1
|
Pires de Almeida TV, Sales CF, Ribeiro YM, Sobjak TM, Bazzoli N, Melo RMC, Rizzo E. Metal-contaminated sediment toxicity in a highly impacted Neotropical river: Insights from zebrafish embryo toxicity assays. CHEMOSPHERE 2024; 362:142627. [PMID: 38885763 DOI: 10.1016/j.chemosphere.2024.142627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The Fundão dam collapse was one of the largest mining-related disasters globally. It resulted in the release of mining tailings containing heavy metals, which contaminated the Doce River in southeastern Brazil. This study assessed the effects of acute exposure of Danio rerio embryos to sediments contaminated by mine tailings six years after the Fundão dam collapse. The study sites included P2, P3, and P4 in the upper Doce River, as well as site P1 on the Piranga River, an uncontaminated river. Sediment samples were analyzed for 10 metals/metalloid by atomic absorption spectrometry. In the assays, embryos were exposed to sediment from P1-P4 sites, and uncontaminated quartz was used as control sediment. Various biomarkers were applied to assess biological responses, and the integrated biomarker response (IBR) index was calculated for each site. Sediment samples revealed elevated levels of As, Cr, Cu, Hg, and Ni beyond Brazilian legislation limits. At 96-h exposure, embryo mortality rates exceeded 20% in P1, P2, and P3, higher than the control and P4 (p < 0.0001). Hatching rates ranged from 60 to 80% in P1, P2, and P3, lower than the control and P4 (p < 0.001). Larvae exposed to P2 sediment (closest to the Fundão dam) exhibited skeletal, physiological, and sensory malformations. Neurotoxicity was indicated by increased acetylcholinesterase activity and reduced spontaneous movements in embryos exposed to Doce River sediment. Contamination also increased metallothionein and heat shock protein 70 levels, along with changes in cell proliferation and apoptosis. Principal component analysis showed a good correlation between metals/metalloid in the sediment and larval morphometric endpoints. The IBR index highlighted suitable biomarkers for monitoring metal contamination in fish embryos. Overall, our findings suggest that sediment toxicity following the Fundão dam failure may compromise the sustainability of fish communities in the Doce River.
Collapse
Affiliation(s)
- Thaís Victória Pires de Almeida
- Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil
| | - Camila Ferreira Sales
- Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil
| | - Yves Moreira Ribeiro
- Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil
| | - Thais Maylin Sobjak
- Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil
| | - Nilo Bazzoli
- Programa de Pós-Graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Magno Costa Melo
- Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil
| | - Elizete Rizzo
- Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Harshavarthini M, Pathan MA, Poojary N, Kumar S, Gurphale N, Varshini SVS, Kumari R, Nagpure NS. Assessment of toxicity potential of neglected Mithi River water from Mumbai megacity, India, in zebrafish using embryotoxicity, teratogenicity, and genotoxicity biomarkers. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:950. [PMID: 37450229 DOI: 10.1007/s10661-023-11542-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
The Mithi River begins at Vihar Lake and flows through the industrial hub of the city of Mumbai, India, and merges with the Arabian Sea at Mahim Creek. The current study was carried out to assess the ecotoxicological effects of the Mithi River surface water in zebrafish (Danio rerio) embryos. Water samples were collected from ten sampling sites (S1 to S10) located along the course of the Mithi River. The toxicity of water samples was assessed using a zebrafish embryo toxicity test (ZFET). Water samples were diluted from all sites at 1:0, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, and 1:128 times. The lowest and highest LDil 20 values for 96 h were estimated as 9.16 and 74.18 respectively for the S2 and S5 sites. The results of embryotoxicity and teratogenicity assays indicated a significant difference (p < 0.0001) between embryos exposed to control and sampling sites (except S1) for various endpoints such as mortality, egg coagulation, pericardial edema, yolk sac edema, tail bend, and skeletal deformities. The histopathological analysis revealed various lesions, ascertaining the toxic effects of water samples. The comet assay revealed significantly higher DNA damage (except S1) in embryos exposed to sites S5 and S6 with OTM values of 4.46 and 2.48 respectively. The results indicated that the Mithi River is polluted with maximum pollution load at the middle stretches. The study further indicated that the pollutants in the Mithi River (except S1) could potentially be hazardous to the aquatic organisms; therefore, continuous biomonitoring of the river is needed for its revival.
Collapse
Affiliation(s)
- M Harshavarthini
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Mujahidkhan A Pathan
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Nalini Poojary
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Saurav Kumar
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Nikita Gurphale
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - S V Sai Varshini
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Riya Kumari
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - N S Nagpure
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India.
| |
Collapse
|
3
|
Llanos-Rivera A, Álvarez-Muñoz K, Astuya-Villalón A, López-Rosales L, García-Camacho F, Sánchez-Mirón A, Krock B, Gallardo-Rodríguez JJ. Sublethal effect of the toxic dinoflagellate Karlodinium veneficum on early life stages of zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27113-27124. [PMID: 36378374 DOI: 10.1007/s11356-022-24149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Dinoflagellates of the genus Karlodinium are ichthyotoxic species that produce toxins including karlotoxins and karmitoxins. Karlotoxins show hemolytic and cytotoxic activities and have been associated with fish mortality. This study evaluated the effect of toxins released into the environment of Karlodinium veneficum strain K10 (Ebro Delta, NW Mediterranean) on the early stages of Danio rerio (zebrafish). Extracts of the supernatant of K10 contained the mono-sulfated KmTx-10, KmTx-11, KmTx-12, KmTx-13, and a di-sulfated form of KmTx-10. Total egg mortality was observed for karlotoxin concentration higher than 2.69 μg L-1. For 1.35 μg L-1, 87% of development anomalies were evidenced (all concentrations were expressed as KmTx-2 equivalent). Larvae of 8 days postfertilization exposed to 1.35 µg L-1 presented epithelial damage with 80% of cells in the early apoptotic stage. Our results indicate that supernatants with low concentration of KmTxs produce both lethal and sublethal effects in early fish stages. Moreover, apoptosis was induced at concentrations as low as 0.01 μg L-1. This is of great relevance since detrimental long-term effects due to exposure to low concentrations of these substances could affect wild and cultured fish.
Collapse
Affiliation(s)
- Alejandra Llanos-Rivera
- Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Katia Álvarez-Muñoz
- Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Allisson Astuya-Villalón
- Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Programa Sur Austral, Centro de Investigaciones Oceanográficas en El Pacífico Sur-Oriental (COPAS Sur-Austral), Facultad de Ciencias Naturales Y Oceanográficas, Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile
| | | | | | | | - Bernd Krock
- Alfred Wegener Institut-Helmholtz Zentrum Für Polar- Und Meeresforschung, Chemische Ökologie, Bremerhaven, Germany
| | - Juan José Gallardo-Rodríguez
- Department of Chemical Engineering, University of Almería, Almería, Spain.
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
4
|
Saiki P, Mello-Andrade F, Gomes T, Rocha TL. Sediment toxicity assessment using zebrafish (Danio rerio) as a model system: Historical review, research gaps and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148633. [PMID: 34182436 DOI: 10.1016/j.scitotenv.2021.148633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Sediment is an important compartment in aquatic environments and acts as a sink for environmental pollutants. Sediment toxicity tests have been suggested as critical components in environmental risk assessment. Since the zebrafish (Danio rerio) has been indicated as an emerging model system in ecotoxicological tests, a scientometric and systematic review was performed to evaluate the use of zebrafish as an experimental model system in sediment toxicity assessment. A total of 97 papers were systematically analyzed and summarized. The historical and geographical distributions were evaluated and the data concerning the experimental design, type of sediment toxicity tests and approach (predictive or retrospective), pollutants and stressors, zebrafish developmental stages and biomarkers responses were summarized and discussed. The use of zebrafish to assess the sediment toxicity started in 1996, using mainly a retrospective approach. After this, research showed an increasing trend, especially after 2014-2015. Zebrafish exposed to pollutant-bound sediments showed bioaccumulation and several toxic effects, such as molecular, biochemical, morphological, physiological and behavioral changes. Zebrafish is a suitable model system to assess the toxicity of freshwater, estuarine and marine sediments, and sediment spiked in the laboratory. The pollutant-bound sediment toxicity in zebrafish seems to be overall dependent on physical and chemical properties of pollutants, experimental design, environmental factor, developmental stages and presence of organic natural matter. Overall, results showed that the zebrafish embryos and larvae are suitable model systems to assess the sediment-associated pollutant toxicity.
Collapse
Affiliation(s)
- Patrícia Saiki
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil; Federal Institute of Education, Science and Technology of Goiás (IFG), Câmpus Goiânia, Goiás, Brazil
| | - Francyelli Mello-Andrade
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil; Federal Institute of Education, Science and Technology of Goiás (IFG), Câmpus Goiânia, Goiás, Brazil
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
5
|
Zhang X, Levia DF, Ebikade EO, Chang J, Vlachos DG, Wu C. The impact of differential lignin S/G ratios on mutagenicity and chicken embryonic toxicity. J Appl Toxicol 2021; 42:423-435. [PMID: 34448506 DOI: 10.1002/jat.4229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 12/25/2022]
Abstract
Lignin and lignin-based materials have received considerable attention in various fields due to their promise as sustainable feedstocks. Guaiacol (G) and syringol (S) are two primary monolignols that occur in different ratios for different plant species. As methoxyphenols, G and S have been targeted as atmospheric pollutants and their acute toxicity examined. However, there is a rare understanding of the toxicological properties on other endpoints and mixture effects of these monolignols. To fill this knowledge gap, our study investigated the impact of different S/G ratios (0.5, 1, and 2) and three lignin depolymerization samples from poplar, pine, and miscanthus species on mutagenicity and developmental toxicity. A multitiered method consisted of in silico simulation, in vitro Ames test, and in vivo chicken embryonic assay was employed. In the Ames test, syringol showed a sign of mutagenicity, whereas guaiacol did not, which agreed with the T.E.S.T. simulation. For three S and G mixture and lignin monomers, mutagenic activity was related to the proportion of syringol. In addition, both S and G showed developmental toxicity in the chicken embryonic assay and T.E.S.T. simulation, and guaiacol had a severe effect on lipid peroxidation. A similar trend and comparable developmental toxicity levels were detected for S and G mixtures and the three lignin depolymerized monomers. This study provides data and insights on the differential toxicity of varying S/G ratios for some important building blocks for bio-based materials.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Delphis F Levia
- Department of Geography and Spatial Sciences, University of Delaware, Newark, DE, USA.,Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
| | | | - Jeffrey Chang
- Department of Geography and Spatial Sciences, University of Delaware, Newark, DE, USA
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
6
|
Canedo A, Rocha TL. Zebrafish (Danio rerio) using as model for genotoxicity and DNA repair assessments: Historical review, current status and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144084. [PMID: 33383303 DOI: 10.1016/j.scitotenv.2020.144084] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Genotoxic pollutants lead to both DNA damage and changes in cell repair mechanisms. Selecting suitable biomonitors is a fundamental step in genotoxicity studies. Thus, zebrafish have become a popular model used to assess the genotoxicity of different pollutants in recent years. They have orthologous genes with humans and hold almost all genes involved in different repair pathways. Therefore, the aim of the current study is to summarize the existing literature on zebrafish using as model system to assess the genotoxicity of different pollutants. Revised data have shown that comet assay is the main technique adopted in these studies. However, it is necessary standardizing the technique applied to zebrafish in order to enable better result interpretation and comparisons. Overall, pollutants lead to single-strand breaks (SSB), double-strand breaks (DSB), adduct formation, as well as to changes in the expression of genes involved in repair mechanisms. Although analyzing repair mechanisms is essential to better understand the genotoxic effects caused by pollutants, few studies have analyzed repair capacity. The current review reinforces the need of conducting further studies on the role played by repair pathways in zebrafish subjected to DNA damage. Revised data have shown that zebrafish are a suitable model to assess pollutant-induced genotoxicity.
Collapse
Affiliation(s)
- Aryelle Canedo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil..
| |
Collapse
|
7
|
Viganò L, Casatta N, Farkas A, Mascolo G, Roscioli C, Stefani F, Vitelli M, Olivo F, Clerici L, Robles P, Dellavedova P. Embryo/larval toxicity and transcriptional effects in zebrafish (Danio rerio) exposed to endocrine active riverbed sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10729-10747. [PMID: 31942721 DOI: 10.1007/s11356-019-07417-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Sediment toxicity plays a fundamental role in the health of inland fish communities; however, the assessment of the hazard potential of contaminated sediments is not a common objective in environmental diagnostics or remediation. This study examined the potential of transcriptional endpoints investigated in zebrafish (Danio rerio) exposed to riverbed sediments in ecotoxicity testing. Embryo-larval 10-day tests were conducted on sediment samples collected from five sites (one upstream and four downstream of the city of Milan) along a polluted tributary of the Po River, the Lambro River. Sediment chemistry showed a progressive downstream deterioration in river quality, so that the final sampling site showed up to eight times higher concentrations of, for example, triclosan, galaxolide, PAH, PCB, BPA, Ni, and Pb, compared with the uppermost site. The embryo/larval tests showed widespread toxicity although the middle river sections evidenced worse effects, as evidenced by delayed embryo development, hatching rate, larval survival, and growth. At the mRNA transcript level, the genes encoding biotransformation enzymes (cyp1a, gst, ugt) showed increasing upregulations after exposure to sediment from further downstream sites. The genes involved in antioxidant responses (sod, gpx) suggested that more critical conditions may be present at downstream sites, but even upstream of Milan there seemed to be some level of oxidative stress. Indirect evidences of potential apoptotic activity (bcl2/bax < 1) in turn suggested the possibility of genotoxic effects. The genes encoding for estrogen receptors (erα, erβ1, erβ2) showed exposure to (xeno)estrogens with a progressive increase after exposure to sediments from downstream sites, paralleled by a corresponding downregulation of the ar gene, likely related to antiandrogenic compounds. Multiple levels of thyroid disruption were also evident particularly in downstream zebrafish, as for thyroid growth (nkx2.1), hormone synthesis and transport (tg, ttr, d2), and signal transduction (trα, trβ). The inhibition of the igf2 gene reasonably reflected larval growth inhibitions. Although none of the sediment chemicals could singly explain fish responses, principal component analysis suggested a good correlation between gene transcripts and the overall trend of contamination. Thus, the combined impacts from known and unknown covarying chemicals were proposed as the most probable explanation of fish responses. In summary, transcriptional endpoints applied to zebrafish embryo/larval test can provide sensitive, comprehensive, and timeliness information which may greatly enable the assessment of the hazard potential of sediments to fish, complementing morphological endpoints and being potentially predictive of longer studies.
Collapse
Affiliation(s)
- Luigi Viganò
- CNR - National Research Council of Italy, IRSA - Water Research Institute , Via del Mulino 19, 20861, Brugherio, MB, Italy.
| | - Nadia Casatta
- CNR - National Research Council of Italy, IRSA - Water Research Institute , Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Anna Farkas
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3, P.O. Box 35, Tihany, H-8237, Hungary
| | - Giuseppe Mascolo
- CNR - National Research Council of Italy, IRSA - Water Research Institute, Via De Blasio 5, 70132, Bari, Italy
| | - Claudio Roscioli
- CNR - National Research Council of Italy, IRSA - Water Research Institute , Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Fabrizio Stefani
- CNR - National Research Council of Italy, IRSA - Water Research Institute , Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Matteo Vitelli
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| | - Fabio Olivo
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| | - Laura Clerici
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| | - Pasquale Robles
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| | - Pierluisa Dellavedova
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| |
Collapse
|
8
|
Lu W, Chen N, Feng C, Deng Y, Zhang J, Chen F. Treatment of polluted river sediment by electrochemical oxidation: Changes of hydrophilicity and acute cytotoxicity of dissolved organic matter. CHEMOSPHERE 2020; 243:125283. [PMID: 31760292 DOI: 10.1016/j.chemosphere.2019.125283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
River sediment is the main internal pollution source of water body. This study evaluated the feasibility of electrochemical oxidation (EO) for polluted river sediment treatment. The hydrophilic and acute cytotoxicity (ACT) of dissolved organic matter (DOM) during electrolysis were mainly investigated. Meanwhile, the behavior of sediment evolution was also characterized. The results showed that the EO process was feasible for the treatment of polluted river sediment. The COD removal efficiency of polluted river sediment can achieve to 40.1% when the current density was 50 mA cm-2 with the chloride ion of 3000 mg L-1 and the initial pH of 8.5. The hydrophilicity of sediment DOM decreased with the decreasing molecule weight of humic-like substances, polar groups and the formation of aromatic aldehydes such as benzaldehyde. In this process, The ACT of sediment DOM can be reduced by the removal of aromatic compounds. In the process of electrolysis, the sediment particles were smaller than before, the dehydration was enhanced, and the crystal type tended to be stable, which was conducive to the utilization of resources. Therefore, EO method is a feasible alternative for the treatment of polluted river sediment.
Collapse
Affiliation(s)
- Wang Lu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yang Deng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jing Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Fangxin Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
9
|
Hausen J, Otte JC, Legradi J, Yang L, Strähle U, Fenske M, Hecker M, Tang S, Hammers-Wirtz M, Hollert H, Keiter SH, Ottermanns R. Fishing for contaminants: identification of three mechanism specific transcriptome signatures using Danio rerio embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4023-4036. [PMID: 28391457 DOI: 10.1007/s11356-017-8977-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/03/2017] [Indexed: 05/10/2023]
Abstract
In ecotoxicology, transcriptomics is an effective way to detect gene expression changes in response to environmental pollutants. Such changes can be used to identify contaminants or contaminant classes and can be applied as early warning signals for pollution. To do so, it is important to distinguish contaminant-specific transcriptomic changes from genetic alterations due to general stress. Here we present a first step in the identification of contaminant class-specific transcriptome signatures. Embryos of zebrafish (Danio rerio) were exposed to three substances (methylmercury, chlorpyrifos and Aroclor 1254, each from 24 to 48 hpf exposed) representing sediment typical contaminant classes. We analyzed the altered transcriptome to detect discriminative genes significantly regulated in reaction to the three applied contaminants. By comparison of the results of the three contaminants, we identified transcriptome signatures and biologically important pathways (using Cytoscape/ClueGO software) that react significantly to the contaminant classes. This approach increases the chance of finding genes that play an important role in contaminant class-specific pathways rather than more general processes.
Collapse
Affiliation(s)
- Jonas Hausen
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Jens C Otte
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jessica Legradi
- Environment and Health, VU Amsterdam, De Boelelaan 1087, 1081 HV, Amsterdam, the Netherlands
| | - Lixin Yang
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martina Fenske
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group for Translational Medicine and Pharmacology, Forckenbeckstraße 6, 52074, Aachen, Germany
| | - Markus Hecker
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada
| | - Song Tang
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada
| | - Monika Hammers-Wirtz
- Research Institute for Ecosystem Analysis and Assessment - gaiac, Kackertstraße 10, 52072, Aachen, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Steffen H Keiter
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- Man-Technology-Environment Research Centre, Örebro University, SE-701 82, Örebro, Sweden
| | - Richard Ottermanns
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
10
|
Kais B, Schiwy S, Hollert H, Keiter SH, Braunbeck T. In vivo EROD assays with the zebrafish (Danio rerio) as rapid screening tools for the detection of dioxin-like activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:269-280. [PMID: 28268020 DOI: 10.1016/j.scitotenv.2017.02.236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
The present study compares two alternative in vivo approaches for the measurement of ethoxyresorufin-O-deethylase (EROD) activity in zebrafish (Danio rerio) following exposure to acetonic model sediment extracts: (1) the live-imaging EROD assay for the direct detection of EROD induction in individual livers via epifluorescence, and (2) the fish embryo EROD assay in subcellular fractions derived from entire zebrafish embryos after in vivo exposure. For toxicity assessment, each sediment extract was tested with the standard fish embryo test (FET). Upon completion of a functioning liver after 72h, the embryos gave a distinct fluorescent signal in the liver, and a corresponding EROD activity could be detected in the fish embryo EROD assay. The exposure time in the live-imaging EROD assay was reduced to 3h, which resulted in a stronger, less variable and more sensitive EROD response. Overall, the live-imaging and the fish embryo EROD assays showed the same tendencies and gave comparable results, e.g. a concentration-dependent increase in EROD activity at concentrations one order of magnitude below concentrations producing macroscopically visible abnormalities. At higher concentrations, however, a decrease of EROD activity was observed in either test. Both tests ranked the three model sediment extracts in the same order. Results indicate that both test systems complement each other and together provide a rapid and reliable in vivo tool to investigate the presence of dioxin-like substances in environmental samples.
Collapse
Affiliation(s)
- Britta Kais
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, D-69120 Heidelberg, Germany.
| | - Sabrina Schiwy
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Steffen H Keiter
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, D-69120 Heidelberg, Germany
| |
Collapse
|
11
|
Babić S, Barišić J, Višić H, Sauerborn Klobučar R, Topić Popović N, Strunjak-Perović I, Čož-Rakovac R, Klobučar G. Embryotoxic and genotoxic effects of sewage effluents in zebrafish embryo using multiple endpoint testing. WATER RESEARCH 2017; 115:9-21. [PMID: 28254533 DOI: 10.1016/j.watres.2017.02.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Wastewater treatment plant (WWTP) effluents are often complex mixtures of various organic and inorganic substances. Quality control of wastewaters and sludges has been regulated with measuring several physico-chemical parameters and sometimes using biological methods with non-specific responses, while synergistic action mechanisms of contaminants in such complex mixtures is still unknown. Toxic effects of wastewaters within and downstream of the WWTP in City of Virovitica, Croatia, were tested on zebrafish Danio rerio using a set of biomarkers that enabled an insight in wastewaters toxic potential on embryos at the cellular, tissue and the whole organism level during an early ontogenesis (24 and 48 hpf). Exposure of embryos to the wastewater samples from WWTP Virovitica increased mortality and abnormality rate. Heart rate, spontaneous movements and pigmentation formation were also markedly affected. Biochemical markers confirmed the presence of MXR inhibitors in all tested wastewater samples, indicating the increase of pollutant accumulation in the cell/organism. Also, a tendency of DNA damage decrease measured with Comet assay was evident in wastewater samples downstream from WWTP although control levels were not reached in any environmental sample. Histopathological analysis showed that exposure to tested samples resulted in impaired muscle organization, notochord malformation and retardation in eye and brain development at embryos 48 hpf. Furthermore, semi-quantitative histopathology assessment indicated increased percentage of embryo defects in river water sampled several kilometers downstream from the WWTP, confirming toxic potential of WWTP effluents. Extension of the zebrafish embryotoxicity test (ZET) with biochemical and histopathological biomarkers could serve as a guiding principle in biomonitoring of wastewater contamination.
Collapse
Affiliation(s)
- Sanja Babić
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, Croatia
| | - Josip Barišić
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, Croatia
| | - Hrvoje Višić
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia
| | | | - Natalija Topić Popović
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, Croatia
| | - Ivančica Strunjak-Perović
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, Croatia
| | - Göran Klobučar
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia.
| |
Collapse
|
12
|
Pelka KE, Henn K, Keck A, Sapel B, Braunbeck T. Size does matter - Determination of the critical molecular size for the uptake of chemicals across the chorion of zebrafish (Danio rerio) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 185:1-10. [PMID: 28142078 DOI: 10.1016/j.aquatox.2016.12.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/19/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
In order to identify the upper limits of the molecular size of chemicals to cross the chorion of zebrafish, Danio rerio, differently sized, non-toxic and chemically inert polyethylene glycols (PEGs; 2000-12,000Da) were applied at concentrations (9.76mM) high enough to provoke osmotic pressure. Whereas small PEGs were expected to be able to cross the chorion, restricted uptake of large PEGs was hypothesized to result in shrinkage of the chorion. Due to a slow, but gradual uptake of PEGs over time, molecular size-dependent equilibration in conjunction with a regain of the spherical chorion shape was observed. Thus, the size of molecules able to cross the chorion could be narrowed down precisely to ≤4000Da, and the time-dependency of the movement across the chorion could be described. To account for associated alterations in embryonic development, fish embryo toxicity tests (FETs) according to OECD test guideline 236 (OECD, 2013) were performed with special emphasis to changes in chorion shape. FETs revealed clear-cut size-effects: the higher the actual molecular weight (=size) of the PEG, the more effects (both acutely toxic and sublethal) were found. No effects were seen with PEGs of 2000 and 3000Da. In contrast, PEG 8000 and PEG 12,000 were found to be most toxic with LC50 values of 16.05 and 16.40g/L, respectively. Likewise, the extent of chorion shrinkage due to increased osmotic pressure strictly depended on PEG molecular weight and duration of exposure. A reflux of water and PEG molecules into the chorion and a resulting re-shaping of the chorion could only be observed for eggs exposed to PEGs ≤4000Da. Results clearly indicate a barrier function of the zebrafish chorion for molecules larger than 3000 to 4,000Da.
Collapse
Affiliation(s)
- Katharina E Pelka
- Aquatic Ecology and Toxicology, Centre for Organismal Studies (COS), Im Neuenheimer Feld 504, University Heidelberg, Germany
| | - Kirsten Henn
- Aquatic Ecology and Toxicology, Centre for Organismal Studies (COS), Im Neuenheimer Feld 504, University Heidelberg, Germany
| | - Andreas Keck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies (COS), Im Neuenheimer Feld 504, University Heidelberg, Germany
| | - Benjamin Sapel
- Aquatic Ecology and Toxicology, Centre for Organismal Studies (COS), Im Neuenheimer Feld 504, University Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies (COS), Im Neuenheimer Feld 504, University Heidelberg, Germany.
| |
Collapse
|
13
|
Le Bihanic F, Di Bucchianico S, Karlsson HL, Dreij K. In vivo
micronucleus screening in zebrafish by flow cytometry. Mutagenesis 2016; 31:643-653. [DOI: 10.1093/mutage/gew032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Hollert H, Keiter SH. Danio rerio as a model in aquatic toxicology and sediment research. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16243-16246. [PMID: 26374542 DOI: 10.1007/s11356-015-5362-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 09/02/2015] [Indexed: 06/05/2023]
Affiliation(s)
- H Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Steffen H Keiter
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, 70182, Örebro, Sweden.
| |
Collapse
|
15
|
Kais B, Stengel D, Batel A, Braunbeck T. Acetylcholinesterase in zebrafish embryos as a tool to identify neurotoxic effects in sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16329-16339. [PMID: 25567057 DOI: 10.1007/s11356-014-4014-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
In order to clarify the suitability of zebrafish (Danio rerio) embryos for the detection of neurotoxic compounds, the acetylcholinesterase assay was adapted and validated with a series of priority pollutants listed as relevant for the European water policy (Aroclor 1254, 2,3-benzofuran, bisphenol A, chlorpyrifos, paraoxon-methyl, quinoline, and methyl mercury chloride) as well as acetonic extracts from three sediments of known contamination. The acute toxicities of the model substances and the sediment extracts were determined by means of the fish embryo test as specified in OECD TG 236, and concentrations as low as the effective concentration at 10% inhibition (EC10) were used as the highest test concentration in the acetylcholinesterase test in order to avoid nonspecific systemic effects mimicking neurotoxicity. Among the model compounds, only the known acetylcholinesterase inhibitors paraoxon-methyl and chlorpyrifos produced a strong inhibition to about 20 and 33%, respectively, of the negative controls. For the sediment extracts, a reduction of acetylcholinesterase activity to about 60% could only be shown for the Vering Canal sediment extracts; this could be correlated to high contents of acetylcholinesterase-inhibiting polycyclic aromatic hydrocarbons (PAHs) as identified by chemical analyses. Co-incubation of the Vering Canal sediment extracts with chlorpyrifos at EC10 concentrations each did not significantly increase the inhibitory effect of chlorpyrifos, indicating that the mode of action of acetylcholinesterase inhibition by the sediment-borne PAHs is different to that of the typical acetylcholinesterase blocker chlorpyrifos. Overall, the study documents that zebrafish embryos represent a suitable model not only to reveal acetylcholinesterase inhibition, but also to investigate various modes of neurotoxic action.
Collapse
Affiliation(s)
- Britta Kais
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Daniel Stengel
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Annika Batel
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
| |
Collapse
|