1
|
Godoy Pérez M, Silva CCG, Espinoza LC, Boldrin Zanoni MV, Bollo Dragnic S, Salazar-González R. Assessment of Ti, Ir, Ta and Ru influence on mixed metal oxide electrodes for photoelectrochemical generation of persulfate: Impact on sulfamethoxazole degradation. CHEMOSPHERE 2024; 364:143049. [PMID: 39146984 DOI: 10.1016/j.chemosphere.2024.143049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
The presence of persulfate (S2O82-) in decontamination processes favors the oxidation of organic pollutants due to its strong oxidation power. In this research we study the photoelectrochemical generation of persulfate using five mixed metal oxides electrodes (MMO) with different compositions and its effect on the degradation of sulfamethoxazole antibiotic (SMX) by photoelectrocatalysis (PEC) and electro-oxidation (EO). By PEC, all anodes generated a higher concentration of S2O82- than those not exposed to light. The high S2O82-concentration obtained by PEC was 0.150 mM using MMO[Ti/Ir/Ta] in a solution with Na2SO4 100 mM applying a current density of 2 mA/cm2. On the other hand, the maximum concentration obtained was 0.250 mM at 30 min of electrolysis for MMO[Ti/Ir/Ta] using Na2SO4 50 mM and applying current density of 5 mA/cm2. S2O82-production by EO was between 0.005 and 0.089 mM. It is observed that MMO based in Ta2O5 showed the best S2O82- production. The effect of S2O82- electro-generation (using the anode with the highest and the anode with the lowest S2O82- production) on the degradation of sulfamethoxazole by PEC and EO was studied using the experimental conditions with the best production of this oxidant. MMO[Ti/Ir/Ta] and MMO[Ti/Ru] were used as anodes, and it was observed that by PEC, 100% of SMX was degraded after 30 min of electrolysis using MMO[Ti/Ir/Ta] and 60 min using MMO[Ti/Ru]. By EO, the degradation of SMX was partial, demonstrating that the electrophotocatalytic effect favors the generation of S2O82-, enhancing the degradation of SMX at short electrolysis times.
Collapse
Affiliation(s)
- Mariel Godoy Pérez
- Grupo de investigación de análisis, tratamiento, electroquímica, recuperación y reúso de agua, WATER(2). Departamento de química inorgánica, Facultad de química y Farmacia, Pontificia Universidad Católica de Chile (PUC), Chile; Centro de Investigación de Procesos Redox, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Uch), Santiago, Chile; Departamento de Química de los Materiales, Facultad de Química y Biología. Universidad de Santiago de Chile (USACH), Santiago, Chile.
| | - Caio C G Silva
- Instituto de Química, Universidade Estadual Paulista (UNESP), Rua Professor Francisco Degni, 55, Araraquara, 14800-060, São Paulo, Brazil
| | - L Carolina Espinoza
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Chile; Escuela de Ingeniería en Medio Ambiente y Sustentabilidad, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Chile
| | - Maria Valnice Boldrin Zanoni
- Instituto de Química, Universidade Estadual Paulista (UNESP), Rua Professor Francisco Degni, 55, Araraquara, 14800-060, São Paulo, Brazil
| | - Soledad Bollo Dragnic
- Centro de Investigación de Procesos Redox, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Uch), Santiago, Chile
| | - Ricardo Salazar-González
- Departamento de Química de los Materiales, Facultad de Química y Biología. Universidad de Santiago de Chile (USACH), Santiago, Chile.
| |
Collapse
|
2
|
Gul S, Hussain S, Khan H, Arshad M, Khan JR, Motheo ADJ. Integrated AI-driven optimization of Fenton process for the treatment of antibiotic sulfamethoxazole: Insights into mechanistic approach. CHEMOSPHERE 2024; 357:141868. [PMID: 38593957 DOI: 10.1016/j.chemosphere.2024.141868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/29/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Antibiotics, as a class of environmental pollutants, pose a significant challenge due to their persistent nature and resistance to easy degradation. This study delves into modeling and optimizing conventional Fenton degradation of antibiotic sulfamethoxazole (SMX) and total organic carbon (TOC) under varying levels of H2O2, Fe2+ concentration, pH, and temperature using statistical and artificial intelligence techniques including Multiple Regression Analysis (MRA), Support Vector Regression (SVR) and Artificial Neural Network (ANN). In statistical metrics, the ANN model demonstrated superior predictive accuracy compared to its counterparts, with lowest RMSE values of 0.986 and 1.173 for SMX and TOC removal, respectively. Sensitivity showcased H2O2/Fe2+ ratio, time and pH as pivotal for SMX degradation, while in simultaneous SMX and TOC reduction, fine tuning the time, pH, and temperature was essential. Leveraging a Hybrid Genetic Algorithm-Desirability Optimization approach, the trained ANN model revealed an optimal desirability of 0.941 out of 1000 solutions which yielded a 91.18% SMX degradation and 87.90% TOC removal under following specific conditions: treatment time of 48.5 min, Fe2+: 7.05 mg L-1, H2O2: 128.82 mg L-1, pH: 5.1, initial SMX: 97.6 mg L-1, and a temperature: 29.8 °C. LC/MS analysis reveals multiple intermediates with higher m/z (242, 270 and 288) and lower m/z (98, 108, 156 and 173) values identified, however no aliphatic hydrocarbon was isolated, because of the low mineralization performance of Fenton process. Furthermore, some inorganic fragments like NH4+ and NO3- were also determined in solution. This comprehensive research enriches AI modeling for intricate Fenton-based contaminant degradation, advancing sustainable antibiotic removal strategies.
Collapse
Affiliation(s)
- Saima Gul
- Department of Chemistry, Islamia College Peshawar, 25120, Peshawar, Khyber-Pakhtunkhwa, Pakistan; São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, 13566-590, SãoCarlos, SP, Brazil
| | - Sajjad Hussain
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan; São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, 13566-590, SãoCarlos, SP, Brazil.
| | - Hammad Khan
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Muhammad Arshad
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Javaid Rabbani Khan
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Artur de Jesus Motheo
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, 13566-590, SãoCarlos, SP, Brazil
| |
Collapse
|
3
|
Vijay Pradhap Singh M, Ravi Shankar K. Next-generation hybrid technologies for the treatment of pharmaceutical industry effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120197. [PMID: 38301475 DOI: 10.1016/j.jenvman.2024.120197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
Water and industries are intangible units of the globe that are always set to meet the population's demand. The global population depends on one-third of freshwater increasing the demand. The increase in population along with urbanization has polluted the fresh water resources. The pharmaceutical industry is marked as an emerging contaminant of water pollution. The most common type of pharmaceutical drugs that are detected in the environment includes antibiotics, analgesics, NSAIDs, and pain-relieving drugs. These drugs alter the food chain of the organisms causing chaos mainly in the marine ecosystem. Pharmaceutical drugs are found only in shallow amounts (ng/mg) they have a huge impact on the living system. The consumption of water contaminated with pharmaceutical ingredients can disrupt reproduction, hormonal imbalance, cancer, and respiratory problems. Various methods are used to remove these chemicals from the environment. In this review, we mainly focused on the emerging hybrid technologies and their significance in the effective treatment of pharmaceutical wastewater. This review paper primarily elaborates on the merits and demerits of existing conventional technologies helpful in developing integrated technologies for the modern era of pharmaceutical effluent treatment. This review paper further in detail discusses the various strategies of eco-friendly bioremediation techniques namely biostimulation, bioaugmentation, bacterial degradation, mycoremediation, phytoremediation, and others for the ultimate removal of pharmaceutical contaminants in wastewater. The review makes clear that targeted and hybrid solutions are what the world will require in the future to get rid of these pharmacological prints.
Collapse
Affiliation(s)
- M Vijay Pradhap Singh
- Department of Biotechnology, Vivekanandha College of Engineering for Women (Autonomous), Namakkal, Elayampalayam, Tiruchengode, Tamil Nadu, 637 205, India.
| | - K Ravi Shankar
- Department of Biotechnology, University College of Engineering, Anna University-BIT Campus, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
4
|
Luo M, Wang Z, Fang S, Liu H, Zhang C, Cao P, Li D. The enhance mechanism of DOM on tetracyclines degradation by electrochemical technology: A improvement of treatment processes. CHEMOSPHERE 2023; 334:138913. [PMID: 37182715 DOI: 10.1016/j.chemosphere.2023.138913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Tetracyclines (TC) is a typical broad-spectrum antimicrobial agent, and excessive use of TC can lead to a large accumulation of residual tetracycline in water. DOM is organic substances that can pass through the 0.45 μm filter. While dissolved organic matter (DOM) is one of the most significant substances in water, which has an important effect on water treatment. In this study, ultraviolet and visible spectrophotometry (UV-Vis) is applied to explore DOM to the effect of the electrochemical degradation. Three-dimension excitation emission matrix fluorescence spectroscopy (3D-EEM) is used to identify the component variation of DOM after the electrochemical oxidation (EO). Liquid chromatograph mass spectrometer (LC-MS) is used to confirm the degradation pathway of TC whether spontaneous or electrochemical oxidation. High performance liquid chromatography (HPLC) suggests the ROS production by DOM in the electrochemical oxidation under different conditions. Results show that DOM can promote the degradation of TC in the electrochemical oxidation. Tailwater DOM containssubstances can produce persistent free radicals, which can promote the degradation under light and dark conditions, natural source DOM can produce more free radicals under light. Therefore, TC wastewater should be added tailwater to promote the degradation of TC before the further water treatment. Otherwise, TC can be degraded to differentpathways (light, electricity, and degrade spontaneously). This study provides a significant idea for practical water treatment of tetracyclines, and promotes the practical application of electrochemical technology.
Collapse
Affiliation(s)
- Mengqiao Luo
- College of Earth and Environmental Sciences, Key Lab of Environmental Pollution Predict & Control, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhaoyang Wang
- College of Earth and Environmental Sciences, Key Lab of Environmental Pollution Predict & Control, Lanzhou University, Lanzhou, 730000, PR China.
| | - Shuai Fang
- College of Earth and Environmental Sciences, Key Lab of Environmental Pollution Predict & Control, Lanzhou University, Lanzhou, 730000, PR China
| | - Hao Liu
- College of Earth and Environmental Sciences, Key Lab of Environmental Pollution Predict & Control, Lanzhou University, Lanzhou, 730000, PR China
| | - Can Zhang
- College of Earth and Environmental Sciences, Key Lab of Environmental Pollution Predict & Control, Lanzhou University, Lanzhou, 730000, PR China
| | - Pengwei Cao
- College of Earth and Environmental Sciences, Key Lab of Environmental Pollution Predict & Control, Lanzhou University, Lanzhou, 730000, PR China
| | - Demin Li
- College of Earth and Environmental Sciences, Key Lab of Environmental Pollution Predict & Control, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
5
|
Shi K, Wang Y, Xu A, Zhu H, Gu L, Liu X, Shen J, Han W, Wei K. Integrated electro-Fenton system based on embedded U-tube GDE for efficient degradation of ibuprofen. CHEMOSPHERE 2023; 311:137196. [PMID: 36370765 DOI: 10.1016/j.chemosphere.2022.137196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Ibuprofen (IBP) is a carcinogenic non-steroidal anti-inflammatory drug (NSAID). It is of certain hazard to aquatic animals and may cause potential harm to human health. As traditional methods cannot effectively remove such a pollutant, many advanced oxidation processes (AOPs) have been developed for its degradation. The electro-Fenton process has the advantages of strong oxidative ability, a synergistic effect of various degradation processes, and a wide application range. This study developed a high-performance gas diffusion electrode (GDE) for electrochemical hydrogen peroxide (H2O2) production. The optimum system performance was found at the current density of 10 mA cm-2, pH of 7.0, and air flow rate at 0.6 L min-1, where the accumulation of H2O2 could reach as high as 769.82 mg L-1. The computational fluid dynamics (CFD) simulation results revealed a fast mass-transfer property in this electro-Fenton system with U-tube GDEs, which resulted in a deep-level degradation (∼100%) of the pollutant (IBP) and a low-concentration degradation of 10 mg L-1 within a 120-min reaction period. The high-performance liquid chromatography-mass spectrometry (LC-MS) studies demonstrated that the hydroxyl radicals were the primary active species in the electro-Fenton system and that the degradation intermediates of IBP were mainly 1-(4-isobutylphenyl) ethanol and 2-hydroxy-2-(4-isobutyl phenyl) propanoic acid through four probable electro-Fenton degradation pathways. This report provides a facile and efficient way to construct a high-performance electro-Fenton reactor, which could be effectively used in advanced oxidation processes (AOPs) to remove emerging contaminants in wastewater and natural water.
Collapse
Affiliation(s)
- Kaiqiang Shi
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Yi Wang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Anlin Xu
- Nanjing Tech University, School of Environmental Science and Engineering, Nanjing 211816, Jiangsu, China.
| | - Hongwei Zhu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Liankai Gu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Xiaodong Liu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Jinyou Shen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Weiqing Han
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Kajia Wei
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
6
|
Delgado-Vargas CA, Espinosa-Barrera PA, Villegas-Guzman P, Martínez-Pachón D, Moncayo-Lasso A. An efficient simultaneous degradation of sulfamethoxazole and trimethoprim by photoelectro-Fenton process under non-modified pH using a natural citric acid source: study of biodegradability, ecotoxicity, and antibacterial activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42275-42289. [PMID: 34993786 DOI: 10.1007/s11356-021-17751-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/21/2021] [Indexed: 06/14/2023]
Abstract
In this work, the use of natural organic wastes (orange and lemon peels) as sources of citric acid was evaluated along with the application of the photoelectro-Fenton (PEF) system under non-modified pH as a novel alternative to degrade a complex mixture of pharmaceuticals: sulfamethoxazole (SMX-7.90 × 10-5 mol/L) and trimethoprim (TMP-6.89 × 10-5 mol/L). The system was equipped with a carbon felt air diffusion cathode (GDE) and a Ti/IrO2 anode doped with SnO2 (DSA). A 3.6 × 10-5 mol/L solution of commercial citric acid was used as a reference. The pharmaceuticals' evolution in the mixture was followed by high-performance liquid chromatography (HPLC). The addition of natural products showed an efficient simultaneous degradation of the antibiotics (100% of SMX and TMP at 45 min and 90 min, respectively) similar to the performance produced by adding the commercial citric acid to the PEF system. Moreover, the addition of natural products allowed for an increment of biodegradability (100% removal of TOC by a modified Zahn Wellens test) and a decrease in ecotoxicity (0% in the bioassay with D. Magna) of the treated solutions. The antibacterial activity was eliminated after only 45 min of treatment, suggesting that the degradation by-products do not represent a significant risk to human health or the environment in general. Results suggest that, because of the efficient formation of Fe-citrate complexes, the PEF could be enhanced by the addition of natural organic wastes as a sustainable alternative ecological system for water contaminated pharmaceuticals. Additionally, the potential of reusing natural organic wastes has been exposed, contributing to an improved low-cost PEF by decreasing the environmental contamination produced by this type of waste.
Collapse
Affiliation(s)
- Carlos Andrés Delgado-Vargas
- Grupo de Investigación en Ciencias Biológicas Y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá, D.C, Colombia
- Doctorado en Ciencias Aplicadas, Universidad Antonio Nariño, Bogotá, D.C, Colombia
| | - Paula Andrea Espinosa-Barrera
- Grupo de Investigación en Ciencias Biológicas Y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá, D.C, Colombia
- Doctorado en Ciencias Aplicadas, Universidad Antonio Nariño, Bogotá, D.C, Colombia
| | - Paola Villegas-Guzman
- Grupo de Investigación Materiales, Ambiente y Desarrollo, Facultad de Ciencias Básicas, Universidad de La Amazonia, Florencia, Colombia
| | - Diana Martínez-Pachón
- Grupo de Investigación en Ciencias Biológicas Y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá, D.C, Colombia
| | - Alejandro Moncayo-Lasso
- Grupo de Investigación en Ciencias Biológicas Y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá, D.C, Colombia.
| |
Collapse
|
7
|
Sun M, Hu XT, Liu HH, Yang BJ, Wang C, Zhai LF, Wang S. Bimetal heterointerfaces towards enhanced electro-activation of O 2 under room condition. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127271. [PMID: 34564044 DOI: 10.1016/j.jhazmat.2021.127271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Efficient catalysts for oxygen (O2) activation under room condition are required for effective wet air oxidation (WAO) technology. Here, we report a novel manganese-cobalt-based composite (MnO-CoO@Co) fabricated on a graphite felt (GF) support for catalyzing the electro-activation of O2 under room condition. Abundant Co-MnO and CoO-MnO heterointerfaces are formed in the composite. In comparison to the single-metal counterparts, i.e. CoO@Co/GF (16.99 wt% Co) and MnO/GF (26.83 wt% Mn), the bimetal MnO-CoO@Co/GF (5.29 wt% Co and 8.79 wt% Mn) displays an improved oxygen storage capacity and provides more active sites to accommodate surface adsorbed oxygen species. Notably, the strong synergy derived from bimetal heterointerfaces enhances the electron transfer and oxygen mobilization during the electro-activation of O2, thereby significantly reducing the reaction barrier. MnO-CoO@Co/GF exhibits excellent efficiency and stability in electrocatalytic WAO (ECWAO) towards the removal of pharmaceuticals and personal care products (PPCPs) over a wide pH range from 4.0 to 10.0. A model pollutant sulfamethoxazole (SMX) acquires mineralization efficiency of 78.4 ± 2.1% and mineralization current efficiency of 157.89% at +1.0 V of electrode potential. The toxicity of PPCPs can be totally eliminated after the ECWAO treatment. This work highlights the synergy derived from bimetal heterointerfaces in O2 electrocatalysis, and provides a promising approach for advanced WAO catalysts in PPCPs pollution control.
Collapse
Affiliation(s)
- Min Sun
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xin-Tian Hu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hui-Hui Liu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Bao-Jun Yang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chuanpi Wang
- Greentown Agricultral Testing Technology Co., Ltd., Hangzhou 310052, China
| | - Lin-Feng Zhai
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia.
| |
Collapse
|
8
|
Diao Y, Yang Y, Cui L, Shen Y, Wang H, Yao Y. Electrochemical degradation of vanillin using lead dioxide electrode: influencing factors and reaction pathways. ENVIRONMENTAL TECHNOLOGY 2022; 43:646-657. [PMID: 32677547 DOI: 10.1080/09593330.2020.1797902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
In this study, a novel PbO2-CeO2 composite electrode was applied it to the electrocatalytic degradation of vanillin. The operating parameters such as applied current density, initial vanillin concentration, supporting electrolyte concentration and pH value were investigated and optimised. After 120 min, in a 0.10 mol L-1 Na2SO4 solution with a current density of 50 mA cm-2 and a pH value of 5.0 containing 30 mg L-1 vanillin, the vanillin removal efficiency can reach 98.03%, the COD removal efficiency is up to 73.28%. The results indicate that electrochemical degradation has a high ability to remove vanillin in aqueous solution. The reaction follows a pseudo-first-order reaction kinetics model with rate constants of 0.03036 min-1. In the process of electrochemical degradation, up to eight hydroxylated or polyhydroxylated oxidation by-products were identified through hydroxylation, dealkylation and substitution reactions. Furthermore, the degradation pathways were proposed, which eventually mineralised into inorganic water and carbon dioxide.
Collapse
Affiliation(s)
- Yuhan Diao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People's Republic of China
| | - Yang Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People's Republic of China
| | - Leilei Cui
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People's Republic of China
| | - Ying Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People's Republic of China
| | - Han Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People's Republic of China
| | - Yingwu Yao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People's Republic of China
| |
Collapse
|
9
|
Vithanage M, Mayakaduwage SS, Gunarathne V, Rajapaksha AU, Ahmad M, Abduljabbar A, Usman A, Al-Wabel MI, Ippolito JA, Ok YS. Animal carcass burial management: implications for sustainable biochar use. APPLIED BIOLOGICAL CHEMISTRY 2021; 64:91. [PMID: 34957350 PMCID: PMC8693145 DOI: 10.1186/s13765-021-00652-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 06/02/2023]
Abstract
This review focuses on existing technologies for carcass and corpse disposal and potential alternative treatment strategies. Furthermore, key issues related to these treatments (e.g., carcass and corpse disposal events, available methods, performances, and limitations) are addressed in conjunction with associated environmental impacts. Simultaneously, various treatment technologies have been evaluated to provide insights into the adsorptive removal of specific pollutants derived from carcass disposal and management. In this regard, it has been proposed that a low-cost pollutant sorbent may be utilized, namely, biochar. Biochar has demonstrated the ability to remove (in)organic pollutants and excess nutrients from soils and waters; thus, we identify possible biochar uses for soil and water remediation at carcass and corpse disposal sites. To date, however, little emphasis has been placed on potential biochar use to manage such disposal sites. We highlight the need for strategic efforts to accurately assess biochar effectiveness when applied towards the remediation of complex pollutants produced and circulated within carcass and corpse burial systems.
Collapse
Affiliation(s)
- Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250 Sri Lanka
| | - S. S. Mayakaduwage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250 Sri Lanka
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| | - Viraj Gunarathne
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250 Sri Lanka
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250 Sri Lanka
| | - Mahtab Ahmad
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Adel Abduljabbar
- Industrial Psychology, College of Education, King Saud University, Riyadh, Saudi Arabia
| | - Adel Usman
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad I. Al-Wabel
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - James A. Ippolito
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO USA
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841 South Korea
| |
Collapse
|
10
|
Liu YJ, Hu CY, Lo SL. Comparison of the degradation of multiple amine-containing pharmaceuticals during electroindirect oxidation and electrochlorination processes in continuous system. WATER RESEARCH 2021; 203:117517. [PMID: 34391021 DOI: 10.1016/j.watres.2021.117517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The degradation of pharmaceuticals by electrochemical oxidation (EO) in simulated wastewater containing multiple pharmaceuticals was compared between batch and continuous reactors. Despite the excellent efficiencies achieved in batch experiments, the practical/large-scale applications of EO-degrading amine-containing pharmaceuticals has not yet been accomplished. This paper presents the results of continuous experiments with one of the most promising electrochemical configurations of Pt/Ti electrodes before proceeding to application. In the continuous electrooxidation system (without chloride), direct oxidation on the electrode surface and oxidation by hydroxyl radicals were the main pathways. Due to their short lifespans, the radicals could not be transferred to the bulk solution, and the removal of pharmaceuticals followed the order of sulfamethoxazole (SMX) > paracetamol (PAR) > diclofenac (DIC). In the electrochlorination system (with chloride), oxidation by residual chlorine was the main pathway. The removal of pharmaceuticals followed the order of sulfamethoxazole (SMX) > diclofenac (DIC) > paracetamol (PAR). High SMX removal was realized because of the high reaction rate of SMX with free chlorine. Among the pharmaceuticals, PAR had the lowest removal because it is a neutral species with a low mass transfer rate without the attraction of electrostatic force. These results are consistent with the predictions from our previous batch-scale study, which showed that the reaction rate of dissociated compounds could be increased by the addition of electrostatic force. Furthermore, multiple coexisting pharmaceuticals, such as SMX and PAR or DIC, may form dimers that can be transferred to complex structures and cause higher toxicity.
Collapse
Affiliation(s)
- Yu-Jung Liu
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 10673, Taiwan
| | - Ching-Yao Hu
- School of Public Health, Taipei Medical University, 250, Wu-Xing Street, Taipei 11031, Taiwan
| | - Shang-Lien Lo
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 10673, Taiwan; Water Innovation, Low Carbon and Environmental Sustainability Research Center, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
11
|
Wang X, Li F, Hu X, Hua T. Electrochemical advanced oxidation processes coupled with membrane filtration for degrading antibiotic residues: A review on its potential applications, advances, and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:146912. [PMID: 33901964 DOI: 10.1016/j.scitotenv.2021.146912] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/20/2021] [Accepted: 03/30/2021] [Indexed: 05/12/2023]
Abstract
Antibiotic pollution is mainly caused by aquaculture wastewater and pharmaceuticals, which are frequently used by humans. Due to limited treatment efficiency or improper selection of treatment methods, these antibiotic residues may be very harmful in human drinking water and aquatic environments. The EAOPs coupling membrane technology (EAOPs-membrane) can play their own advantages, which can significantly improve the degradation efficiency and alleviate membrane pollution (electrochemical manners). In this context, this review mainly collecting researches and information on EAOPs-membrane treatment of antibiotic pollution published between 2012 and 2020. Discussed the different combinations of these two technologies, the mechanism of them in the system to improve the processing efficiency, prolong the working time, and stabilize the system structure. Mainly due to the synergistic effect of electrochemical behavior such as electric repulsion and in-situ oxidation, the membrane fouling in the system is alleviated. In this review it was summarized that the selection of different membrane electrode materials and their modifications. The paper also elaborates the existing challenges facing the EAOPs-membrane methods for antibiotic pollution treatment, and their prospects.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110819, China; College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350, China
| | - Xiaomin Hu
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Tao Hua
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350, China.
| |
Collapse
|
12
|
Recent Trends in Pharmaceuticals Removal from Water Using Electrochemical Oxidation Processes. ENVIRONMENTS 2021. [DOI: 10.3390/environments8080085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nowadays, the research on the environmental applications of electrochemistry to remove recalcitrant and priority pollutants and, in particular, drugs from the aqueous phase has increased dramatically. This literature review summarizes the applications of electrochemical oxidation in recent years to decompose pharmaceuticals that are often detected in environmental samples such as carbamazapine, sulfamethoxazole, tetracycline, diclofenac, ibuprofen, ceftazidime, ciprofloxacin, etc. Similar to most physicochemical processes, efficiency depends on many operating parameters, while the combination with either biological or other physicochemical methods seems particularly attractive. In addition, various strategies such as using three-dimensional electrodes or the electrosynthesis of hydrogen peroxide have been proposed to overcome the disadvantages of electrochemical oxidation. Finally, some guidelines are proposed for future research into the applications of environmental electrochemistry for the degradation of xenobiotic compounds and micropollutants from environmental matrices. The main goal of the present review paper is to facilitate future researchers to design their experiments concerning the electrochemical oxidation processes for the degradation of micropollutants/emerging contaminants, especially, some specific drugs considering, also, the existing limitations of each process.
Collapse
|
13
|
Gu H, Xie W, Du A, Pan D, Guo Z. Overview of electrocatalytic treatment of antibiotic pollutants in wastewater. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1960009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hongbo Gu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Wenhao Xie
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Ai Du
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, China
| | - Duo Pan
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
- Integrated Composites Lab (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Zhanhu Guo
- Integrated Composites Lab (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
14
|
Hussain S, Khan H, Gul S, Steter JR, Motheo AJ. Modeling of photolytic degradation of sulfamethoxazole using boosted regression tree (BRT), artificial neural network (ANN) and response surface methodology (RSM); energy consumption and intermediates study. CHEMOSPHERE 2021; 276:130151. [PMID: 34088079 DOI: 10.1016/j.chemosphere.2021.130151] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
This study explores the boosted regression trees (BRT), artificial neural network (ANN) and response surface methodology (RSM) to model and optimize the operational variables for the simulation of the Photolytic degradation of Sulfamethoxazole (SMX) and concurrent total organic carbon (TOC) removal, based on the experimental data set. Four candidate variables involving initial pH (2-11), initial SMX concentration (50-200 mg L-1), temperature (15-45 °C) and time (6-120 min) were considered for simultaneous optimization of SMX and TOC degradation. The result revealed that all the three models are statistically considerable as the values of R, R2, adj-R2 are >0.85, thus be deemed to work well in data fitting, prediction, and optimization, nevertheless, the values of R, R2, adj-R2, RMSE, MAE and AAD are far better for ANN and BRT than RSM method. The ∼100% SMX degradation conditions were found to be as follows: treatment time: 25 min, pH: 2.0, temperature: 35 °C and SMX concentration: 50 mg L-1, while the maximum possible removal of TOC under the given conditions was ∼25%. The percentage contribution (PC) of each variable was deduced by ANOVA analysis of proposed quadratic models which indicated that time and pH are important factors than temperature and SMX concentration. The photolytic intermediates and inorganic ions of SMX, were identified and a potential route of transformation was also proposed.
Collapse
Affiliation(s)
- Sajjad Hussain
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, 23640, KPK, Pakistan; São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, 13566-590, São Carlos, SP, Brazil.
| | - Hammad Khan
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, 23640, KPK, Pakistan
| | - Saima Gul
- Department of Chemistry, Islamia College University Peshawar, KP, Pakistan
| | - Juliana R Steter
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, 13566-590, São Carlos, SP, Brazil
| | - Artur J Motheo
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, 13566-590, São Carlos, SP, Brazil
| |
Collapse
|
15
|
Murrieta MF, Brillas E, Nava JL, Sirés I. Photo-assisted electrochemical production of HClO and Fe2+ as Fenton-like reagents in chloride media for sulfamethoxazole degradation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117236] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Khan SU, Khan H, Anwar S, Khan S, Boldrin Zanoni MV, Hussain S. Computational and statistical modeling for parameters optimization of electrochemical decontamination of synozol red dye wastewater. CHEMOSPHERE 2020; 253:126673. [PMID: 32302900 DOI: 10.1016/j.chemosphere.2020.126673] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
In this study, computational and statistical models were applied to optimize the inherent parameters of an electrochemical decontamination of synozol red. The effect of various experimental variables such as current density, initial pH and concentration of electrolyte on degradation were assessed at Ti/RuO0·3TiO0·7O2 anode. Response surface methodology (RSM) based central composite design was applied to investigate interdependency of studied variables and train an artificial neural network (ANN) to envisage the experimental training data. The presence of fifteen neurons proved to have optimum performance based on maximum R2, mean absolute error, absolute average deviation and minimum mean square error. In comparison to RSM and empirical kinetics models, better prediction and interpretation of the experimental results were observed by ANN model. The sensitive analysis revealed the comparative significance of experimental variables are pH = 61.03%>current density = 17.29%>molar concentration of NaCl = 12.7%>time = 8.98%. The optimized process parameters obtained from genetic algorithm showed 98.6% discolorization of dye at pH 2.95, current density = 5.95 mA cm-2, NaCl of 0.075 M in 29.83 min of electrolysis. The obtained results revealed that the use of statistical and computational modeling is an adequate approach to optimize the process variables of electrochemical treatment.
Collapse
Affiliation(s)
- Saad Ullah Khan
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, 23460, Pakistan; Institute of Chemistry Araraquara, São Paulo State University (UNESP), Av. Prof. Francisco Degni 55, Araraquara, SP, 14800-060, Brazil
| | - Hammad Khan
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, 23460, Pakistan
| | - Sajid Anwar
- Faculty of Computer Sciences and Engineering, GIK Institute of Engineering Sciences and Technology, Topi, 23460, Pakistan
| | - Sabir Khan
- Institute of Chemistry Araraquara, São Paulo State University (UNESP), Av. Prof. Francisco Degni 55, Araraquara, SP, 14800-060, Brazil
| | - Maria V Boldrin Zanoni
- Institute of Chemistry Araraquara, São Paulo State University (UNESP), Av. Prof. Francisco Degni 55, Araraquara, SP, 14800-060, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies (INCT-DATREM), São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, 14800-060, Brazil
| | - Sajjad Hussain
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, 23460, Pakistan; Faculdade de Engenharias, Arquitetura e Urbanismo e Geografia, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, CEP 79070-900, Campo Grande, MS, Brazil.
| |
Collapse
|
17
|
Recent Trends in Removal Pharmaceuticals and Personal Care Products by Electrochemical Oxidation and Combined Systems. WATER 2020. [DOI: 10.3390/w12041043] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Due to various potential toxicological threats to living organisms even at low concentrations, pharmaceuticals and personal care products in natural water are seen as an emerging environmental issue. The low efficiency of removal of pharmaceuticals and personal care products by conventional wastewater treatment plants calls for more efficient technology. Research on advanced oxidation processes has recently become a hot topic as it has been shown that these technologies can effectively oxidize most organic contaminants to inorganic carbon through mineralization. Among the advanced oxidation processes, the electrochemical advanced oxidation processes and, in general, electrochemical oxidation or anodic oxidation have shown good prospects at the lab-scale for the elimination of contamination caused by the presence of residual pharmaceuticals and personal care products in aqueous systems. This paper reviewed the effectiveness of electrochemical oxidation in removing pharmaceuticals and personal care products from liquid solutions, alone or in combination with other treatment processes, in the last 10 years. Reactor designs and configurations, electrode materials, operational factors (initial concentration, supporting electrolytes, current density, temperature, pH, stirring rate, electrode spacing, and fluid velocity) were also investigated.
Collapse
|
18
|
Misal SN, Lin MH, Mehraeen S, Chaplin BP. Modeling electrochemical oxidation and reduction of sulfamethoxazole using electrocatalytic reactive electrochemical membranes. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121420. [PMID: 31685319 DOI: 10.1016/j.jhazmat.2019.121420] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
In this research, degradation of the antibiotic sulfamethoxazole (SMX) was studied using electrochemical reduction and oxidation in single pass, flow-through mode using porous titanium suboxide (Ti4O7) reactive electrochemical membranes (REMs) and Pd-Cu doped Ti4O7 REMs (Pd-Cu/Ti4O7 REMs). Electrochemical reduction of SMX increased from 3.8 ± 0.3% for the Ti4O7 REM to 96.1 ± 3.9% for the Pd-Cu/Ti4O7 REM at -1.14 V/SHE and at a permeate flux of 300 L m-2 h-1 (LMH) (liquid residence time: ∼1.8 s). By contrast, electrochemical oxidation using Ti4O7 REMs achieved 95.7 ± 1.0% removal of SMX at 2.03 V/SHE and a permeate flux of 300 LMH (liquid residence time: ∼9.0 s) without the catalyst addition. We developed a reactive transport mathematical model and calibrated it to the SMX experimental data. The calibrated model predicted SMX permeate concentrations at fixed potentials and as a function of permeate flux. Based on products from SMX reduction, we proposed that SMX was reduced by a hydrogen atom transfer reaction that was mediated by the Pd-Cu/Ti4O7 REM. Toxicity tests indicated that electrochemical oxidation/reduction lowered solution toxicity. The results of this work indicate that a tandem electrochemical reduction/oxidation approach using the REM-based technology is a potential treatment strategy for sulfonamide-contaminated pharmaceutical wastewater.
Collapse
Affiliation(s)
- Saurabh N Misal
- Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton St., Chicago, IL, 60607, United States
| | - Meng-Hsuan Lin
- Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton St., Chicago, IL, 60607, United States
| | - Shafigh Mehraeen
- Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton St., Chicago, IL, 60607, United States
| | - Brian P Chaplin
- Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton St., Chicago, IL, 60607, United States.
| |
Collapse
|
19
|
Activation of Persulfate by Biochars from Valorized Olive Stones for the Degradation of Sulfamethoxazole. Catalysts 2019. [DOI: 10.3390/catal9050419] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biochars from spent olive stones were tested for the degradation of sulfamethoxazole (SMX) in water matrices. Batch degradation experiments were performed using sodium persulfate (SPS) as the source of radicals in the range 250–1500 mg/L, with biochar as the SPS activator in the range 100–300 mg/L and SMX as the model micro-pollutant in the range 250–2000 μg/L. Ultrapure water (UPW), bottled water (BW), and secondary treated wastewater (WW) were employed as the water matrix. Removal of SMX by adsorption only was moderate and favored at acidic conditions, while SPS alone did not practically oxidize SMX. At these conditions, biochar was capable of activating SPS and, consequently, of degrading SMX, with the pseudo-first order rate increasing with increasing biochar and oxidant concentration and decreasing SMX concentration. Experiments in BW or UPW spiked with various anions showed little or no effect on degradation. Similar experiments in WW resulted in a rate reduction of about 30%, and this was attributed to the competitive consumption of reactive radicals by non-target water constituents. Experiments with methanol and t-butanol at excessive concentrations resulted in partial but generally not complete inhibition of degradation; this indicates that, besides the liquid bulk, reactions may also occur close to or on the biochar surface.
Collapse
|
20
|
Liu Y, Si B, Zhao C, Jin F, Zheng H, Wang Z. Degradation of emerging contaminants by Co (III) ions in situ generated on anode surface in aqueous solution. CHEMOSPHERE 2019; 221:543-553. [PMID: 30660911 DOI: 10.1016/j.chemosphere.2019.01.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Cobalt ion is an environmental contaminant in general. But interestingly, it can also be used to degrade some refractory organic contaminants in water by mediated electrochemical oxidation process (MEOP) based on Co (III). MEOP is a very promising technology, and it can recycling use the mediator ions, Co (III), to degrade refractory organic contaminants in water. However, previous studies for this technology mainly conducted in strong acidic medium, the oxidation ability of this process for emerging contaminants near neutral pH condition was still unclear. Therefore, this study evaluated the emerging contaminants removal and mineralization efficiency of the MEOP-Co (III) around neutral pH, and investigated systematically the influence of series of operating parameters, including initial Co (II) concentration, current density, initial pH, electrolyte, and anions. Results from these studies indicated that the MEOP-Co (III) had a fairly good contaminants removal and mineralization ability for sulfamethoxazole, tetracycline, carbamazepine, diclofenac, and phenol at neutral pH. Besides, no radical was detected in MEOP-Co (III), and the main oxidizing substance was Co (III) ions, which was generated on anode surface. The addition of CO32-/HCO3- could weaken the oxidation ability of MEOP-Co (III), while Cl- and PO43- could enhance the system's oxidation ability. Moreover, a reasonable energy consumption was achieved in MEOP-Co (III), and the highest electric energy per order (EE/O) value was 2.4 kWh·m-3 in this study.
Collapse
Affiliation(s)
- Yongzhi Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Bin Si
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; Henan Urban Planning Institute and Corporation, Henan 450000, PR China
| | - Chun Zhao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Water & Architectural Engineering, Shihezi University, Shihezi 832000, PR China.
| | - Fan Jin
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Huaili Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Zhaoyang Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Water & Architectural Engineering, Shihezi University, Shihezi 832000, PR China.
| |
Collapse
|
21
|
Amoxicillin electro-catalytic oxidation using Ti/RuO2 anode: Mechanism, oxidation products and degradation pathway. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.114] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Murillo-Sierra JC, Sirés I, Brillas E, Ruiz-Ruiz EJ, Hernández-Ramírez A. Advanced oxidation of real sulfamethoxazole + trimethoprim formulations using different anodes and electrolytes. CHEMOSPHERE 2018; 192:225-233. [PMID: 29102867 DOI: 10.1016/j.chemosphere.2017.10.136] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
A commercial sulfamethoxazole + trimethoprim formulation has been degraded in 0.050 M Na2SO4 at pH 3.0 by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF), photoelectro-Fenton with a 6-W UVA lamp (PEF) and solar photoelectro-Fenton (SPEF). The tests were performed in an undivided cell with an IrO2-based, Pt or boron-doped diamond (BDD) anode and an air-diffusion cathode for H2O2 electrogeneration. The anode material had little effect on the accumulated H2O2 concentration. Both drugs always obeyed a pseudo-first-order decay with low apparent rate constant in EO-H2O2. Much higher values were found in EF, PEF and SPEF, showing no difference because the main oxidant was always OH formed from Fenton's reaction between H2O2 and added Fe2+. The solution mineralization increased in the sequence EO-H2O2 < EF < PEF < SPEF regardless of the anode. The IrO2-based and Pt anodes behaved similarly but BDD was always more powerful. In SPEF, similar mineralization profiles were found for all anodes because of the rapid removal of photoactive intermediates by sunlight. About 87% mineralization was obtained as maximum for the powerful SPEF with BDD anode. Addition of Cl- enhanced the decay of both drugs due to their quicker reaction with generated active chlorine, but the formation of persistent chloroderivatives decelerated the mineralization process. Final carboxylic acids like oxalic and oxamic were detected, yielding Fe(III) complexes that remained stable in EF with BDD but were rapidly photolyzed in SPEF with BDD, explaining its superior mineralization ability.
Collapse
Affiliation(s)
- Juan C Murillo-Sierra
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, Mexico
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Edgar J Ruiz-Ruiz
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, Mexico
| | - Aracely Hernández-Ramírez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, Mexico.
| |
Collapse
|
23
|
Özkal CB, Frontistis Z, Antonopoulou M, Konstantinou I, Mantzavinos D, Meriç S. Removal of antibiotics in a parallel-plate thin-film-photocatalytic reactor: Process modeling and evolution of transformation by-products and toxicity. J Environ Sci (China) 2017; 60:114-122. [PMID: 29031440 DOI: 10.1016/j.jes.2016.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 06/07/2023]
Abstract
Photocatalytic degradation of sulfamethoxazole (SMX) antibiotic has been studied under recycling batch and homogeneous flow conditions in a thin-film coated immobilized system namely parallel-plate (PPL) reactor. Experimentally designed, statistically evaluated with a factorial design (FD) approach with intent to provide a mathematical model takes into account the parameters influencing process performance. Initial antibiotic concentration, UV energy level, irradiated surface area, water matrix (ultrapure and secondary treated wastewater) and time, were defined as model parameters. A full of 25 experimental design was consisted of 32 random experiments. PPL reactor test experiments were carried out in order to set boundary levels for hydraulic, volumetric and defined defined process parameters. TTIP based thin-film with polyethylene glycol+TiO2 additives were fabricated according to pre-described methodology. Antibiotic degradation was monitored by High Performance Liquid Chromatography analysis while the degradation products were specified by LC-TOF-MS analysis. Acute toxicity of untreated and treated SMX solutions was tested by standard Daphnia magna method. Based on the obtained mathematical model, the response of the immobilized PC system is described with a polynomial equation. The statistically significant positive effects are initial SMX concentration, process time and the combined effect of both, while combined effect of water matrix and irradiated surface area displays an adverse effect on the rate of antibiotic degradation by photocatalytic oxidation. Process efficiency and the validity of the acquired mathematical model was also verified for levofloxacin and cefaclor antibiotics. Immobilized PC degradation in PPL reactor configuration was found capable of providing reduced effluent toxicity by simultaneous degradation of SMX parent compound and TBPs.
Collapse
Affiliation(s)
- Can Burak Özkal
- Environmental Engineering, Namık Kemal University, Faculty of Engineering, Tekirdag, Turkey.
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Patras, GR-26504 Patras, Greece.
| | - Maria Antonopoulou
- Department of Environmental & Natural Resources Management, University of Patras, GR-30100 Agrinio, Greece
| | | | | | - Süreyya Meriç
- Environmental Engineering, Namık Kemal University, Faculty of Engineering, Tekirdag, Turkey
| |
Collapse
|
24
|
Hussain S, Steter JR, Gul S, Motheo AJ. Photo-assisted electrochemical degradation of sulfamethoxazole using a Ti/Ru 0.3Ti 0.7O 2 anode: Mechanistic and kinetic features of the process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 201:153-162. [PMID: 28654803 DOI: 10.1016/j.jenvman.2017.06.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/16/2017] [Accepted: 06/18/2017] [Indexed: 06/07/2023]
Abstract
This study examined the photo-assisted electrochemical degradation and mineralization of the antibiotic contaminant sulfamethoxazole (SMX). All the experiments were perform using a flow electrolytic cell, in which the influence of the current density (10-60 mA cm-2) and sodium chloride (0.02-0.10 mol L-1) in the supporting electrolyte composition was analyzed. The results showed that the total SMX and 50% TOC removal was achieved in the current density range used. As expected, the degradation kinetics presented a pseudo first order behavior and the rate constant increased from 0.05 min-1 to 0.50 min-1 as the current density raised from 10 to 60 mA cm-1. In addition, the values of the electrical energy per order (EEO) increased from 0.67 to 1.06 kW/hm-3 order-1 as the current density increased from 10 to 60 mAcm-2 and drop from 8.82 to 0.57 kW/hm-3 order-1 at supporting electrolyte concentration of 0.02-0.1 mol L-1. The reaction intermediates identified by liquid chromatography-mass spectrometry allowed proposing a mechanism for the degradation. The use of photo assistance in the electrochemical process involved simultaneous reactions, for example, aromatic ring substitutions and hydroxylation. These reactions led to aromatic rings opening that generated simpler organic molecules, making possible the mineralization of the SMX molecule. Probable degradation pathways were proposed and discussed. Comparison of the efficiencies of the photocatalytic, electrochemical (EC) and photo-assisted electrochemical (PAEC) techniques revealed that the combined process showed a synergism for TOC removal.
Collapse
Affiliation(s)
- Sajjad Hussain
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, 13566-590, São Carlos, SP, Brazil; Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, KPK, 23460, Pakistan
| | - Juliana R Steter
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, 13566-590, São Carlos, SP, Brazil
| | - Saima Gul
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, 13566-590, São Carlos, SP, Brazil
| | - Artur J Motheo
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, 13566-590, São Carlos, SP, Brazil.
| |
Collapse
|
25
|
Peleyeju MG, Umukoro EH, Tshwenya L, Moutloali R, Babalola JO, Arotiba OA. Photoelectrocatalytic water treatment systems: degradation, kinetics and intermediate products studies of sulfamethoxazole on a TiO2–exfoliated graphite electrode. RSC Adv 2017. [DOI: 10.1039/c7ra07399b] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
EG–TiO2 photoanode was applied for the photoelectrocatalytic degradation of sulfamethoxazole. Significant COD abatement was obtained and degradation route was proposed.
Collapse
Affiliation(s)
- Moses G. Peleyeju
- Department of Applied Chemistry
- University of Johannesburg
- Doornfontein 2028
- South Africa
- DST/Mintek Nanotechnology Innovation Centre
| | - Eseoghene H. Umukoro
- Department of Applied Chemistry
- University of Johannesburg
- Doornfontein 2028
- South Africa
| | - Luthando Tshwenya
- Department of Applied Chemistry
- University of Johannesburg
- Doornfontein 2028
- South Africa
- DST/Mintek Nanotechnology Innovation Centre
| | - Richard Moutloali
- Department of Applied Chemistry
- University of Johannesburg
- Doornfontein 2028
- South Africa
- DST/Mintek Nanotechnology Innovation Centre
| | | | - Omotayo A. Arotiba
- Department of Applied Chemistry
- University of Johannesburg
- Doornfontein 2028
- South Africa
- DST/Mintek Nanotechnology Innovation Centre
| |
Collapse
|