1
|
Yan Y, Xu J, Huang W, Fan Y, Li Z, Tian M, Ma J, Lu X, Liang J. Metagenomic and Culturomics Analysis of Microbial Communities within Surface Sediments and the Prevalence of Antibiotic Resistance Genes in a Pristine River: The Zaqu River in the Lancang River Source Region, China. Microorganisms 2024; 12:911. [PMID: 38792738 PMCID: PMC11124135 DOI: 10.3390/microorganisms12050911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Microbial communities inhabiting sedimentary environments in river source regions serve as pivotal indicators of pristine river ecosystems. While the correlation between antibiotic resistome and pathogenicity with core gut bacteria in humans is well established, there exists a significant knowledge gap concerning the interaction of antibiotic resistance genes (ARGs) and human pathogenic bacteria (HPB) with specific microbes in river source basins, often referred to as "terrestrial gut". Understanding the microbial composition, including bacteria and resident genetic elements such as ARGs, HPB, Mobile Genetic Elements (MGEs), and Virulence Factors (VFs), within natural habitats against the backdrop of global change, is imperative. To address this gap, an enrichment-based culturomics complementary along with metagenomics was conducted in this study to characterize the microbial biobank and provide preliminary ecological insights into profiling the dissemination of ARGs in the Lancang River Source Basin. Based on our findings, in the main stream of the Lancang River Source Basin, 674 strains of bacteria, comprising 540 strains under anaerobic conditions and 124 under aerobic conditions, were successfully isolated. Among these, 98 species were identified as known species, while 4 were potential novel species. Of these 98 species, 30 were HPB relevant to human health. Additionally, bacA and bacitracin emerged as the most abundant ARGs and antibiotics in this river, respectively. Furthermore, the risk assessment of ARGs predominantly indicated the lowest risk rank (Rank Ⅳ) in terms of endangering human health. In summary, enrichment-based culturomics proved effective in isolating rare and unknown bacteria, particularly under anaerobic conditions. The emergence of ARGs showed limited correlation with MGEs, indicating minimal threats to human health within the main stream of the Lancang River Source Basin.
Collapse
Affiliation(s)
- Yi Yan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.X.); (W.H.); (M.T.); (J.M.)
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jialiang Xu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.X.); (W.H.); (M.T.); (J.M.)
| | - Wenmin Huang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.X.); (W.H.); (M.T.); (J.M.)
| | - Yufeng Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Y.F.); (Z.L.)
| | - Zhenpeng Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Y.F.); (Z.L.)
| | - Mingkai Tian
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.X.); (W.H.); (M.T.); (J.M.)
| | - Jinsheng Ma
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.X.); (W.H.); (M.T.); (J.M.)
| | - Xin Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Y.F.); (Z.L.)
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| |
Collapse
|
2
|
Su W, Wang X, Yang J, Yu Q, Li X, Zhang S, Li H. Multi-omics methods reveal that putrescine and cadaverine cause different degrees of enrichment of high-risk resistomes and opportunistic pathogens in the water and sediment of the Yellow River. ENVIRONMENTAL RESEARCH 2023; 219:115069. [PMID: 36549489 DOI: 10.1016/j.envres.2022.115069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Contamination of antibiotic resistomes due to animal carcass decay has become a serious environmental concern. However, the relationship between main metabolite compounds of corpse decomposition (i.e., putrescine and cadaverine) and antibiotic resistomes remains unclear. To tackle this issue, the response of antibiotic resistance genes (ARGs) and microbiome in aquatic environment to excess putrescine, cadaverine and a mixture of both based on laboratory simulation experiment was investigated by high-throughput quantitative PCR and amplicon sequencing methods. Our results showed putrescine and cadaverine led to the increasing of TC (total carbon) and TN (total nitrogen) both in water and sediment. Under the exposure of putrescine and cadaverine, the total abundance of mobile genetic elements (MGEs) and most ARGs in water was higher than in sediment. In particular, putrescine and cadaverine caused significantly different decreases in alpha diversity of microbial community in water and sediment compared with the control group. Microbial community structures both in water and sediment were also significantly affected by cadaverine and putrescine. Furthermore, putrescine and cadaverine led to different degrees of increases of high-risk ARGs (like mecA) and opportunistic pathogens (like Delftia) in sediment, promoting the prevalence of antibiotic resistant bacteria. In conclusion, our findings revealed the influences of main metabolites of carcass decay on microbiome and resistomes, providing references for risk assessment and pollution management.
Collapse
Affiliation(s)
- Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaocheng Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoshan Li
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Wanzhou 404120, China
| | - Shiheng Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Wanzhou 404120, China.
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|
3
|
Qiu D, Ke M, Zhang Q, Zhang F, Lu T, Sun L, Qian H. Response of microbial antibiotic resistance to pesticides: An emerging health threat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158057. [PMID: 35977623 DOI: 10.1016/j.scitotenv.2022.158057] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
The spread of microbial antibiotic resistance has seriously threatened public health globally. Non-antibiotic stressors have significantly contributed to the evolution of bacterial antibiotic resistance. Although numerous studies have been conducted on the potential risk of pesticide pollution for bacterial antibiotic resistance, a systematic review of these concerns is still lacking. In the present study, we elaborate the mechanism underlying the effects of pesticides on bacterial antibiotic resistance acquisition as well as the propagation of antimicrobial resistance. Pesticide stress enhanced the acquisition of antibiotic resistance in bacteria via various mechanisms, including the activation of efflux pumps, inhibition of outer membrane pores for resistance to antibiotics, and gene mutation induction. Horizontal gene transfer is a major mechanism whereby pesticides influence the transmission of antibiotic resistance genes (ARGs) in bacteria. Pesticides promoted the conjugation transfer of ARGs by increasing cell membrane permeability and increased the proportion of bacterial mobile gene elements, which facilitate the spread of ARGs. This review can improve our understanding regarding the pesticide-induced generation and spread of ARGs and antibiotic resistant bacteria. Moreover, it can be applied to reduce the ecological risks of ARGs in the future.
Collapse
Affiliation(s)
- Danyan Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Fan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
4
|
Rocha ADDL, Ferrari RG, Pereira WE, de Lima LA, Givisiez PEN, Moreno-Switt AI, Toro M, Delgado-Suárez EJ, Meng J, de Oliveira CJB. Revisiting the Biological Behavior of Salmonella enterica in Hydric Resources: A Meta-Analysis Study Addressing the Critical Role of Environmental Water on Food Safety and Public Health. Front Microbiol 2022; 13:802625. [PMID: 35722289 PMCID: PMC9201643 DOI: 10.3389/fmicb.2022.802625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
The increasing number of studies reporting the presence of Salmonella in environmental water sources suggests that it is beyond incidental findings originated from sparse fecal contamination events. However, there is no consensus on the occurrence of Salmonella as its relative serovar representation across non-recycled water sources. We conducted a meta-analysis of proportions by fitting a random-effects model using the restricted maximum-likelihood estimator to obtain the weighted average proportion and between-study variance associated with the occurrence of Salmonella in water sources. Moreover, meta-regression and non-parametric supervised machine learning method were performed to predict the effect of moderators on the frequency of Salmonella in non-recycled water sources. Three sequential steps (identification of information sources, screening and eligibility) were performed to obtain a preliminary selection from identified abstracts and article titles. Questions related to the frequency of Salmonella in aquatic environments, as well as putative differences in the relative frequencies of the reported Salmonella serovars and the role of potential variable moderators (sample source, country, and sample volume) were formulated according to the population, intervention, comparison, and outcome method (PICO). The results were reported according to the Preferred Reporting Items for Systematic Review and Meta-Analyzes statement (PRISMA). A total of 26 eligible papers reporting 148 different Salmonella serovars were retrieved. According to our model, the Salmonella frequency in non-recycled water sources was 0.19 [CI: 0.14; 0.25]. The source of water was identified as the most import variable affecting the frequency of Salmonella, estimated as 0.31 and 0.17% for surface and groundwater, respectively. There was a higher frequency of Salmonella in countries with lower human development index (HDI). Small volume samples of surface water resulted in lower detectable Salmonella frequencies both in high and low HDI regions. Relative frequencies of the 148 serovars were significantly affected only by HDI and volume. Considering that serovars representation can also be affected by water sample volume, efforts toward the standardization of water samplings for monitoring purposes should be considered. Further approaches such as metagenomics could provide more comprehensive insights about the microbial ecology of fresh water and its importance for the quality and safety of agricultural products.
Collapse
Affiliation(s)
- Alan Douglas de Lima Rocha
- Departamento de Zootecnia, Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| | - Rafaela Gomes Ferrari
- Departamento de Zootecnia, Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| | - Walter Esfrain Pereira
- Departamento de Ciências Fundamentais e Sociais, Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| | - Laiorayne Araújo de Lima
- Departamento de Zootecnia, Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| | - Patrícia Emília Naves Givisiez
- Departamento de Zootecnia, Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| | - Andrea Isabel Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestla, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magaly Toro
- Laboratorio de Microbiologia y Probioticos, Instituto de Nutricion y Tecnologia de los Alimentos, Universidad de Chile, Santiago, Chile
| | | | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, College Park, MD, United States
| | - Celso José Bruno de Oliveira
- Departamento de Zootecnia, Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| |
Collapse
|
5
|
Pavelquesi SLS, de Oliveira Ferreira ACA, Rodrigues ARM, de Souza Silva CM, Orsi DC, da Silva ICR. Presence of Tetracycline and Sulfonamide Resistance Genes in Salmonella spp.: Literature Review. Antibiotics (Basel) 2021; 10:antibiotics10111314. [PMID: 34827252 PMCID: PMC8615168 DOI: 10.3390/antibiotics10111314] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Tetracyclines and sulfonamides are broad-spectrum antibacterial agents which have been used to treat bacterial infections for over half a century. The widespread use of tetracyclines and sulfonamides led to the emergence of resistance in a diverse group of bacteria. This resistance can be studied by searching for resistance genes present in the bacteria responsible for different resistance mechanisms. Salmonella is one of the leading bacteria causing foodborne diseases worldwide, and its resistance to tetracyclines and sulfonamides has been widely reported. The literature review searched the Virtual Health Library for articles with specific data in the studied samples: the resistance genes found, the primers used in PCR, and the thermocycler conditions. The results revealed that Salmonella presented high rates of resistance to tetracycline and sulfonamide, and the most frequent samples used to isolate Salmonella were poultry and pork. The tetracycline resistance genes most frequently detected from Salmonella spp. were tetA followed by tetB. The gene sul1 followed by sul2 were the most frequently sulfonamide resistance genes present in Salmonella. These genes are associated with plasmids, transposons, or both, and are often conjugative, highlighting the transference potential of these genes to other bacteria, environments, animals, and humans.
Collapse
|
6
|
Sazykin IS, Khmelevtsova LE, Seliverstova EY, Sazykina MA. Effect of Antibiotics Used in Animal Husbandry on the Distribution of Bacterial Drug Resistance (Review). APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821010166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Kumar M, Chaminda T, Patel AK, Sewwandi H, Mazumder P, Joshi M, Honda R. Prevalence of antibiotic resistance in the tropical rivers of Sri Lanka and India. ENVIRONMENTAL RESEARCH 2020; 188:109765. [PMID: 32554273 DOI: 10.1016/j.envres.2020.109765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
We evaluate the imprints of urbanization, landuse and lifestyle on the prevalence and provenance of antibiotic resistance in the tropical rivers of Sri Lanka (Kelani and Gin) and India (Sabarmati, and Brahmaputra River). The prevalence of E. coli in the Kelani, Sabarmati, and Brahmaputra Rivers was in the range of 10-27, 267-76,600, and <50 CFU ml-1 respectively. Isolated E. coli colonies were subjected to six antibiotics to assess their resistance. We found higher resistance to old generation antibiotics like tetracycline (TC), and sulfamethoxazole (ST) transcends the resistance for fluoroquinolones like norfloxacin (NFX), ciprofloxacin (CIP), and levofloxacin (LVX). Interestingly, both Indian rivers had exhibited relatively higher resistance to TC and ST than the Kelani river or Gin River, implying that the Sri Lankan situation is relatively less critical. At genetic level the resistance for β-lactams, fluoroquinolones and sulphonamides, were detected in many samples, as reported globally. While the resistance genes for aac-(6')-1b-cr, qnrS and sul1 were detected in both Sri Lankan and Indian Rivers, blaTEM and ampC were specific to the Indian Rivers only. Decoupling of the prevalence of metal contamination and antibiotic resistance has been noticed in India and Sri Lanka. Study implies that urbanization, landuse, and lifestyle (ULL) are the three most critical factors governing multidrug resistance (MDR) and fecal contamination.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Earth Sciences, Indian Institute of Technology Gandhinagar, 382355, India.
| | - Tushara Chaminda
- Department of Civil and Environmental Engineering, University of Ruhuna, Galle, Sri Lanka
| | - Arbind K Patel
- Department of Earth Sciences, Indian Institute of Technology Gandhinagar, 382355, India
| | - Himaya Sewwandi
- Department of Civil and Environmental Engineering, University of Ruhuna, Galle, Sri Lanka
| | - Payal Mazumder
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Department of Science and Technology, Gujarat, 382016, India
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Japan
| |
Collapse
|
8
|
Quantitative Occurrence of Antibiotic Resistance Genes among Bacterial Populations from Wastewater Treatment Plants Using Activated Sludge. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030387] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Wastewater treatment plants (WWTPs) are an important reservoir in the development of drug resistance phenomenon and they provide a potential route of antibiotic resistance gene (ARGs) dissemination in the environment. The aim of this study was to assess the role of WWTPs in the spread of ARGs. Untreated and treated wastewater samples that were collected from thirteen Polish WWTPs (applying four different modifications of activated sludge–based treatment technology) were analyzed. The quantitative occurrence of genes responsible for the resistance to beta-lactams and tetracyclines was determined using the real-time PCR method. Such genes in the DNA of both the total bacterial population and of the E. coli population were analyzed. Among the tested genes that are responsible for the resistance to beta-lactams and tetracyclines, blaOXA and blaTEM and tetA were dominant, respectively. This study found an insufficient reduction in the quantity of the genes that are responsible for antibiotic resistance in wastewater treatment processes. The results emphasize the need to monitor the presence of genes determining antibiotic resistance in the wastewater that is discharged from treatment plants, as they can help to identify the hazard that treated wastewater poses to public health.
Collapse
|
9
|
Turolla A, Cattaneo M, Marazzi F, Mezzanotte V, Antonelli M. Antibiotic resistant bacteria in urban sewage: Role of full-scale wastewater treatment plants on environmental spreading. CHEMOSPHERE 2018; 191:761-769. [PMID: 29080537 DOI: 10.1016/j.chemosphere.2017.10.099] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/01/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
The presence of antibiotic resistant bacteria (ARB) in wastewater was investigated and the role of wastewater treatment plants (WWTPs) in promoting or limiting antibiotic resistance was assessed. Escherichia coli (E. coli) and total heterotrophic bacteria (THB) resistance to ampicillin, chloramphenicol and tetracycline was monitored in three WWTPs located in Milan urban area (Italy), differing among them for the operating parameters of biological process, for the disinfection processes (based on sodium hypochlorite, UV radiation, peracetic acid) and for the discharge limits to be met. Wastewater was collected from three sampling points along the treatment sequence (WWTP influent, effluent from sand filtration, WWTP effluent). Antibiotic resistance to ampicillin was observed both for E. coli and for THB. Ampicillin resistant bacteria in the WWTP influents were 20-47% of E. coli and 16-25% of THB counts. A limited resistance to chloramphenicol was observed only for E. coli, while neither for E. coli nor for THB tetracycline resistance was observed. The biological treatment and sand filtration led to a decrease in the maximum percentage of ampicillin-resistant bacteria (20-29% for E. coli, 11-21% for THB). However, the conventionally adopted parameters did not seem adequate to support an interpretation of WWTP role in ARB spread. Peracetic acid was effective in selectively acting on antibiotic resistant THB, unlike UV radiation and sodium hypochlorite. The low counts of E. coli in WWTP final effluents in case of agricultural reuse did not allow to compare the effect of the different disinfection processes on antibiotic resistance.
Collapse
Affiliation(s)
- A Turolla
- Politecnico di Milano, Department of Civil and Environmental Engineering - Environmental Section, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - M Cattaneo
- Politecnico di Milano, Department of Civil and Environmental Engineering - Environmental Section, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - F Marazzi
- Università degli Studi di Milano Bicocca, DISAT, Piazza della Scienza 1, 20126 Milano, Italy
| | - V Mezzanotte
- Università degli Studi di Milano Bicocca, DISAT, Piazza della Scienza 1, 20126 Milano, Italy
| | - M Antonelli
- Politecnico di Milano, Department of Civil and Environmental Engineering - Environmental Section, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| |
Collapse
|
10
|
Adegoke AA, Faleye AC, Singh G, Stenström TA. Antibiotic Resistant Superbugs: Assessment of the Interrelationship of Occurrence in Clinical Settings and Environmental Niches. Molecules 2016; 22:E29. [PMID: 28035988 PMCID: PMC6155606 DOI: 10.3390/molecules22010029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/11/2016] [Accepted: 12/22/2016] [Indexed: 02/06/2023] Open
Abstract
The increasing threat to global health posed by antibiotic resistance remains of serious concern. Human health remains at higher risk due to several reported therapeutic failures to many life threatening drug resistant microbial infections. The resultant effects have been prolonged hospital stay, higher cost of alternative therapy, increased mortality, etc. This opinionated review considers the two main concerns in integrated human health risk assessment (i.e., residual antibiotics and antibiotic resistant genes) in various compartments of human environment, as well as clinical dynamics associated with the development and transfer of antibiotic resistance (AR). Contributions of quorum sensing, biofilms, enzyme production, and small colony variants in bacteria, among other factors in soil, water, animal farm and clinical settings were also considered. Every potential factor in environmental and clinical settings that brings about AR needs to be identified for the summative effects in overall resistance. There is a need to embrace coordinated multi-locational approaches and interrelationships to track the emergence of resistance in different niches in soil and water versus the hospital environment. The further integration with advocacy, legislation, enforcement, technological innovations and further research input and recourse to WHO guidelines on antibiotic policy would be advantageous towards addressing the emergence of antibiotic resistant superbugs.
Collapse
Affiliation(s)
- Anthony Ayodeji Adegoke
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
- Department of Microbiology, University of Uyo, 520211 Uyo, Akwa Ibom State, Nigeria.
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, Eastern Cape, South Africa.
| | - Adekunle Christopher Faleye
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
| | - Gulshan Singh
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
| | - Thor Axel Stenström
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
| |
Collapse
|
11
|
Sharma VK, Johnson N, Cizmas L, McDonald TJ, Kim H. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. CHEMOSPHERE 2016; 150:702-714. [PMID: 26775188 DOI: 10.1016/j.chemosphere.2015.12.084] [Citation(s) in RCA: 393] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/08/2015] [Accepted: 12/22/2015] [Indexed: 05/20/2023]
Abstract
Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental systems such as natural environments and drinking water resources. For example, ARG or ARB with resistance to ciprofloxacin, sulfamethoxazole, trimethoprim, quinolone, vancomycin, or tetracycline (e.g., tet(A), tet(B), tet(C), tet(G), tet(O), tet(M), tet(W), sul I, and sul II) have been detected in the environment. The development of resistance may be intrinsic, may be acquired through spontaneous mutations (de novo), or may occur due to horizontal gene transfer from donor bacteria, phages, or free DNA to recipient bacteria. An overview is also provided of the current knowledge regarding inactivation of ARB and ARG, and the mechanism of the effects of different disinfection processes in water and wastewater (chlorination, UV irradiation, Fenton reaction, ozonation, and photocatalytic oxidation). The effects of constructed wetlands and nanotechnology on ARB and ARG are also summarized.
Collapse
Affiliation(s)
- Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA.
| | - Natalie Johnson
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Leslie Cizmas
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Thomas J McDonald
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Hyunook Kim
- Department of Energy & Environmental System Engineering, The University of Seoul, 90 Jeonnong-dong Dongdaemun-gu, Seoul 130-743, Republic of Korea
| |
Collapse
|