1
|
Lalín-Pousa V, Conde-Cid M, Díaz-Raviña M, Arias-Estévez M, Fernández-Calviño D. Acetamiprid retention in agricultural acid soils: Experimental data and prediction. ENVIRONMENTAL RESEARCH 2025; 268:120835. [PMID: 39805418 DOI: 10.1016/j.envres.2025.120835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
The overuse of pesticides in agriculture has led to widespread pollution of soils and water resources, becoming a problem of great concern. Nowadays, special attention is given to neonicotinoids, particularly acetamiprid, the only neonicotinoid insecticide allowed for outdoor use in the European Union. Once acetamiprid reaches the soil, adsorption/desorption is the main process determining its bioavailability and environmental fate. Therefore, in this work, the adsorption/desorption behaviour of acetamiprid in 60 agricultural soils was studied. The results indicate that acetamiprid has a low affinity for soil constituents, with values ranging from 0.2 to 4.28 L kg-1 for Kd(ads). At the same time, acetamiprid shows high desorption levels (up to 96.3%), indicating that it is poorly retained in soils, thus presenting high bioavailability and a potential risk for transport to other environmental compartments. Regarding the influence of soil properties on the adsorption/desorption process, soils with a high content of organic matter, clay, and exchangeable basic cations showed higher retention of acetamiprid, with greater adsorption and lower desorption. Finally, robust and universal models were successfully developed to predict the adsorption and desorption behaviour of acetamiprid in soil.
Collapse
Affiliation(s)
- Vanesa Lalín-Pousa
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, Ourense, 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, Ourense, 32004, Spain
| | - Manuel Conde-Cid
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, Ourense, 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, Ourense, 32004, Spain.
| | - Montserrat Díaz-Raviña
- Comunidades Microbianas de suelos (id. UA 1678), MBG-CSIC, Universidad de Vigo, Unidad asociada al CSIC, Spain; Misión Biológica de Galicia del Consejo Superior de Investigaciones Científicas (MBG-CSIC), Santiago de Compostela, Spain
| | - Manuel Arias-Estévez
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, Ourense, 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, Ourense, 32004, Spain; Comunidades Microbianas de suelos (id. UA 1678), MBG-CSIC, Universidad de Vigo, Unidad asociada al CSIC, Spain
| | - David Fernández-Calviño
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, Ourense, 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, Ourense, 32004, Spain; Comunidades Microbianas de suelos (id. UA 1678), MBG-CSIC, Universidad de Vigo, Unidad asociada al CSIC, Spain
| |
Collapse
|
2
|
Jatuwong K, Aiduang W, Kiatsiriroat T, Kamopas W, Lumyong S. A Review of Biochar from Biomass and Its Interaction with Microbes: Enhancing Soil Quality and Crop Yield in Brassica Cultivation. Life (Basel) 2025; 15:284. [PMID: 40003694 PMCID: PMC11856971 DOI: 10.3390/life15020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Biochar, produced from biomass, has become recognized as a sustainable soil amendment that has the potential to improve soil quality and agricultural production. This review focuses on production processes and properties of biochar derived from different types of biomass, including the synergistic interactions between biochar and soil microorganisms, emphasizing their influence on overall soil quality and crop production, particularly in cultivation of Brassica crops. It additionally addresses the potential benefits and limitations of biochar and microbial application. Biomass is a renewable and abundant resource and can be converted through pyrolysis into biochar, which has high porosity, abundant surface functionalities, and the capacity to retain nutrients. These characteristics provide optimal conditions for beneficial microbial communities that increase nutrient cycling, reduce pathogens, and improve soil structure. The information indicates that the use of biochar in Brassica crops can result in improved plant growth, yield, nutrient uptake, and stress mitigation. This review includes information about biochar properties such as pH, elemental composition, ash content, and yield, which can be affected by the different types of biomass used as well as pyrolysis conditions like temperature. Understanding these variables is essential for optimizing biochar for agricultural use. Moreover, the information on the limitations of biochar and microbes emphasizes the importance of their benefits with potential constraints. Therefore, sustainable agriculture methods can possibly be achieved by integrating biochar with microbial management measurements, resulting in higher productivity and adaptability in Brassica or other plant crop cultivation systems. This review aims to provide a comprehensive understanding of biochar's role in supporting sustainable Brassica farming and its potential to address contemporary agricultural challenges.
Collapse
Affiliation(s)
- Kritsana Jatuwong
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (W.A.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Worawoot Aiduang
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (W.A.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tanongkiat Kiatsiriroat
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wassana Kamopas
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
3
|
Beljin J, Đukanović N, Anojčić J, Simetić T, Apostolović T, Mutić S, Maletić S. Biochar in the Remediation of Organic Pollutants in Water: A Review of Polycyclic Aromatic Hydrocarbon and Pesticide Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:26. [PMID: 39791785 PMCID: PMC11722649 DOI: 10.3390/nano15010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
This review explores biochar's potential as a sustainable and cost-effective solution for remediating organic pollutants, particularly polycyclic aromatic hydrocarbons (PAHs) and pesticides, in water. Biochar, a carbon-rich material produced from biomass pyrolysis, has demonstrated adsorption efficiencies exceeding 90% under optimal conditions, depending on the feedstock type, pyrolysis temperature, and functionalization. High surface area (up to 1500 m2/g), porosity, and modifiable surface functional groups make biochar effective in adsorbing a wide range of contaminants, including toxic metals, organic pollutants, and nutrients. Recent advancements in biochar production, such as chemical activation and post-treatment modifications, have enhanced adsorption capacities, with engineered biochar achieving superior performance in treating industrial, municipal, and agricultural effluents. However, scaling up biochar applications from laboratory research to field-scale wastewater treatment poses significant challenges. These include inconsistencies in adsorption performance under variable environmental conditions, the high cost of large-scale biochar production, logistical challenges in handling and deploying biochar at scale, and the need for integration with existing treatment systems. Such challenges impact the practical implementation of biochar-based remediation technologies, requiring further investigation into cost-effective production methods, long-term performance assessments, and field-level optimization strategies. This review underscores the importance of addressing these barriers and highlights biochar's potential to offer a sustainable, environmentally friendly, and economically viable solution for large-scale wastewater treatment.
Collapse
Affiliation(s)
- Jelena Beljin
- Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (N.Đ.); (J.A.); (T.A.); (S.M.); (S.M.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Aziz S, Bibi S, Hasan MM, Biswas P, Ali MI, Bilal M, Chopra H, Mukerjee N, Maitra S. A review on influence of biochar amendment on soil processes and environmental remediation. Biotechnol Genet Eng Rev 2024; 40:3270-3304. [PMID: 36747352 DOI: 10.1080/02648725.2022.2122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/03/2022] [Indexed: 02/08/2023]
Abstract
Biochar is the thermal degradation product of biomass generated in an oxygen-limited environment under different pyrolysis conditions. Biochar characteristics are functions of the feedstock material and pyrolysis temperature. Depending on pyrolysis conditions biochar concentrates varying quantities of recalcitrant and labile carbon along with nutrients which in turn affect soil physiochemical properties and microbial processes. Biochar in soil balances carbon content encourages nitrogen fixation and solubilize phosphorus along with enhancing soil enzyme activity. It serves as a microhabitat for microorganisms present in soil thus influences the diversity, composition, and distribution of soil microbial communities by affecting their intra- and interspecific communication. This review provides an overview of the current knowledge about biochar characteristics, its interactions with soil, and associated biota and its role in soil remediation. In addition, this paper also discussed the factors affecting the capacity of biochar to adsorb organic pollutants following different mechanisms. Being an effective adsorbent due its high specific surface area, large porosity, and numerous surface functional groups biochar has been explored extensively in field of environment to remediate contaminated soils.
Collapse
Affiliation(s)
- Sadia Aziz
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
- Department of Microbiology, Quaid I Azam University, Islamabad, Pakistan
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer e Millat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | | | - Muhammad Bilal
- Faculty of Management Sciences, Riphah International University Islamabad, Islamabad, Pakistan
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, West Bengal, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
| | - Swastika Maitra
- Department of Microbiology, Adamas University, Kolkata, West Benga, India
| |
Collapse
|
5
|
Niaz A, Spokas KA, Gámiz B, Mulla D, Arshad KR, Hussain S. 2-Methyl-4-chlorophenoxyacetic acid (MCPA) sorption and desorption as a function of biochar properties and pyrolysis temperature. PLoS One 2023; 18:e0291398. [PMID: 37683028 PMCID: PMC10490996 DOI: 10.1371/journal.pone.0291398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
2-Methyl-4-chlorophenoxyacetic acid (MCPA) is a highly mobile herbicide that is frequently detected in global potable water sources. One potential mitigation strategy is the sorption on biochar to limit harm to unidentified targets. However, irreversible sorption could restrict bioefficacy thereby compromising its usefulness as a vital crop herbicide. This research evaluated the effect of pyrolysis temperatures (350, 500 and 800°C) on three feedstocks; poultry manure, rice hulls and wood pellets, particularly to examine effects on the magnitude and reversibility of MCPA sorption. Sorption increased with pyrolysis temperature from 350 to 800°C. Sorption and desorption coefficients were strongly corelated with each other (R2 = 0.99; P < .05). Poultry manure and rice hulls pyrolyzed at 800°C exhibited irreversible sorption while for wood pellets at 800°C desorption was concentration dependent. At higher concentrations some desorption was observed (36% at 50 ppm) but was reduced at lower concentrations (1-3% at < 5 ppm). Desorption decreased with increasing pyrolysis temperature. Sorption data were analyzed with Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models. Freundlich isotherms were better predictors of MCPA sorption (R2 ranging from 0.78 to 0.99). Poultry manure and rice hulls when pyrolyzed at higher temperatures (500 and 800°C) could be used for remediation efforts (such as spills or water filtration), due to the lack of desorption observed. On the other hand, un-pyrolyzed feedstocks or biochars created at 350°C could perform superior for direct field applications to limit indirect losses including runoff and leaching, since these materials also possess the ability to release MCPA subsequently to potentially allow herbicidal action.
Collapse
Affiliation(s)
- Abdullah Niaz
- Pesticide Residue Laboratory, Institute of Soil Chemistry & Environmental Sciences, Kala Shah Kaku, Punjab, Pakistan
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, United States of America
| | - Kurt A. Spokas
- United States Department of Agriculture, Agricultural Research Service, St. Paul, MN, United States of America
| | - Bea Gámiz
- Department of Inorganic Chemistry, Chemical Institute for Energy and the Environment (IQUEMA), University of Córdoba, Córdoba, Spain
| | - David Mulla
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, United States of America
| | - Khaliq R. Arshad
- Pesticide Residue Laboratory, Institute of Soil Chemistry & Environmental Sciences, Kala Shah Kaku, Punjab, Pakistan
| | - Sarfraz Hussain
- Pesticide Residue Laboratory, Institute of Soil Chemistry & Environmental Sciences, Kala Shah Kaku, Punjab, Pakistan
| |
Collapse
|
6
|
Zakavi M, Askari H, Shahrooei M. Bacterial diversity changes in response to an altitudinal gradient in arid and semi-arid regions and their effects on crops growth. Front Microbiol 2022; 13:984925. [PMID: 36312986 PMCID: PMC9614161 DOI: 10.3389/fmicb.2022.984925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/16/2022] [Indexed: 12/01/2023] Open
Abstract
The microbiome of soil has a fundamental role in maintaining the health of soil and plants. While the diversity of microbes is one of the most important factors in the environment, little is known about the effects of elevation on the microbiome and the impact of the affected microbiome on plants. The main goal of this study is to expand our knowledge of what happens to the soil bacterial community along an altitudinal gradient and investigate their possibly different impacts on plant growth. Bacteria from soils at various altitudes have been isolated, characterized, and identified by Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) to determine the effects of an elevational gradient on the microbiome and plant growth. Furthermore, their effects have been investigated by isolates assessment on maize, wheat, and canola. Based on our results, higher altitude results in a higher diversity of the microbiome and lower bacteria biomass. Bacillus cereus is found in abundance in arid and semi-arid samples. Interestingly, enhanced diversity in higher altitudes shows similarity in response to environmental stress and tolerates these factors well. Furthermore, the inoculation of these bacteria could enhance the overall growth of plants. We prove that bacterial communities could change their biomass and diversity in response to altitude changes. These indicate evolutionary pressure as these bacteria could tolerate stress factors well and have a better relationship with plants.
Collapse
Affiliation(s)
- Maryam Zakavi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hossein Askari
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Shahrooei
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Lin Q, Tan X, Almatrafi E, Yang Y, Wang W, Luo H, Qin F, Zhou C, Zeng G, Zhang C. Effects of biochar-based materials on the bioavailability of soil organic pollutants and their biological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153956. [PMID: 35189211 DOI: 10.1016/j.scitotenv.2022.153956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Motivated by the unique structure and superior properties, biochar-based materials, including pristine biochar and composites of biochar with other functional materials, are considered as new generation materials for diverse multi-functional applications, which may be intentionally or unintentionally released to soil. The influencing mechanism of biochar-based material on soil organisms is a key aspect for quantifying and predicting its benefits and trade-offs. This work focuses on the effects of biochar-based materials on soil organisms within the past ten years. 206 sources are reviewed and available knowledge on biochar-based materials' impacts on soil organisms is summarized from a diverse perspective, including the pollutant bioavailability changes in soil, and potential effects of biochar-based materials on soil organisms. Herein, effects of biochar-based materials on the bioavailability of soil organic pollutants are detailed, from the perspective of plant, microorganism, and soil fauna. Potential biological effects of pristine biochar (PBC), metal/metal compounds-biochar composites (MBC), clay minerals-biochar composites (CMBC), and carbonaceous materials-biochar composites (CBC) on soil organisms are highlighted for the first time. And possible mechanisms are presented based on the different characters of biochar-based materials as well as various environmental interactions. Finally, the bottleneck and challenges of risk assessment of biochar-based materials as well as future prospects are proposed. This work not only promotes the development of risk assessment system of biochar-based materials, but broadens the strategy for the design and optimization of environmental-friendly biochar materials.
Collapse
Affiliation(s)
- Qing Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yang Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wenjun Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hanzhuo Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Fanzhi Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
8
|
Ogura AP, Lima JZ, Marques JP, Massaro Sousa L, Rodrigues VGS, Espíndola ELG. A review of pesticides sorption in biochar from maize, rice, and wheat residues: Current status and challenges for soil application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113753. [PMID: 34537561 DOI: 10.1016/j.jenvman.2021.113753] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
The use of pesticides has been increasing in recent years for maintaining traditional agricultural practices. However, these chemicals are associated with several environmental impacts, demanding urgent remediation techniques. Biochar is a carbonaceous material produced by pyrolysis that has the potential for pesticide sorption and remediation. In this context, this interdisciplinary review systematically assessed the state of the knowledge of crop residues to produce biochar for pesticide sorption. We focused on maize, rice, and wheat residues since these are the three most-produced grains worldwide. Besides, we evaluated different biochar handling, storage, and soil dispersion techniques to ease its implementation in agriculture. In general, pyrolysis temperature influences biochar characteristics and its potential for pesticide sorption. Furthermore, biochar amended soils had greater pesticide sorption capacity, limiting potential leaching and runoff. Most studies showed that the feedstock and specific surface area influence the biochar sorption properties, among other factors. Also, biochar reduces pesticides' bioavailability, decreasing their toxicity to soil organisms and improving soil fertility and crop yields. Nonetheless, the retrieved papers assessed only 21 pesticides, mainly consisting of lab-scale batch experiments. Therefore, there is still a gap in studies evaluating biochar aging, its potential desorption, pesticide co-contaminations, the associated microbiological processes, and field applications. Determining flow properties for biochars of different sizes and pellets is vital for reliable handling equipment design, and performing techno-economic assessment under different farm contexts is encouraged. Ultimately, coupling biochar production with residue management could address this challenge on sustainable agricultural systems.
Collapse
Affiliation(s)
- Allan Pretti Ogura
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13560-970, Brazil.
| | - Jacqueline Zanin Lima
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Jéssica Pelinsom Marques
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Lucas Massaro Sousa
- Process Design and Modeling Division, IFP Energies Nouvelles, Rond-Point Échangeur de Solaize, 69360, Solaize, France
| | | | - Evaldo Luiz Gaeta Espíndola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| |
Collapse
|
9
|
Haider FU, Ejaz M, Cheema SA, Khan MI, Zhao B, Liqun C, Salim MA, Naveed M, Khan N, Núñez-Delgado A, Mustafa A. Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. ENVIRONMENTAL RESEARCH 2021; 197:111031. [PMID: 33744268 DOI: 10.1016/j.envres.2021.111031] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Extraction and exploration of petroleum hydrocarbons (PHs) to satisfy the rising world population's fossil fuel demand is playing havoc with human beings and other life forms by contaminating the ecosystem, particularly the soil. In the current review, we highlighted the sources of PHs contamination, factors affecting the PHs accumulation in soil, mechanisms of uptake, translocation and potential toxic effects of PHs on plants. In plants, PHs reduce the seed germination andnutrients translocation, and induce oxidative stress, disturb the plant metabolic activity and inhibit the plant physiology and morphology that ultimately reduce plant yield. Moreover, the defense strategy in plants to mitigate the PHs toxicity and other potential remediation techniques, including the use of organic manure, compost, plant hormones, and biochar, and application of microbe-assisted remediation, and phytoremediation are also discussed in the current review. These remediation strategies not only help to remediate PHs pollutionin the soil rhizosphere but also enhance the morphological and physiological attributes of plant and results to improve crop yield under PHs contaminated soils. This review aims to provide significant information on ecological importance of PHs stress in various interdisciplinary investigations and critical remediation techniques to mitigate the contamination of PHs in agricultural soils.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Key Lab of Arid-land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Mukkaram Ejaz
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, PR China
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Imran Khan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Baowei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, PR China
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Key Lab of Arid-land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | | | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, 12 FL 32611, USA
| | - Avelino Núñez-Delgado
- Depart. Soil Sci. and Agric. Chem., Engineering Polytech. School, Lugo, Univ. Santiago de Compostela, Spain
| | - Adnan Mustafa
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
10
|
Hua L, Wu C, Zhang H, Cao L, Wei T, Guo J. Biochar-induced changes in soil microbial affect species of antimony in contaminated soils. CHEMOSPHERE 2021; 263:127795. [PMID: 32822942 DOI: 10.1016/j.chemosphere.2020.127795] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/30/2019] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Antimony (Sb) is a highly toxic heavy metal, and the amount of Sb in the soil is increasing due to anthropogenic activities. Recently, biochar (BC) has been used for remediation of Sb-contaminated soil, therefore, understanding the effect of BC-induced changes in soil microbial on the change of Sb speciation will help to elucidate the mechanism of BC in immobilization/mobilization of Sb in contaminated soils. Sb-contaminated soil with 10 wt % of Wheat straw-derived BC (SBC) and fruit (apple) tree-derived BC (FBC) and control was incubated for 130 days. Changes of soil bacterial community composition and Sb oxidation gene induced by BC were explored during the incubation. Dynamic change of Sb speciation was assessed by the citric acid extraction. The redundancy analysis (RDA) and spearman analysis (PCA) was used to analyze the relationship between Sb immobilization/mobilization and change of soil bacterial community induced by BC. The soil properties change induced by BC affected soil bacterial community composition, and Sb mobilization was strongly related to the change of soil bacterial community composition. The relative abundance of Sb oxidation gene increased in the soil amended by BC, which proved that oxidation of Sb(III) after 20 d incubation with SBC and 50 d incubation with FBC incubation. It is noteworthy that the application of BC has a potential mobilizing risk for Sb and both the change of soil bacteria and soil chemical properties play an important role in Sb mobilization. The possible risks induced by BC should be considered before applying the BC to Sb contaminated soil.
Collapse
Affiliation(s)
- Li Hua
- College of Environmental Science and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China.
| | - Chuan Wu
- College of Environmental Science and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Huan Zhang
- College of Environmental Science and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Lifan Cao
- College of Environmental Science and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Ting Wei
- College of Environmental Science and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Junkang Guo
- College of Environmental Science and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| |
Collapse
|
11
|
Pan Y, Chen J, Zhou H, Cheung SG, Tam NFY. Degradation of BDE-47 in mangrove sediments with amendment of extra carbon sources. MARINE POLLUTION BULLETIN 2020; 153:110972. [PMID: 32056850 DOI: 10.1016/j.marpolbul.2020.110972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely detected in coastal wetlands but their remediation is still difficult. In this study, different carbon sources, namely formate, acetate, pyruvate, lactate, succinate, methanol and ethanol, were added to mangrove sediments contaminated with BDE-47, a common PBDE congener, to enhance its degradation. After 2-month incubation, all carbon addition significantly enhanced degradation percentages. The residual BDE-47 percentage significantly correlated with the abundance of total bacteria and Dehalococcoides spp. The addition of methanol, acetate and succinate also achieved significantly higher degradation rates and shorter half-lives than sediments without carbon amendment at the end of 5-month incubation, although degradation percentages were comparable between sediments with and without extra carbon. The degradation pathway based on the profiles of degradation products was also similar among treatments. The results indicated the stimulatory effect of extra carbon sources on BDE-47 degradation in contaminated sediments was carbon- and time-specific.
Collapse
Affiliation(s)
- Ying Pan
- College of Oceanography, Hohai University, Xikang Road, Nanjing 210098, PR China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road, Nanjing 210098, PR China
| | - Haichao Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Nanhai Avenue, 518060, PR China
| | - S G Cheung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Nora F Y Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
12
|
Abstract
This paper aims at demonstrating the significance of biochar risk evaluation and reviewing risk evaluation from the aspects of pyrolysis process, feedstock, and sources of hazards in biochar and their potential effects and the methods used in risk evaluation. Feedstock properties and the resultant biochar produced at different pyrolysis process influence their chemical, physical, and structural properties, which are vital in understanding the functionality of biochar. Biochar use has been linked to some risks in soil application such as biochar being toxic, facilitating GHGs emission, suppression of the effectiveness of pesticides, and effects on soil microbes. These potential risks originate from feedstock, contaminated feedstock, and pyrolysis conditions that favor the creation of characteristics and functional groups of this nature. These toxic compounds formed pose a threat to human health through the food chain. Determination of toxicity levels is a first step in the risk management of toxic biochar. Various sorption methods of biochar utilized low-cost adsorbents, engineered surface functional groups, and nZVI modified biochars. The mechanisms of organic compound removal was through sorption, enhanced sorption, modified biochar, postpyrolysis thermal air oxidation and that of PFRs degradation was through activation, photoactive functional groups, magnetization, and hydrothermal synthesis. Emissions of GHGs in soils amended with biochar emanated through physical and biotic mediated mechanisms. BCNs have a significance in reducing the health quotient indices for PTEs risk contamination by suppressing cancer risk arising from consumption of contaminated food. The degree of environmental risk assessment of HM pollution in biomass and biochars has been determined by using potential ecological risk index and RAC while organic contaminant degradation by EPFRs was considered when assessing the environmental roles of biochar in regulating the fate of contaminants removal. The magnitude of technologies’ net benefit must be considered in relation to the associated risks.
Collapse
|
13
|
Wu L, Bi E. Sorption of ionic and neutral species of pharmaceuticals to loessial soil amended with biochars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35871-35881. [PMID: 31707608 DOI: 10.1007/s11356-019-06721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
To clarify the impact of biochar amendment on soil sorption for coexisting pharmaceuticals, wheat straw-derived biochars pyrolyzed at 300 and 700 °C (labeled as WS300 and WS700, respectively) were prepared. Batch experiments on ketoprofen (KTP), atenolol (ATL) and carbamazepine (CBZ) sorption to biochars, loessial soil and biochar-amended soils were conducted. The results indicated that sorption affinity of different species of pharmaceuticals to WS300 and WS700 was in the order of cationic ATL > neutral CBZ > anionic KTP. Cationic ATL had the highest sorption to biochars due to electrostatic attraction. Coexisting ATL, CBZ and KTP competed for the shared adsorption sites on carbonized phase of biochars, and π-π interactions were proposed to be the main sorption mechanism. Sorption coefficients (Kd) and nonlinearity of ATL, CBZ and KTP to soil increased when biochar was added (5% by weight), especially for WS700 with higher specific surface area. Kd values of the three pharmaceuticals to WS700-amended soil in either single solute or bisolute system were one to two orders of magnitude higher than those to soil, indicating the promoting role of WS700 in sorption of coexisting pharmaceuticals in soil. The study demonstrated the enhanced and competitive sorption of ionic and neutral species of pharmaceuticals to soil amended with biochars, which is helpful in designing biochar as effective sorbents for immobilization of pharmaceuticals in soil remediation.
Collapse
Affiliation(s)
- Lin Wu
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources and Environmental Engineering, and MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
- Hebei and China Geological Survey Key Laboratory of Groundwater Remediation, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China
| | - Erping Bi
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources and Environmental Engineering, and MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| |
Collapse
|
14
|
Wu P, Xie L, Mo W, Wang B, Ge H, Sun X, Tian Y, Zhao R, Zhu F, Zhang Y, Wang Y. The biodegradation of carbaryl in soil with Rhodopseudomonas capsulata in wastewater treatment effluent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109226. [PMID: 31442909 DOI: 10.1016/j.jenvman.2019.06.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 06/20/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
In this study, the effects of Rhodopseudomonas capsulata present in wastewater effluent on the biodegradation of carbaryl in soil and improvement of soil fertility were investigated. Compared to control treatment, carbaryl was removed efficiently and soil fertility was remediated with the addition of effluent containing R. capsulata. Molecular analysis revealed that carbaryl induced carbaryl hydrolase gene expression to synthesize carbaryl hydrolase through activating MAPKKKs, MAPKKs, MAPKs genes in MAPK signal transduction pathway. The induction and secretion of carbaryl hydrolase occur after one day in R. capsulata, which can be attributed to its characteristics as an ancient bacteria, which require acclimatization to carbaryl before gene induction. However, lack of organics in soil and control treatment could not maintain R. capsulata growth for over one day. The residual organics in the effluent provided sufficient carbon source and energy for R. capsulata under four effluent treatments. This new method resulted in the remediation of carbaryl pollution and improvement of soil fertility and soybean processing wastewater treatment simultaneously, as well as the reutilization of wastewater and R. capsulata as sludge. Meanwhile, the high-order non-linear mathematical model about carbaryl removal rate was established.
Collapse
Affiliation(s)
- Pan Wu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Liying Xie
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Wentao Mo
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Bing Wang
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Hui Ge
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Xiaodong Sun
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Ying Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, Liaoning, China
| | - Rou Zhao
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Feifei Zhu
- Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Ying Zhang
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Yanling Wang
- Department of Anesthesiology, The Third Affiliated Hospital of SunYat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
15
|
Li F, Di L, Liu Y, Xiao Q, Zhang X, Ma F, Yu H. Carbaryl biodegradation by Xylaria sp. BNL1 and its metabolic pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:331-337. [PMID: 30359899 DOI: 10.1016/j.ecoenv.2018.10.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Although ascomycetes occupy a vaster niche in soil than the well-studied basidiomycetes, they have received limited attention in studies related to bioremediation. In this study, the degradation of carbaryl by Xylaria sp. was studied in different culture conditions and its possible metabolic pathway was elucidated. In liquid culture, 99% of the added carbaryl was eliminated when cytochrome P450 (CYP450) was active, which was similar to the degradation rate of Pleurotus ostreatus, a fungus with strong bioremediation ability. Mn2+ is beneficial to the degradation of carbaryl. Compared to the 72.17% degradation rate in sterile soil, 59.0% carbaryl was eliminated in non-sterile soil, which suggested that Xylaria sp. BNL1 can resist microorganismal infection. Furthermore, the intracellular fractions containing laccase, CYP450, and carbaryl esterase efficiently degraded carbaryl. The presence of carbaryl metabolites suggested that Xylaria sp. BNL1 initiated its attack on carbaryl via carbaryl esterase to release α-naphthol, which was further degraded to 1,4-naphthoquinone and benzoic acid by CYP450 and laccase. Thus, our study highlights the potential of using Xylaria sp. for bioremediation.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lin Di
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuxin Liu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiuyun Xiao
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fuying Ma
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Hongbo Yu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
16
|
Ren X, Wang F, Zhang P, Guo J, Sun H. Aging effect of minerals on biochar properties and sorption capacities for atrazine and phenanthrene. CHEMOSPHERE 2018; 206:51-58. [PMID: 29730565 DOI: 10.1016/j.chemosphere.2018.04.125] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Biochars that were produced from pig manure at two different temperatures were incubated with three different minerals to examine the effects of soil minerals on biochar properties and sorption capacities. Biochars freshly mixed with minerals showed dramatic decreases in the sorption of atrazine (maximum decrease by 70.9% at Ce = 0.5 Sw) and phenanthrene (maximum decrease by 69.5% at Ce = 0.5 Sw) compared to unmixed biochars. Following the incubation, minerals were tightly attached to the biochar surface and insert into inner pores, thus changing the elemental composition and surface area of biochars in a manner dependent on the types of biochars and minerals involved. The changes in biochar properties in turn affected biochar sorption capacities. The sorption of both atrazine and phenanthrene by the pig manure biochar produced at 300 °C (BC300) decreased after aging due to an increase in surface hydrophilicity. In contrast, the sorption of atrazine and phenanthrene by BC700 increased after aging with minerals, which could be attributed to the increase in surface area caused by the minerals. However, the sorption capacities of the aged BC700 were still lower than those of the fresh BC700.
Collapse
Affiliation(s)
- Xinhao Ren
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Fei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
17
|
Zhang P, Sun H, Min L, Ren C. Biochars change the sorption and degradation of thiacloprid in soil: Insights into chemical and biological mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:158-167. [PMID: 29414336 DOI: 10.1016/j.envpol.2018.01.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/04/2018] [Accepted: 01/12/2018] [Indexed: 06/08/2023]
Abstract
One interest of using biochar as soil amendment is to reduce pesticide adverse effects. In this paper, the sorption and degradation of thiacloprid (THI) in a black soil amended by various biochars were systematically investigated, and the mechanisms therein were explored by analyzing the changes in soil physicochemical properties, degrading enzymes and genes and microorganism community. Biochar amendment increased THI sorption in soil, which was associated with an increase in organic carbon and surface area and a decrease in H/C. Amendments of 300-PT (pyrolyzing temperature) biochar promoted the biodegradation of THI by increasing the microbe abundance and improving nitrile hydratase (NHase) activity. In contrast, 500- and 700-PT biochar amendments inhibited biodegradation by reducing THI availability and changing NHase activity and THI-degradative nth gene abundance, and instead promoted chemical degradation mainly through elevated pH, active groups on mineral surface and generation of •OH and other free radicals. Furthermore, THI shifted the soil microbial community, stimulated the NHase activity and elevated nth gene abundance. Biochar amendments also changed soil bacterial community by modulating soil pH, dissolved organic matter and nitrogen and phosphorus levels, which further influenced THI biodegradation. Therefore, the impact of biochars on the fate of a pesticide in soil depends greatly on their type and properties, which should be comprehensively examined when applying biochar to soil.
Collapse
Affiliation(s)
- Peng Zhang
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongwen Sun
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Lujuan Min
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chao Ren
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
18
|
Jia R, Qu Z, You P, Qu D. Effect of biochar on photosynthetic microorganism growth and iron cycling in paddy soil under different phosphate levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:223-230. [PMID: 28850841 DOI: 10.1016/j.scitotenv.2017.08.126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/12/2017] [Accepted: 08/13/2017] [Indexed: 06/07/2023]
Abstract
The surplus of exogenous and endogenous phosphate in submerged paddy fields could increase the risk of algal blooms, the photosynthesis of which might further influence the redox processes of iron. This work investigated the effects of biochar on photosynthetic microorganism growth and iron redox under different phosphate (P) levels to understand the dynamics of P and thereby control non-point source pollution by biochar addition. Paddy soils were incubated anaerobically with phosphate and biochar addition under controlled illumination conditions to determine the variation in chlorophyll a (Chl a), ferrous iron [Fe(II)], soil pH and water-soluble phosphate (W-P) with incubation time. Biochar addition significantly inhibited the photosynthetic microorganism growth, with Chl a decreased by 4.74-15.78mg·g-1 when compared with the control. Fe(III) reduction was significantly stimulated in response to biochar addition, while Fe(II) oxidation was inhibited because of the suppression of photosynthetic microorganism growth. The enhanced Fe(III) reduction and suppressed Fe(II) oxidation decreased the P solubility in the tested soils. These findings provide a cost-effective approach for inhibiting photosynthetic microorganism growth in paddy field and valuable insight into the effect of iron cycling on P retention for further management of eutrophication from exogenous and endogenous P loading.
Collapse
Affiliation(s)
- Rong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, China.
| | - Zhi Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, China.
| | - Ping You
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, China.
| | - Dong Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, China.
| |
Collapse
|
19
|
Chen J, Wang C, Pan Y, Farzana SS, Tam NFY. Biochar accelerates microbial reductive debromination of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in anaerobic mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2018; 341:177-186. [PMID: 28777963 DOI: 10.1016/j.jhazmat.2017.07.063] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/29/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
A common congener of polybrominated diphenyl ethers, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), is a prevalent, persistent and toxic pollutant. It could be removed by reduction debromination by microorganisms but the rate is often slow. The study hypothesized that spent mushroom substrate derived biochar amendment could accelerate the microbial reductive debromination of BDE-47 in anaerobic mangrove sediment slurries and evaluated the mechanisms behind. At the end of 20-week experiment, percentages of residual BDE-47 in slurries amended with biochar were significantly lower but debromination products were higher than those without biochar. Such stimulatory effect on debromination was dosage-dependent, and debromination was coupled with iron (Fe) reduction. Biochar amendment significantly enhanced the Fe(II):Fe(III) ratio, Fe(III) reduction rate and the abundance of iron-reducing bacteria in genus Geobacter, thus promoting bacterial iron-reducing process. The abundances of dehalogenating bacteria in genera Dehalobacter, Dehalococcoides, Dehalogenimonas and Desulfitobacterium were also stimulated by biochar. Biochar as an electron shuttle might increase electron transfer from iron-reducing and dehalogenating bacteria to PBDEs for their reductive debromination. More, biochar shifted microbial community composition in sediment, particularly the enrichment of potential PBDE-degrading bacteria including organohalide-respiring and sulfate-reducing bacteria, which in turn facilitated the reductive debromination of BDE-47 in anaerobic mangrove sediment slurries.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China; Department of Biology and Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Chao Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
| | - Ying Pan
- Department of Biology and Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shazia Shyla Farzana
- Department of Biology and Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Nora Fung-Yee Tam
- Department of Biology and Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
20
|
Jia R, Li L, Qu D, Mi N. Enhanced iron(III) reduction following amendment of paddy soils with biochar and glucose modified biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:91-103. [PMID: 27858276 DOI: 10.1007/s11356-016-8081-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Although biochar application to paddy fields has been widely studied, its effects on Fe(III) reduction have not yet been investigated. Paddy soil slurry and soil microbial inoculation incubation were conducted with unmodified biochar (UMB) or glucose-modified biochar (GMB) additions at different particle sizes. The Fe(II) concentration and pH value were determined regularly, and Fe(III) reducing capacity (FeRC) was evaluated by modeling. Fe(III) reduction potential (a) was increased by 0-1.96 mg g-1 in response to UMBs addition, and a more remarkable increase in a was related to the decrease of particle size. The dissolved organic carbon of UMBs was responsible for the majority of the biochar reducing capacity. UMBs addition increased the contribution of free Fe and nitrate nitrogen to FeRC, while it decreased that of available phosphorus. Moreover, GMBs led to greater promotion of FeRC than the corresponding UMBs, with an increase in a of 2.9-16% in soil slurry and reduction rate of 13-35% in microbial inoculation incubation. The maximum Fe(III) reduction rate (V max) with GMBs addition was faster or invariable than UMBs, while the time to V max (T Vmax) was shorter or stable. The effect of GMBs on Fe(III) reduction was less sensitive as GMB particle size increased. Compared with UMBs addition, pH declined remarkably in response to GMBs. These findings suggest that GMBs can effectively stimulate Fe(III) reduction in paddy fields, while simultaneously alleviating the pH increase usually caused by pristine biochar application.
Collapse
Affiliation(s)
- Rong Jia
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling, Shaanxi Province, China
- College of Natural Resources and Environment, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi Province, 712100, China
| | - Lina Li
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling, Shaanxi Province, China
- College of Natural Resources and Environment, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi Province, 712100, China
| | - Dong Qu
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling, Shaanxi Province, China.
- College of Natural Resources and Environment, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi Province, 712100, China.
| | - Nana Mi
- College of Natural Resources and Environment, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi Province, 712100, China
| |
Collapse
|
21
|
Wu S, He H, Inthapanya X, Yang C, Lu L, Zeng G, Han Z. Role of biochar on composting of organic wastes and remediation of contaminated soils-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16560-16577. [PMID: 28551738 DOI: 10.1007/s11356-017-9168-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Biochar is produced by pyrolysis of biomass residues under limited oxygen conditions. In recent years, biochar as an amendment has received increasing attention on composting and soil remediation, due to its unique properties such as chemical recalcitrance, high porosity and sorption capacity, and large surface area. This paper provides an overview on the impact of biochar on the chemical characteristics (greenhouse gas emissions, nitrogen loss, decomposition and humification of organic matter) and microbial community structure during composting of organic wastes. This review also discusses the use of biochar for remediation of soils contaminated with organic pollutants and heavy metals as well as related mechanisms. Besides its aging, the effects of biochar on the environment fate and efficacy of pesticides deserve special attention. Moreover, the combined application of biochar and compost affects synergistically on soil remediation and plant growth. Future research needs are identified to ensure a wide application of biochar in composting and soil remediation. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Shaohua Wu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Huijun He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Xayanto Inthapanya
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.
| | - Li Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Zhenfeng Han
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| |
Collapse
|
22
|
Gámiz B, Cox L, Hermosín MC, Spokas K, Celis R. Assessing the Effect of Organoclays and Biochar on the Fate of Abscisic Acid in Soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:29-38. [PMID: 27959547 DOI: 10.1021/acs.jafc.6b03668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The potential use of allelopathic and signaling compounds as environmentally friendly agrochemicals is a subject of increasing interest, but the fate of these compounds once they reach the soil environment is poorly understood. This work studied how the sorption, persistence, and leaching of the two enantiomers of the phytohormone abscisic acid (ABA) in agricultural soil was affected by the amendments of two organoclays (SA-HDTMA and Cloi10) and a biochar derived from apple wood (BC). In conventional 24-h batch sorption experiments, higher affinity toward ABA enantiomers was displayed by SA-HDTMA followed by Cloi10 and then BC. Desorption could be ascertained only in BC, where ABA enantiomers presented difficulties to be desorbed. Dissipation of ABA in the soil was enantioselective with S-ABA being degraded more quickly than R-ABA, and followed the order unamended > Cloi10-amended > BC-amended > SA-HDTMA-amended soil for both enantiomers. Sorption determined during the incubation experiment indicated some loss of sorption capacity with time in organoclay-amended soil and increasing sorption in BC-amended soil, suggesting surface sorption mechanisms for organoclays and slow (potentially pore filling) kinetics in BC-amended soil. The leaching of ABA enantiomers was delayed after amendment of soil to an extent that depended on the amendment sorption capacity, and it was almost completely suppressed by addition of BC due to its irreversible sorption. Organoclays and BC affected differently the final behavior and enantioselectivity of ABA in soil as a consequence of dissimilar sorption capacities and alterations in sorption with time, which will affect the plant and microbial availability of endogenous and exogenous ABA in the rhizosphere.
Collapse
Affiliation(s)
- Beatriz Gámiz
- Instituto de Recursos Naturales y Agrobiologı́a de Sevilla (IRNAS), CSIC , Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| | - Lucía Cox
- Instituto de Recursos Naturales y Agrobiologı́a de Sevilla (IRNAS), CSIC , Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| | - M Carmen Hermosín
- Instituto de Recursos Naturales y Agrobiologı́a de Sevilla (IRNAS), CSIC , Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| | - Kurt Spokas
- Agricultural Research Service, U.S. Department of Agriculture , 439 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, Minnesota 55108, United States
| | - Rafael Celis
- Instituto de Recursos Naturales y Agrobiologı́a de Sevilla (IRNAS), CSIC , Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| |
Collapse
|
23
|
Li M, Zhao Z, Wu X, Zhou W, Zhu L. Impact of mineral components in cow manure biochars on the adsorption and competitive adsorption of oxytetracycline and carbaryl. RSC Adv 2017. [DOI: 10.1039/c6ra26534k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Knowledge about the impact of mineral component in biochar on the sorption of OTC and CBL is limited and need be systematically studied. The mineral component of cow manure biochar showed different effects on the sorption of OTC and CBL.
Collapse
Affiliation(s)
- Mengwei Li
- Department of Environmental Science
- Zhejiang University
- Hangzhou
- China
| | - Zhendong Zhao
- Department of Environmental Science
- Zhejiang University
- Hangzhou
- China
| | - Xiaodan Wu
- Center of Analysis and Measurement
- Zhejiang University
- Hangzhou 310058
- China
| | - Wenjun Zhou
- Department of Environmental Science
- Zhejiang University
- Hangzhou
- China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control
| | - Lizhong Zhu
- Department of Environmental Science
- Zhejiang University
- Hangzhou
- China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control
| |
Collapse
|