1
|
Ashraf M, Siddiqui MT, Galodha A, Anees S, Lall B, Chakma S, Ahammad SZ. Pharmaceuticals and personal care product modelling: Unleashing artificial intelligence and machine learning capabilities and impact on one health and sustainable development goals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176999. [PMID: 39427916 DOI: 10.1016/j.scitotenv.2024.176999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The presence of pharmaceutical and personal care products (PPCPs) in the environment poses a significant threat to environmental resources, given their potential risks to ecosystems and human health, even in trace amounts. While mathematical modelling offers a comprehensive approach to understanding the fate and transport of PPCPs in the environment, such studies have garnered less attention compared to field and laboratory investigations. This review examines the current state of modelling PPCPs, focusing on their sources, fate and transport mechanisms, and interactions within the whole ecosystem. Emphasis is placed on critically evaluating and discussing the underlying principles, ongoing advancements, and applications of diverse multimedia models across geographically distinct regions. Furthermore, the review underscores the imperative of ensuring data quality, strategically planning monitoring initiatives, and leveraging cutting-edge modelling techniques in the quest for a more holistic understanding of PPCP dynamics. It also ventures into prospective developments, particularly the integration of Artificial Intelligence (AI) and Machine Learning (ML) methodologies, to enhance the precision and predictive capabilities of PPCP models. In addition, the broader implications of PPCP modelling on sustainability development goals (SDG) and the One Health approach are also discussed. GIS-based modelling offers a cost-effective approach for incorporating time-variable parameters, enabling a spatially explicit analysis of contaminant fate. Swin-Transformer model enhanced with Normalization Attention Modules demonstrated strong groundwater level estimation with an R2 of 82 %. Meanwhile, integrating Interferometric Synthetic Aperture Radar (InSAR) time-series with gravity recovery and climate experiment (GRACE) data has been pivotal for assessing water-mass changes in the Indo-Gangetic basin, enhancing PPCP fate and transport modelling accuracy, though ongoing refinement is necessary for a comprehensive understanding of PPCP dynamics. The review aims to establish a framework for the future development of a comprehensive PPCP modelling approach, aiding researchers and policymakers in effectively managing water resources impacted by increasing PPCP levels.
Collapse
Affiliation(s)
- Maliha Ashraf
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Mohammad Tahir Siddiqui
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Abhinav Galodha
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Sanya Anees
- Department of Electronics and Communication Engineering, Netaji Subash University of Technology (NSUT), New Delhi 110078, India.
| | - Brejesh Lall
- Bharti School of Telecommunication Technology and Management, Indian Institute of Technology, Delhi, New Delhi e110016, India
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| |
Collapse
|
2
|
Glassmeyer ST, Burns EE, Focazio MJ, Furlong ET, Gribble MO, Jahne MA, Keely SP, Kennicutt AR, Kolpin DW, Medlock Kakaley EK, Pfaller SL. Water, Water Everywhere, but Every Drop Unique: Challenges in the Science to Understand the Role of Contaminants of Emerging Concern in the Management of Drinking Water Supplies. GEOHEALTH 2023; 7:e2022GH000716. [PMID: 38155731 PMCID: PMC10753268 DOI: 10.1029/2022gh000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 12/30/2023]
Abstract
The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.
Collapse
Affiliation(s)
- Susan T. Glassmeyer
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | | | - Michael J. Focazio
- Retired, Environmental Health ProgramEcosystems Mission AreaU.S. Geological SurveyRestonVAUSA
| | - Edward T. Furlong
- Emeritus, Strategic Laboratory Sciences BranchLaboratory & Analytical Services DivisionU.S. Geological SurveyDenverCOUSA
| | - Matthew O. Gribble
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Michael A. Jahne
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Scott P. Keely
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Alison R. Kennicutt
- Department of Civil and Mechanical EngineeringYork College of PennsylvaniaYorkPAUSA
| | - Dana W. Kolpin
- U.S. Geological SurveyCentral Midwest Water Science CenterIowa CityIAUSA
| | | | - Stacy L. Pfaller
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| |
Collapse
|
3
|
He T, Li Y, Huang Y, He E, Li Y, Qu L, Ding F, Jin R, Han M, Yuan L, Xue W, Qu R, Zheng W, Xie Y, Liu X, Zhao L, Liu M. Simulation and risk assessment of arsenic by Hydrus-3D and CalTOX in a typical brownfield site. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130892. [PMID: 36758430 DOI: 10.1016/j.jhazmat.2023.130892] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/24/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Accurate quantification of arsenic migration and accumulation in brownfield site is critical for environmental management and soil remediation. However, the researches simulating arsenic in brownfield site in China are limited due to sparse data and complex migration behaviors. In this study, we simulated historic arsenic contamination using Hydrus-3D in an abandoned brownfield site in Hebei, China, from 1972 to 2019. Atmospheric discharge, wastewater leakage, solid waste discharge and tank leakage were calculated according to the factory processes for model simulation. Based on the results of Hydrus-3D, we assessed health risk of arsenic in this site. The results showed that total arsenic input to the soil surface from 4 pathways was 24.6 tons, the solid waste discharge was the highest contributor. The accumulation process mainly occurred in the unsaturated zone due to clay and silty clay absorbed arsenic and thus slow down the migration process. While in the saturation zone, abundant groundwater promoted migration of arsenic, resulting in widespread distribution of contaminated area. The model results represented good performance between simulated and measured values. Sensitivity analysis indicated that adsorption constant and water conductivity were the most influential parameters. Heath risk assessment showed that arsenic contamination continues to threaten resident health.
Collapse
Affiliation(s)
- Tianhao He
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Ye Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| | - Ye Huang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Erkai He
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Yan Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Liangyu Qu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Fangfang Ding
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Ruihe Jin
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Mingzhe Han
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Lina Yuan
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Weizhen Xue
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Wang Zheng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yunfeng Xie
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Xingmei Liu
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| |
Collapse
|
4
|
Terzaghi E, Vergani L, Mapelli F, Borin S, Raspa G, Zanardini E, Morosini C, Anelli S, Nastasio P, Sale VM, Armiraglio S, Di Guardo A. New Data Set of Polychlorinated Dibenzo- p-dioxin and Dibenzofuran Half-Lives: Natural Attenuation and Rhizoremediation Using Several Common Plant Species in a Weathered Contaminated Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10000-10011. [PMID: 32687327 PMCID: PMC8009521 DOI: 10.1021/acs.est.0c01857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In this paper, a new data set of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) half-lives (HLs) in soil is presented. Data are derived from a greenhouse experiment performed with an aged contaminated soil under semi-field conditions, obtained from a National Relevance Site (SIN) located in Northern Italy (SIN Brescia-Caffaro). Ten different treatments (combination of seven plant species with different soil conditions) were considered together with the respective controls (soil without plants). The ability of the plants to stimulate the biodegradation of these compounds was evaluated by measuring the PCDD/F concentration reduction in soil over a period of 18 months. The formation of new bound residues was excluded by using roots as a passive sampler of bioaccessible concentrations. The best treatment which significantly reduced PCDD/F concentrations in soil was the one with Festuca arundinacea (about 11-24% reduction, depending on the congener). These decreases reflected in HLs ranging from 2.5 to 5.8 years. Simulations performed with a dynamic air-vegetation-soil model (SoilPlusVeg) confirmed that these HLs were substantially due to biodegradation rather than other loss processes. Because no coherent PCDD/F degradation HL data sets are currently available for soil, they could substantially improve the predictions of soil remediation time, long-range transport, and food chain transfer of these chemicals using multimedia fate models.
Collapse
Affiliation(s)
- Elisa Terzaghi
- DiSAT, University of Insubria, Via Valleggio 11, Como 22100, Italy
| | - Lorenzo Vergani
- DeFENS, University of Milan, Via Celoria 2, Milan 20133, Italy
| | | | - Sara Borin
- DeFENS, University of Milan, Via Celoria 2, Milan 20133, Italy
| | - Giuseppe Raspa
- DICMA, Sapienza University of Rome, Via Eudossiana 18, Rome 00184, Italy
| | | | | | | | | | | | - Stefano Armiraglio
- Municipality
of Brescia—Museum of Natural Sciences, Via Ozanam 4, Brescia 25128, Italy
| | | |
Collapse
|
5
|
Marquès M, Nadal M, Díaz-Ferrero J, Schuhmacher M, Domingo JL. Concentrations of PCDD/Fs in the neighborhood of a hazardous waste incinerator: human health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26470-26481. [PMID: 29987468 DOI: 10.1007/s11356-018-2685-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
In 1996-1998, a wide surveillance program was initiated in the vicinity of a new hazardous waste incinerator (HWI) placed in Constantí (Catalonia, Spain), which started its regular operations in 1999. The program was aimed at assessing the environmental impact of the facility on the surrounding environment, as well as to evaluate the potential risks for the population living in the neighborhood. Since then, among other measurements, the concentrations of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) have been periodically determined in soil and herbage samples. This study shows the results, corresponding to the period 2013-2016. Data were compared with those obtained in the baseline survey (1996-1998), as well as with those of the previous survey (2011-2012). The median PCDD/F concentrations in soils were 0.44 and 0.33 ng toxic equivalent (I-TEQ)/kg in 2015 and 2016, respectively, with a significant decrease in relation to the baseline survey, and a non-significant decrease between 2015 and 2016. In turn, PCDD/F levels in vegetation showed some fluctuations over time, being the concentrations of PCDD/Fs in 2013 very similar to those found in 2012 (1.11 and 1.23 ng I-TEQ/kg, respectively). These concentrations notably decreased along the three last campaigns (0.16, 0.23, and 0.17 ng I-TEQ/kg in 2014, 2015, and 2016, respectively). These changes would be more related to a number of environmental factors rather than to a variation of PCDD/F emissions by the HWI. With respect to human health risks, exposure to PCDD/Fs in the area under potential influence of the HWI is not of concern, as the current environmental concentrations of PCDD/Fs do not mean additional carcinogenic or non-carcinogenic risks for the local population.
Collapse
Affiliation(s)
- Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Catalonia, Spain.
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain.
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Jordi Díaz-Ferrero
- Analytical and Applied Chemistry Department, Institut Químic de Sarrià - Universitat Ramon Llull, Via Augusta 390, Barcelona, Catalonia, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| |
Collapse
|
6
|
Swartjes FA, Otte PF. A novel concept in ground water quality management: Towards function specific screening values. WATER RESEARCH 2017; 119:187-200. [PMID: 28458060 DOI: 10.1016/j.watres.2017.04.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/24/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
This paper is meant to initiate and feed the discussion on a more sophisticated procedure for the derivation and use of groundwater screening values (GSVs). To this purpose, the possibilities and tools for the derivation of function specific GSVs, i.e., GSVs that depend on the actual contact of humans and ecosystems with groundwater and groundwater-related mediums, are elaborated in this study. Application of GSVs geared to the specific use and function of specific groundwater volumes could result in a more effective and cost-efficient groundwater quality management, without compromising the protection of human health and the ecosystem. Therefore, a procedure to derive function specific GSVs was developed. For illustrative purposes, risk limits have been derived for human health and ecological protection targets, for arsenic, benzene, methyl tert-butyl ether (MTBE) and vinylchloride. Agriculture and Nature reserves (combined), Residential and Industrial land uses have been considered and two different groundwater management purposes, i.e., curative and sustainable groundwater management. For each of the four contaminants, this results in a series of risks limits for each function and land use combination. It is shown that for all four contaminants higher groundwater screening values are considered appropriate for less sensitive combinations of function and land use. In the process towards (policy) implementation of these function specific GSV, it is recommended to evaluate the selection of protection targets, the scientific basis of the risk assessment procedures applied and the methodology to assess the time factor for groundwater quality assessment, given the fact that groundwater is a dynamic medium. Moreover, protection levels must be harmonized with national or regional groundwater quality standards and correspond with the requirements of the Groundwater Daughter Directive of the European Union Water Framework Directive. Groundwater plumes that are judged as 'no need for remediation' are not compatible with the Water Framework Directive requirement to take actions to prevent or limit inputs of contaminants, even when no receptor is present. However, the European Commission formulated a series of exemptions, to avoid that the "prevent" requirement would imply an onerous and sometimes unfeasible task. The function specific GSVs derived in this study could be used to identify the groundwater volumes that do not result in an unacceptable risk.
Collapse
Affiliation(s)
- Frank A Swartjes
- National Institute of Public Health and the Environment, The Netherlands.
| | - Piet F Otte
- National Institute of Public Health and the Environment, The Netherlands
| |
Collapse
|
7
|
Sou WI, Chu A, Chiueh PT. Sustainability assessment and prioritisation of bottom ash management in Macao. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2016; 34:1275-1282. [PMID: 27637273 DOI: 10.1177/0734242x16665914] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In Macao, about 7200 t yr-1 of bottom ash (BA) is generated and conventionally landfilled with construction waste. Because the properties of BA are similar to those of natural aggregates, it is suitable to be recycled as construction material. However, pre-treatment processes for BA reuse may require more resource input and may generate additional environmental impacts. Life cycle assessment, multi-media transport model analysis, cost-benefit analysis and the analytical hierarchy process were conducted to evaluate the impacts of current and potential BA management scenarios regarding environmental, economic, social and regulatory aspects. The five analysed scenarios are as follows: (0) BA buried with construction and demolition waste (current system); (1) pre-treated BA used to replace 25% of the natural aggregate in asphalt concrete; (2) pre-treated BA used to replace 25% of the natural aggregate in cement concrete; (3) pre-treated BA used to replace 25% of cement in cement concrete; and (4) pre-treated BA sent to China, blended with municipal solid waste for landfill. The results reveal the following ranking of the scenarios: 3 > 2 > 0 > 1 > 4. Scenario 3 shows the best conditions for BA recycling, because the quantity of cement concrete output is the highest and this brings the greatest economic benefits. Our use of integrated analysis provides multi-aspect investigations for BA management systems, particularly in accounting for site-specific characteristics. This approach is suitable for application in other non-western regions.
Collapse
Affiliation(s)
- W I Sou
- Graduate Institute of Environmental Engineering, National Taiwan University, ROC
| | - Andrea Chu
- Graduate Institute of Environmental Engineering, National Taiwan University, ROC
| | - P T Chiueh
- Graduate Institute of Environmental Engineering, National Taiwan University, ROC
| |
Collapse
|