 51 organic pollutants. The risk quotient (RQ) values of most of the organic compounds in the water samples were acceptable for their ecological risk.
Collapse
Affiliation(s)
- Jia Zhou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Du Zheng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China.
| | - Xian Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Haihua Zhuo
- Yangtze River Basin Water Resources Protection Bureau, Wuhan, 430010, China
| | - Daniel Dianchen Gang
- Department of Civil Engineering, University of Louisiana At Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA
| |
Collapse
|
13
|
Liu J, Lu G, Yang H, Dang T, Yan Z. Ecological impact assessment of 110 micropollutants in the Yarlung Tsangpo River on the Tibetan Plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 262:110291. [PMID: 32094108 DOI: 10.1016/j.jenvman.2020.110291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/08/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
In this study, the occurrences of 110 micropollutants in the surface waters and sediments collected at eight sampling sites along the middle reaches of the Yarlung Tsangpo River were investigated in winter. A total of 47 and 45 micropollutants were detected in at least one water or sediment sample, respectively, and their total concentrations reached 790.2 ng/L and 186.5 ng/g on a dry weight basis, respectively. Their composition profiles demonstrated that the majority of micropollutants were polycyclic aromatic hydrocarbons (PAHs) and UV filters. The mixture risk quotient (MRQ) values of the detected micropollutants regularly exceeded 1 for aquatic organisms at all sampling sites, and fish and invertebrates are the more sensitive organisms. The diversity and evenness of the zooplankton levels had a clear negative correlation with the micropollutant occurrences in water. The top 10 mixture components belonging to the UV filter and PAH categories explained more than 80% and 95% of the mixture risk for chronic and acute toxicology, respectively. This study is the first investigation of the presence and risk assessment of 110 micropollutants in the Yarlung Tsangpo River Basin and offers new insights into the ecological security of the water resources of the Tibetan Plateau.
Collapse
Affiliation(s)
- Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China.
| | - Haohan Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Tianjian Dang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
14
|
Xie Z, Gao L, Liang Z, Chen J, Li S, Zhu A, Wu Y, Yang Z, Li R, Wang Z. Characteristics, Sources, and Risks of Polycyclic Aromatic Hydrocarbons in Topsoil and Surface Water from the Liuxi River Basin, South China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:401-415. [PMID: 32008048 DOI: 10.1007/s00244-020-00711-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
The concentrations, composition, sources, and risks of polycyclic aromatic hydrocarbons (PAHs) in topsoil and surface water of the Liuxi River basin, south China were analyzed in this study. The total concentrations of 16 PAHs ranged from 296.26 to 888.14 ng/g in topsoil and from 156.73 to 422.03 ng/L in surface water, indicating mild pollution. The PAHs in topsoil exhibited an even spatial distribution, suggesting that they originated primarily from dry and wet deposition of transported pollutants. The concentration of PAHs in surface water did not differ significantly geographically, but the concentrations of total, three-, and four-ring PAHs were significantly lower in the Liuxi River than in its tributaries. Three- and two-ring PAHs predominated in topsoil and surface water, respectively. A correlation analysis suggested that the total organic carbon content and pH exerted a negligible effect on the spatial distribution of PAHs in topsoil, and they may have common sources. Fossil fuel combustion (particularly vehicle emissions) and coking production were the dominant sources of PAHs in topsoil, whereas those in surface water were derived from a variety of sources. The total toxic equivalent concentrations of 16 PAHs in topsoil ranged from 3.73 to 105.66 ng/g (mean, 30.93 ng/g), suggesting that exposure to the basin's topsoil does not pose a risk to the environment or public health according to the Canadian soil quality guidelines. A risk assessment revealed that the total PAH concentrations in surface water posed a low ecological risk.
Collapse
Affiliation(s)
- Zhenglan Xie
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lei Gao
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zuobing Liang
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianyao Chen
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China.
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shaoheng Li
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Aiping Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu Wu
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhigang Yang
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Rui Li
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhuowei Wang
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
15
|
Zhang C, Lu J, Wu J. Adsorptive removal of polycyclic aromatic hydrocarbons by detritus of green tide algae deposited in coastal sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:320-327. [PMID: 30904645 DOI: 10.1016/j.scitotenv.2019.03.296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
Rare information is available on the adsorptive removal of polycyclic aromatic hydrocarbons (PAHs) in the presence of algal detritus deposited in the coastal sediment during the outbreak of the green tide. The adsorptive removal of typical PAHs by Ulva prolifera (U. prolifera) detritus was firstly investigated since the algal detritus was of great importance for the biogeochemical cycle of coastal contaminants. The results showed that equilibrium adsorptive capacities of naphthalene, phenanthrene and benzo[a] pyrene on the U. prolifera detritus were 1.27, 1.97, and 2.49 mg kg-1, respectively, at the initial concentration of 10 μg L-1. The in situ monitoring using laser confocal scanning microscopy confirmed the adsorptive removal of PAHs by U. prolifera detritus. The adsorption of these PAHs was highly pH-dependent. The increase in salinity led to the increase in naphthalene removal rate, while the salinity showed scarce influence on the removal of phenanthrene and benzo[a] pyrene. There was a good linear relationship (R2 ≥ 0.9892) between the removal efficiency of PAHs and the initial concentration of PAHs. Slow desorption kinetics and low desorption rate (<16%) indicated that the adsorptive removal of PAHs could be benign to the environment. These findings demonstrated that the occurrence of green tide could provide a new natural remediation approach for contamination of PAHs through the adsorptive removal by the detritus of green tidal algae deposited in the coastal sediment.
Collapse
Affiliation(s)
- Cui Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jian Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China.
| | - Jun Wu
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong 264025, PR China
| |
Collapse
|
16
|
Occurrence and Toxicological Risk Assessment of Polycyclic Aromatic Hydrocarbons and Heavy Metals in Drinking Water Resources of Southern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071422. [PMID: 29986385 PMCID: PMC6068901 DOI: 10.3390/ijerph15071422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 11/17/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and heavy metals exposure is related to a variety of diseases and cancer development, posing a great health risk to humans. In this study, water samples were collected from nine important water sources in Guangdong, Guangxi and Hainan provinces to determine the degree of PAHs and heavy metals contamination. Overall, the total contents of 16 PAHs and heavy metals were found within the permissible levels. In human health risk assessment, the benzo(a)pyrene equivalent concentration (BaPeq) presented a much lower level than the guideline values announced by Chinese Environmental Protection Agency (CEPA) and United States Environmental Protection Agency (US EPA), demonstrating that the PAHs contamination level in drinking water was mostly acceptable. For heavy metals, the Chronic daily intake (CDI), hazard quotient (HQ) or hazard index (HI) suggested that the water quality in nine water sources was desirable and did not present a risk to human health.
Collapse
|
17
|
Bi C, Wang X, Jia J, Chen Z. Spatial variation and sources of polycyclic aromatic hydrocarbons influenced by intensive land use in an urbanized river network of East China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:671-680. [PMID: 29426192 DOI: 10.1016/j.scitotenv.2018.01.272] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
The concentrations and distribution of polycyclic aromatic hydrocarbons (PAHs) in urbanized river networks are strongly influenced by intensive land use, industrial activities and population density. The spatial variations and their influencing factors of 16 priority PAHs were investigated in surface water, suspended particulate matter (SPM) and sediments among areas under different intensive land uses (industrial areas, agricultural areas, inner city, suburban towns and island areas) in the Shanghai river network, East China. Source apportionment was carried out using isomer ratios of PAHs and Positive Matrix Factorization (PMF). Total concentrations of 16 PAHs ranged from 105.2 to 400.5 ng/L, 108.1 to 1058.8 ng/L and 104.4 to 19,480.0 ng/g in water, SPM and sediments, respectively. The concentrations of PAHs in SPM and sediments varied significantly among areas (p < 0.05), with the highest concentrations in inner city characterized by highly intensive land use and high population density. The PAH concentrations in sediments were positively correlated with those in SPM and were more strongly correlated with black carbon than with total organic carbon, indicating a stronger influence of prolonged anthropogenic contamination than the recent surface input in sediments. Biomass and coal combustion contributed strongly to total PAHs, followed by natural gas combustion in water and SPM, and vehicular emissions in sediments. Vehicular emissions were the strongest contributors in SPM and sediments of the inner city, indicating the strong influence of vehicular transportation to PAHs pollution in the urbanized river network.
Collapse
Affiliation(s)
- Chunjuan Bi
- Key Laboratory of Geographic Information Science of Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Chongming Ecological Research Center, East China Normal University, Shanghai 200241, China.
| | - Xueping Wang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Qinzhou University, Qinzhou 535011, China
| | - Jinpu Jia
- Key Laboratory of Geographic Information Science of Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Zhenlou Chen
- Key Laboratory of Geographic Information Science of Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
18
|
Keshavarzifard M, Moore F, Keshavarzi B, Sharifi R. Distribution, source apportionment and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in intertidal sediment of Asaluyeh, Persian Gulf. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:721-735. [PMID: 28856501 DOI: 10.1007/s10653-017-0019-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Surface sediment samples were collected from intertidal zone of Asaluyeh, Persian Gulf, to investigate distribution, sources and health risk of sixteen polycyclic aromatic hydrocarbons (PAHs). Total PAH concentrations ranged from 1.8 to 81.2 μg kg-1 dry weight, which can be categorized as low level of pollution. Qualitative and quantitative assessments showed that PAHs originated from both petrogenic and pyrogenic sources with slight pyrogenic dominance. Source apportionment using principal component analysis indicated that the main sources of PAHs were fossil fuel combustion (33.59%), traffic-related PAHs (32.77%), biomass and coal combustion (18.54%) and petrogenic PAHs (9.31%). According to the results from the sediment quality guidelines, mean effects range-median quotient (M-ERM-Q) and benzo[a]pyrene toxic equivalents (BaPeq), low negative ecological risks related to PAH compounds would occur in the intertidal zone of Asaluyeh. The total benzo[a]pyrene (BaP) toxic equivalent quotient (TEQcarc) for carcinogenic compounds ranged from 0.01 to 7 μg kg-1-BaPeq, indicating low carcinogenic risk. The human health risk assessment of PAH compounds via ingestion and dermal pathways suggests low and moderate potential risk to human health, respectively.
Collapse
Affiliation(s)
- Mehrzad Keshavarzifard
- Medical Geology Research Center, Faculty of Sciences, Department of Earth Sciences, Shiraz University, Shiraz, Iran.
| | - Farid Moore
- Medical Geology Research Center, Faculty of Sciences, Department of Earth Sciences, Shiraz University, Shiraz, Iran
| | - Behnam Keshavarzi
- Medical Geology Research Center, Faculty of Sciences, Department of Earth Sciences, Shiraz University, Shiraz, Iran
| | - Reza Sharifi
- Medical Geology Research Center, Faculty of Sciences, Department of Earth Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
19
|
Zhang C, Lu J, Wu J, Luo Y. Removal of phenanthrene from coastal waters by green tide algae Ulva prolifera. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:1322-1328. [PMID: 28793401 DOI: 10.1016/j.scitotenv.2017.07.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Ulva prolifera (U. prolifera) has been frequently involved in terrible algal proliferation in coastal areas. Although it is known to be associated with green tide, its contribution to the natural attenuation of the polycyclic aromatic hydrocarbons (PAHs) in seawater has not been evaluated. In this study, the removal of phenanthrene using U. prolifera collected from coastal water with green tide blooming was investigated. The results showed that phenanthrene could be removed efficiently in the presence of both the live and heat-killed U. prolifera. The phenanthrene concentrations of the live algae treatment decreased smoothly from 10.00 to 0.80μgL-1 through the whole process, while those of the heat-killed algae treatment decreased sharply from 10.0 to 2.71μgL-1 in one day and kept constantly after that. The in situ monitoring and visualizing using laser confocal scanning microscopy (LCSM) confirmed the accumulation of phenanthrene in U. prolifera. The increase in nutrient and temperature led to the increase of phenanthrene removal rate, while the salinity had less influence on the removal of phenanthrene. The removal efficiency by U. prolifera had a good linear relationship with phenanthrene initial concentration (r2=0.999) even at 100μgL-1 which was higher than its environmentally relevant concentrations. High removal efficiency (91.3%) was observed when the initial phenanthrene concentration was set at environmental relevant concentration (5μgL-1). Results of this study demonstrate a potential new natural attenuation process for typical PAHs in coastal water during the outbreak of green tide. These findings indicate that the outbreak of harmful green tide algae may bring positive environmental benefits in the terms of the removal of harmful organic pollutants from coastal waters.
Collapse
Affiliation(s)
- Cui Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jian Lu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Jun Wu
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, People's Republic of China
| | - Yongming Luo
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, People's Republic of China
| |
Collapse
|
20
|
Wang C, Zhou S, Wu S, Song J, Shi Y, Li B, Chen H. Surface water polycyclic aromatic hydrocarbons (PAH) in urban areas of Nanjing, China. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:2150-2157. [PMID: 29068344 DOI: 10.2166/wst.2017.387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The concentration, sources and environmental risks of polycyclic aromatic hydrocarbons (PAHs) in surface water in urban areas of Nanjing were investigated. The range of ∑16PAHs concentration is between 4,076 and 29,455 ng/L, with a mean of 17,212 ng/L. The composition of PAHs indicated that 2- and 3-ring PAHs have the highest proportion in all PAHs, while the 5- and 6-ring PAHs were the least in proportion. By diagnostic ratio analysis, combustion and petroleum were a mixture input that contributed to the water PAH in urban areas of Nanjing. Positive matrix factorization quantitatively identified four factors, including coke oven, coal combustion, oil source, and vehicle emission, as the main sources. Toxic equivalency factors of BaP (BaPeq) evaluate the environmental risks of PAHs and indicate the PAH concentration in surface water in urban areas of Nanjing had been polluted and might cause potential environmental risks. Therefore, the PAH contamination in surface water in urban areas of Nanjing should draw considerable attention.
Collapse
Affiliation(s)
- Chunhui Wang
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China E-mail:
| | - Shenglu Zhou
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China E-mail:
| | - Shaohua Wu
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China E-mail:
| | - Jing Song
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China E-mail:
| | - Yaxing Shi
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China E-mail:
| | - Baojie Li
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China E-mail:
| | - Hao Chen
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China E-mail:
| |
Collapse
|
21
|
Montuori P, Aurino S, Garzonio F, Sarnacchiaro P, Nardone A, Triassi M. Distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in water and sediments from Tiber River and estuary, Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:1254-1267. [PMID: 27265739 DOI: 10.1016/j.scitotenv.2016.05.183] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 05/27/2023]
Abstract
The concentration, source and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in the Tiber River and its environmental impact on the Tyrrhenian Sea (Central Mediterranean Sea) were estimated. The 16 priority PAHs were determined in the water dissolved phase (DP), suspended particulate matter (SPM) and sediments collected from 21 sites in four different seasons. Total concentrations of PAHs ranged from 10.3 to 951.6ngL(-1) and from 36.2 to 545.6ngg(-1) in water (sum of DP and SPM) and in sediment samples, respectively. The compositions of PAHs showed that 2- to 4-ring PAHs were abundant in DP, 4- to 6-ring PAHs were predominant in SPM samples, and 4- to 5-ring PAHs were abundant in sediments. The diagnostic ratio analysis indicated that the PAHs mainly had a pyrolytic source. The toxic equivalent concentration of carcinogenic PAHs was 45.3ngTEQg(-1), suggesting low carcinogenic risk for Tiber River. Total PAHs loads into the sea were calculated in about 3161.7kgyear(-1) showing that this river is one of the main contribution sources of these contaminants to the Tyrrhenian Sea.
Collapse
Affiliation(s)
- Paolo Montuori
- Department of Public Health, University Federico II, Via Sergio Pansini no 5, 80131 Naples, Italy.
| | - Sara Aurino
- Department of Public Health, University Federico II, Via Sergio Pansini no 5, 80131 Naples, Italy
| | - Fatima Garzonio
- Department of Public Health, University Federico II, Via Sergio Pansini no 5, 80131 Naples, Italy
| | - Pasquale Sarnacchiaro
- Department of Economics, University Unitelma Sapienza, Viale Regina Elena no 295, 00161 Rome, Italy
| | - Antonio Nardone
- Department of Public Health, University Federico II, Via Sergio Pansini no 5, 80131 Naples, Italy
| | - Maria Triassi
- Department of Public Health, University Federico II, Via Sergio Pansini no 5, 80131 Naples, Italy
| |
Collapse
|
22
|
Zhang Y, Wu D, Yan X, Guan Y. Rapid solid-phase microextraction of polycyclic aromatic hydrocarbons in water samples by a coated through-pore sintered titanium disk. Talanta 2016; 154:400-8. [DOI: 10.1016/j.talanta.2016.03.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/20/2016] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
|
23
|
Yu W, Liu R, Xu F, Shen Z. Environmental risk assessments and spatial variations of polycyclic aromatic hydrocarbons in surface sediments in Yangtze River Estuary, China. MARINE POLLUTION BULLETIN 2015; 100:507-515. [PMID: 26371848 DOI: 10.1016/j.marpolbul.2015.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
In this study, based on sampling data from 30 sites in August 2010, the environmental risks associated with 16 priority PAHs were estimated in surface sediments from the Yangtze River Estuary (YRE). The results indicated that the toxic equivalent quantities of the benzo[a]pyrene (TEQBap) from 30 sites were in the range of 1.93-75.88ngg(-1), and the low-molecular-weight PAHs were the dominated species with higher potential toxicity. The results of the Incremental Lifetime Cancer Risk (ILCR) model indicated that the ILCR values of dermal contact were higher than 10(-6) in the northeast region, suggesting that there were significant potential carcinogenic health risks for fishermen exposure to sedimentary PAHs via dermal contact in these areas. RQ values of PAHs indicated the various distributions of ecological risk levels in the study area. These variations might be caused by the natural and anthropogenic inputs and currents in the YRE.
Collapse
Affiliation(s)
- Wenwen Yu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Ruimin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China.
| | - Fei Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Zhenyao Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|