1
|
Hussain S, Al-Tabban A, Zourob M. Aptameric photonic structure-based optical biosensor for the detection of microcystin. Biosens Bioelectron 2024; 260:116413. [PMID: 38815464 DOI: 10.1016/j.bios.2024.116413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
An optical photonic biosensor for the detection of microcystin (MC) has been developed using an aptamer-immobilized interpenetrating polymeric network (IPNaptamer) intertwined with solid-state cholesteric liquid crystals (CLCsolids). The IPN was constructed with a polyacrylic acid hydrogel (PAA). Aptamer immobilization enhances polarity while blocking hydrogen bonding between the carboxylic groups of PAA-IPN hydrogel, thereby increasing the swelling ratio of the PAA-IPN hydrogel. This leads to an expansion in the helical pitch of the corresponding IPNaptamer-CLCsolid biosensor chip and results in a red-shift in the reflected color. Upon exposure to an aqueous MC solution, the IPNaptamer-CLCsolid biosensor chip exhibits aptamer-mediated engulfment of MC, resulting in reduced polarity of the IPNaptamer complex and a consequential blue-shift in the biosensor chip color occurred. The wavelength shift of the IPNaptamer-CLCsolid biosensor chip demonstrates a linear change with an increase in MC concentration from 3.8 to 150 nM, with a limit of detection of 0.88 nM. This novel optical biosensor is characterized by its low cost, simplicity, selectivity, and sensitivity, offering a promising strategy for designing similar toxin biosensors through the modification of biological receptors.
Collapse
Affiliation(s)
- Saddam Hussain
- Department of Chemistry, College of Science, Alfaisal University, Al-Maather, 11533, Riyadh, Saudi Arabia
| | - Awatef Al-Tabban
- Department of Chemistry, College of Science, Alfaisal University, Al-Maather, 11533, Riyadh, Saudi Arabia
| | - Mohammed Zourob
- Department of Chemistry, College of Science, Alfaisal University, Al-Maather, 11533, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Wang X, Meng X, Dong Y, Song C, Sui F, Lu X, Mei X, Fan Y, Liu Y. Differential protein analysis of saline-alkali promoting the oil accumulation in Nitzschia palea. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:11. [PMID: 38282018 PMCID: PMC10823674 DOI: 10.1186/s13068-023-02451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND The increasingly severe salinization of the aquatic environment has led to serious damage to the habitats of aquatic organisms. Benthic diatoms are commonly employed as indicator species for assessing water quality and serve as a reflection of the overall health of the aquatic ecosystem. Nitzschia palea is a common diatom found in freshwater, with high oil content, rapid reproductive rate, and it is a commonly dominant species in various rivers. RESULTS The results showed that after 4 days (d) of saline-alkali stress, the cell density and chlorophyll a content of Nitzschia palea reached their maximum values. Therefore, we selected Nitzschia palea under 4 d stress for Tandem Mass Tag (TMT) quantitative proteomic analysis to explore the molecular adaptation mechanism of freshwater diatoms under saline-alkali stress. Totally, 854 proteins were enriched, of which 439 differentially expressed proteins were identified. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and subcellular fractionation analysis revealed that these proteins were mainly enriched in the photosynthesis pathway, citric acid cycle (TCA cycle), fatty acid synthesis, and glutathione cycle. CONCLUSIONS This study aims to reveal the physiological, biochemical and proteomic mechanisms of salt and alkali tolerance and molecular adaptation of Nitzschia palea under different saline-alkali concentrations. This study showed that Nitzschia palea is one candidate of the environmental friendly, renewable bioenergy microalgae. Meantime, Nitzschia palea reveals for the proteome of the freshwater and provides the basis, it became a model algal species for freshwater diatoms.
Collapse
Affiliation(s)
- Xintong Wang
- College of Life Sciences and Technology, Harbin Normal University, Harbin, China
| | - Xianghong Meng
- College of Life Sciences and Technology, Harbin Normal University, Harbin, China
| | - Yanlong Dong
- College of Life Sciences and Technology, Harbin Normal University, Harbin, China
| | - Chunhua Song
- College of Life Sciences and Technology, Harbin Normal University, Harbin, China
| | - Fengyang Sui
- College of Life Sciences and Technology, Harbin Normal University, Harbin, China
| | - Xinxin Lu
- College of Life Sciences and Technology, Harbin Normal University, Harbin, China
| | - Xiaoxue Mei
- College of Life Sciences and Technology, Harbin Normal University, Harbin, China
| | - Yawen Fan
- College of Life Sciences and Technology, Harbin Normal University, Harbin, China.
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, China.
| | - Yan Liu
- College of Life Sciences and Technology, Harbin Normal University, Harbin, China.
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, China.
| |
Collapse
|
3
|
Oxygen stress mitigation for microalgal biomass productivity improvement in outdoor raceway ponds. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
4
|
Aida H, Hashizume T, Ashino K, Ying BW. Machine learning-assisted discovery of growth decision elements by relating bacterial population dynamics to environmental diversity. eLife 2022; 11:76846. [PMID: 36017903 PMCID: PMC9417415 DOI: 10.7554/elife.76846] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/15/2022] [Indexed: 12/30/2022] Open
Abstract
Microorganisms growing in their habitat constitute a complex system. How the individual constituents of the environment contribute to microbial growth remains largely unknown. The present study focused on the contribution of environmental constituents to population dynamics via a high-throughput assay and data-driven analysis of a wild-type Escherichia coli strain. A large dataset constituting a total of 12,828 bacterial growth curves with 966 medium combinations, which were composed of 44 pure chemical compounds, was acquired. Machine learning analysis of the big data relating the growth parameters to the medium combinations revealed that the decision-making components for bacterial growth were distinct among various growth phases, e.g., glucose, sulfate, and serine for maximum growth, growth rate, and growth delay, respectively. Further analyses and simulations indicated that branched-chain amino acids functioned as global coordinators for population dynamics, as well as a survival strategy of risk diversification to prevent the bacterial population from undergoing extinction.
Collapse
Affiliation(s)
- Honoka Aida
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takamasa Hashizume
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kazuha Ashino
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
bte Sukarji NH, He Y, Te SH, Gin KYH. Application of a Mechanistic Model for the Prediction of Microcystin Production by Microcystis in Lab Cultures and Tropical Lake. Toxins (Basel) 2022; 14:103. [PMID: 35202131 PMCID: PMC8875899 DOI: 10.3390/toxins14020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
Microcystin is an algal toxin that is commonly found in eutrophic freshwaters throughout the world. Many studies have been conducted to elucidate the factors affecting its production, but few studies have attempted mechanistic models of its production to aid water managers in predicting its occurrence. Here, a mechanistic model was developed based on microcystin production by Microcystis spp. under laboratory culture and ambient field conditions. The model was built on STELLA, a dynamic modelling software, and is based on constitutive cell quota that varies with nitrogen, phosphorus, and temperature. In addition to these factors, varying the decay rate of microcystin according to its proportion in the intracellular and extracellular phase was important for the model's performance. With all these effects, the model predicted most of the observations with a model efficiency that was >0.72 and >0.45 for the lab and field conditions respectively. However, some large discrepancies were observed. These may have arisen from the non-constitutive microcystin production that appear to have a precondition of nitrogen abundance. Another reason for the large root mean square error is that cell quota is affected by factors differently between strains.
Collapse
Affiliation(s)
- Nur Hanisah bte Sukarji
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore 138602, Singapore; (N.H.b.S.); (S.H.T.)
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Shu Harn Te
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore 138602, Singapore; (N.H.b.S.); (S.H.T.)
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore 138602, Singapore; (N.H.b.S.); (S.H.T.)
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
6
|
Guo X, Han T, Tan L, Zhao T, Zhu X, Huang W, Lin K, Zhang N, Wang J. The allelopathy and underlying mechanism of Skeletonema costatum on Karenia mikimotoi integrating transcriptomics profiling. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106042. [PMID: 34861574 DOI: 10.1016/j.aquatox.2021.106042] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/08/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
The roles of allelopathy for succession of marine phytoplankton communities remain controversial, especially for the development of blooms. Physiological parameters measurement (Fv/Fm value, MDA content, SOD activity, Na+/K+, Ca2+/ Mg2+-ATPase activity, cell size, chlorophyll content, apoptosis and cell cycle) and whole transcriptome profiling analysis were used to investigate allelopathy effect of Skeletonema costatum on Karenia mikimotoi. Filtrate and extracts from S. costatum culture inhibited the growth of K. mikimotoi. Allelopathic effects were dose-dependent for filtrate culture and extract culture. K. mikimotoi scavenged excessive ROS and adapted to the stress fastly and easily, so oxidative damage was not the main cause of the growth inhibition. Allelochemicals of S. costatum were found to influence the structure and function of cell membrane of K. mikimotoi by damaging membrane structure till to cell necrosis, which caused high mortality. Coupled with the sensitivity of algal cells to environmental stress and restricted cell cycle, allelopathy was suggested to be deeply detrimental to the development of competition algal population.
Collapse
Affiliation(s)
- Xin Guo
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Tongzhu Han
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Ting Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, PCR, Guangzhou, 510610, China
| | - Xiaolin Zhu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Wenqiu Huang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Kun Lin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Na Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
7
|
Anam GB, Guda DR, Ahn YH. Hormones induce the metabolic growth and cytotoxin production of Microcystis aeruginosa under terpinolene stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145083. [PMID: 33736237 DOI: 10.1016/j.scitotenv.2021.145083] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Several organic compounds released into the aquatic environment have a detrimental impact on humans and other organisms. There is a lack of knowledge about natural hormones and herbicides on non-target organisms, including cyanobacteria. In this study, the response of Microcystis aeruginosa to four phytohormones, indole-3-acetic acid (IAA; 10-5), zeatin (ZT; 10-5), abscisic acid (ABA; 10-7), and brassinolide (BRL; 10-9 mol/L), exposed to terpinolene (TPN; (0.44, 0.88, 1.17, or 1.62 mmol/L) at the cellular and genetic levels were investigated. The results showed that TPN could inhibit the growth and photosynthetic activities and stimulate microcystins (MCs) of M. aeruginosa at various levels through the co-occurrence of oxidative stress, antioxidant defense activities, and an imbalance of the antioxidative system. Hormones played critical roles in the growth promotion and photosynthetic activity by enhancing the antioxidant defense mechanisms and MCs production of M. aeruginosa under TPN stress in both hormone and TPN dose-dependent manner. The growth performance and photosynthetic activities of M. aeruginosa were significant with IAA (p < 0.01) and BSL (p < 0.05) compared to ZT and ABA, as TPN concentrations increased. Hormones stimulated the MCs production significantly BSL (p < 0.05) at various levels and protected the cells against TPN-induced oxidative stress and expression of mcyB and mcyD genes involve in MCs synthesis. Our results indicated that hormone contamination in eutrophic lakes might increase the risk of Microcystis aeruginosa bloom and microcystin production with the TPN association.
Collapse
Affiliation(s)
- Giridhar Babu Anam
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Dinneswara Reddy Guda
- Korea Center for Artificial Photosynthesis and Center for Nanomaterial, Sogang University, Seoul 121-742, Republic of Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea.
| |
Collapse
|
8
|
Wu D, Wang T, Wang J, Jiang L, Yin Y, Guo H. Size-dependent toxic effects of polystyrene microplastic exposure on Microcystis aeruginosa growth and microcystin production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143265. [PMID: 33257060 DOI: 10.1016/j.scitotenv.2020.143265] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/10/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Due to increasingly severe microplastic pollution in freshwaters, the interaction between these contaminants and cyanobacteria warrants study. In this study, we expose the freshwater cyanobacterium Microcystis aeruginosa to different sizes (1 μm and 100 nm) of polystyrene (PS) microplastics of 5 mg/L. Results indicate 1 μm microplastics promote algal growth (12.42% ± 0.94%) at 96 h, and have greater potential to aggregate on algal cell surfaces and inhibit photosynthesis. But no significance was observed in 100 nm microplastics treatment on algal growth and photosynthetic activity after 96 h exposure. Especially, 1 μm microplastics increased the content of intracellular microcystins (MCs) (18.42% ±0.33%) after 72 h and inhibit MCs release (23.87% ±8.79%) at 72 h, while 100 nm PS microplastics promote MCs production only at 48 h (14.83% ± 7.07%). Results indicate that smaller size does not necessarily mean greater toxicity, 1 μm microplastics showing more adverse effects than 100 nm microplastics to M. aeruginosa, improving understanding of the toxicity of microplastics in freshwater ecosystems, and challenging the conventionally held belief that smaller microplastics are more toxic.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lijuan Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Zhang X, Xiong W, Chen LL, Huang JQ, Lei XG. Selenoprotein V protects against endoplasmic reticulum stress and oxidative injury induced by pro-oxidants. Free Radic Biol Med 2020; 160:670-679. [PMID: 32846216 DOI: 10.1016/j.freeradbiomed.2020.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
Abstract
Selenoprotein V (SELENOV) contains a thioredoxin-like fold and a conserved CxxU motif with a potential redox function. This study was to assess its in vivo and in vitro roles and mechanisms in coping with different oxidant insults. In Experiment (Expt.)1, SELENOV knockout (KO) and wild type (WT) mice (male, 8-wk old) were given an ip injection of saline, diquat (DQ, 12.5 mg/kg), or N-acetyl-para-aminophenol (APAP, 300 mg/kg) (n = 10), and killed 5 h after the injection. In Expt. 2, primary hepatocytes of WT and KO were treated with DQ (0-0.75 mM) or APAP (0-6 mM) for 12 h. In Expt. 3, 293 T cells overexpressing Selenov gene (OE) were treated with APAP (0-4 mM) for 24 h or H2O2 (0-0.4 mM) for 12 h. Compared with the WT, the DQ- and APAP-injected KO mice had higher (P < 0.05) serum alanine aminotransferase activities and hepatic malondialdehyde (MDA), protein carbonyl, endoplasmic reticulum (ER) stress-related proteins (BIP and CHOP), apoptosis-related proteins (FAK and caspase-9), and 3-nitrotyrosine, along with lower total anti-oxidizing-capability (T-AOC) and severer hepatic necrosis. Likewise, the DQ and APAP-treated KO hepatocytes had elevated (P < 0.05) cell death (10-40%), decreased (P < 0.05) T-AOC (63-83%), glutathione (26-87%), superoxide dismutase (SOD) activity (28-36%), mRNA levels of redox enzymes (Cat, Gcs, Gpx3, and Sod) and (or) sharper declines (P < 0.05) in cellular respiration and ATP production than that of the WT cells. In contrast, the OE cells had greater viability and T-AOC and lower MDA, and carbonyl contents after the APAP and H2O2 exposures (all at P < 0.05) than the controls. Moreover, the OE cells had greater (P < 0.05) redox enzyme activities (GPX, TrxR, and SOD), and lower (P < 0.05) expressions of ER stress-related genes (Atf4, Atf6, Bip, Xbp1t, Xbp1s, and Chop) and proteins (BIP, CHOP, FAK, and caspase-9) than the control cells after the treatment of H2O2 (0.4 mM). In conclusion, SELENOV conferred protections in vivo and in vitro against the reactive oxygen and nitrogen species-mediated ER stress-related signaling and oxidative injuries.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Biological Sciences, China Agricultural University, Beijing, 100083, China
| | - Wei Xiong
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ling-Li Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jia-Qiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
10
|
Zhang J, Jiang L, Wu D, Yin Y, Guo H. Effects of environmental factors on the growth and microcystin production of Microcystis aeruginosa under TiO 2 nanoparticles stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139443. [PMID: 32454338 DOI: 10.1016/j.scitotenv.2020.139443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Due to the growing use and release of nanomaterials, their toxic impacts on aquatic ecosystems have drawn widespread attention in recent years. In this study, we exposed Microcystis aeruginosa to 5 mg/L titanium dioxide nanoparticles (nTiO2) under different culture conditions (pH 6, 7, 8, 9; 20 °C, 25 °C, 30 °C). The results showed that algae had the worst growth status with lowest biomass, lowest photosynthetic activity and highest reactive oxygen species (ROS) generation under 5 mg/L nTiO2 at pH 6 and 20 °C. Images by scanning electron microscopy (SEM) revealed that nTiO2 hindered light absorption by algal cells by wrapping the algal surface, which led to obvious cell surface deformation at pH 6 or 20 °C. In addition, microcystin-LR (MC-LR) production increased as temperature or pH decreased when exposed to nTiO2 at 5 mg/L, demonstrating that falling pH or temperature enhanced the adverse effects toward algal cells under nTiO2 stress and the potential risk of algae to the environment.
Collapse
Affiliation(s)
- Jingxian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China
| | - Lijuan Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China
| | - Di Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China
| |
Collapse
|
11
|
Chen Q, Jia R, Li L, Qu D. Effects of high concentrations of sulfate on dissolved organic matter in paddy soils revealed by excitation-emission matrix analyzing. CHEMOSPHERE 2020; 249:126207. [PMID: 32088458 DOI: 10.1016/j.chemosphere.2020.126207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
The problem of sulfate pollution is becoming increasingly serious in freshwater and wetlands. Since paddy fields are the largest constructed wetland in Earth's surface, the increased sulfate input may have great effect on dissolved organic matter (DOM) in paddy soils. To understand these effects, a 24-day anaerobic incubation experiment was conducted with four Chinese paddy soils amended with high concentrations (0, 10, 25, 50, and 100 mmol L-1) of Na2SO4. Dissolved organic carbon (DOC) and chlorophyll a (Chl a) concentrations were determined after incubation. Parallel factor analysis (PARAFAC) of the excitation-emission matrix (EEM) spectra was used to analyze the DOM composition. In all four soils, DOC concentrations generally increased with increasing sulfate concentration, while the Chl a concentrations decreased. The EEM spectra of DOM were resolved into four components by PARAFAC. With increasing sulfate concentration, the proportion of the ultraviolet C humic acid-like compound decreased and the tyrosine-like compound increased in two algae-rich soils (Sichuan and Tianjin). No obvious variation was observed in the humification index (HIX) or the ratio of peak β to peak α (β:α) in any soils with added sulfate. Specific ultra-violet absorbance at 254 nm (SUVA254) decreased with increasing sulfate concentration in Jilin, Tianjin, and Ningxia soils, and the fluorescence index (FI) decreased in two algae-rich soils. In conclusion, although sulfate addition increased the DOC concentration, the DOM composition depended more strongly on soil type and physicochemical properties than sulfate. Sulfate addition only affected soil DOM origin and composition by inhibiting algal growth in algae-rich paddy soils.
Collapse
Affiliation(s)
- Qin Chen
- Northwest Land and Resources Research Center, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Rong Jia
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610066, People's Republic of China
| | - Lina Li
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China; College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, People's Republic of China
| | - Dong Qu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China.
| |
Collapse
|
12
|
Salt Shock Responses of Microcystis Revealed through Physiological, Transcript, and Metabolomic Analyses. Toxins (Basel) 2020; 12:toxins12030192. [PMID: 32197406 PMCID: PMC7150857 DOI: 10.3390/toxins12030192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 02/04/2023] Open
Abstract
The transfer of Microcystis aeruginosa from freshwater to estuaries has been described worldwide and salinity is reported as the main factor controlling the expansion of M. aeruginosa to coastal environments. Analyzing the expression levels of targeted genes and employing both targeted and non-targeted metabolomic approaches, this study investigated the effect of a sudden salt increase on the physiological and metabolic responses of two toxic M. aeruginosa strains separately isolated from fresh and brackish waters, respectively, PCC 7820 and 7806. Supported by differences in gene expressions and metabolic profiles, salt tolerance was found to be strain specific. An increase in salinity decreased the growth of M. aeruginosa with a lesser impact on the brackish strain. The production of intracellular microcystin variants in response to salt stress correlated well to the growth rate for both strains. Furthermore, the release of microcystins into the surrounding medium only occurred at the highest salinity treatment when cell lysis occurred. This study suggests that the physiological responses of M. aeruginosa involve the accumulation of common metabolites but that the intraspecific salt tolerance is based on the accumulation of specific metabolites. While one of these was determined to be sucrose, many others remain to be identified. Taken together, these results provide evidence that M. aeruginosa is relatively salt tolerant in the mesohaline zone and microcystin (MC) release only occurs when the capacity of the cells to deal with salt increase is exceeded.
Collapse
|
13
|
Wei J, Xie X, Huang F, Xiang L, Wang Y, Han T, Massey IY, Liang G, Pu Y, Yang F. Simultaneous Microcystis algicidal and microcystin synthesis inhibition by a red pigment prodigiosin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113444. [PMID: 31676094 DOI: 10.1016/j.envpol.2019.113444] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/19/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Microcystis blooms and their secondary metabolites microcystins (MCs) occurred all over the world, which have damaged aquatic ecosystems and threatened public health. Techniques to reduce the Microcystis blooms and MCs are urgently needed. This study aimed to investigate the algicidal and inhibitory mechanisms of a red pigment prodigiosin (PG) against the growth and MC-producing abilities of Microcystis aeruginosa (M. aeruginosa). The numbers of Microcystis cells were counted under microscope. The expression of microcystin synthase B gene (mcyB) and concentrations of MCs were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme linked immunosorbent assay (ELISA) methods, respectively. The inhibitory effects of PG against M. aeruginosa strain FACHB 905 with 50% algicidal concentration (LC50) at 120 h was 0.12 μg/mL. When M. aeruginosa cells exposed to 0.08 μg/mL, 0.16 μg/mL, 0.32 μg/mL PG, the expression of mcyB of M. aeruginosa was down-regulated 4.36, 8.16 and 18.51 times lower than that of the control at 120 h. The concentrations of total MC (TMC) also were 1.66, 1.72 and 5.75 times lower than that of the control at 120 h. PG had high algicidal effects against M. aeruginosa, with the activities of superoxide dismutase (SOD) initially increased and then decreased after 72 h, the contents of malondialdehyde (MDA) increase, the expression of mcyB gene down-regulation, and MCs synthesis inhibition. This study was first to report the PG can simultaneously lyse Microcystis cells, down-regulate of mcyB expression and inhibit MCs production effectively probably due to oxidative stress, which indicated PG poses a great potential for regulating Microcystis blooms and MCs pollution in the environment.
Collapse
Affiliation(s)
- Jia Wei
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Xian Xie
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Feiyu Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Lin Xiang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Yin Wang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Tongrui Han
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Isaac Yaw Massey
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210007, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210007, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210007, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
14
|
Growth response of the ichthyotoxic haptophyte, Prymnesium parvum Carter, to changes in sulfate and fluoride concentrations. PLoS One 2019; 14:e0223266. [PMID: 31560717 PMCID: PMC6764746 DOI: 10.1371/journal.pone.0223266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/17/2019] [Indexed: 11/30/2022] Open
Abstract
Golden alga Prymnesium parvum Carter is a euryhaline, ichthyotoxic haptophyte (Chromista). Because of its presumed coastal/marine origin where SO42- levels are high, the relatively high SO42- concentration of its brackish inland habitats, and the sensitivity of marine chromists to sulfur deficiency, this study examined whether golden alga growth is sensitive to SO42- concentration. Fluoride is a ubiquitous ion that has been reported at higher levels in golden alga habitat; thus, the influence of F- on growth also was examined. In low-salinity (5 psu) artificial seawater medium, overall growth was SO42—dependent up to 1000 mg l-1 using MgSO4 or Na2SO4 as source; the influence on growth rate, however, was more evident with MgSO4. Transfer from 5 to 30 psu inhibited growth when salinity was raised with NaCl but in the presence of seawater levels of SO42-, these effects were fully reversed with MgSO4 as source and only partially reversed with Na2SO4. Growth inhibition was not observed after acute transfer to 30 psu in a commercial sea salt mixture. In 5-psu medium, F- inhibited growth at all concentrations tested. These observations support the hypothesis that spatial differences in SO42- –but not F-–concentration help drive the inland distribution and growth of golden alga and also provide physiological relevance to reports of relatively high Mg2+ concentrations in golden alga habitat. At high salinity, however, the ability of sulfate to maintain growth under osmotic stress was weak and overshadowed by the importance of Mg2+. A mechanistic understanding of growth responses of golden alga to SO42-, Mg2+ and other ions at environmentally relevant levels and under different salinity scenarios will be necessary to clarify their ecophysiological and evolutionary relevance.
Collapse
|
15
|
Wu D, Yang S, Du W, Yin Y, Zhang J, Guo H. Effects of titanium dioxide nanoparticles on Microcystis aeruginosa and microcystins production and release. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:1-7. [PMID: 31129339 DOI: 10.1016/j.jhazmat.2019.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Due to growing production and use, release of nanoparticles (NPs) into the aquatic environment may pose a hazard to ecosystem. In this study, Microcystis aeruginosa was exposed to different concentrations (0.1, 1, 10, 50, 100 mg/L) of titanium dioxide (TiO2) NPs to assess their impact on algae. Meanwhile, the production and release of microcystins (MCs) was determined. Results showed that TiO2 NPs significantly decreased the maximal photochemical efficiency of photosystem II, and thus inhibited the photosynthetic activity of M. aeruginosa. They also increased the content of reactive oxygen species (ROS) and malondialdehyde (MDA), indicating their oxidative damage on algae. Besides, TiO2 NPs at high concentrations (50 and 100 mg/L) aggregated on the algal surface and block the light, herein inhibited algae growth (16.03%±2.50% and 54.13%±0.93%) but induced the production (25.02%±1.23% and 114.43%±2.96%) and release (20.96%±13.30% and 12.10%±8.80%) of MCs. These results indicated that high concentrations of TiO2 NPs increased MCs concentration in water system, which may be harmful to aquatic ecosystem.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shixiong Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wenchao Du
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Jingxian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
16
|
Muthukrishnan T, Al Khaburi M, Abed RMM. Fouling Microbial Communities on Plastics Compared with Wood and Steel: Are They Substrate- or Location-Specific? MICROBIAL ECOLOGY 2019; 78:361-374. [PMID: 30535914 DOI: 10.1007/s00248-018-1303-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/27/2018] [Indexed: 05/20/2023]
Abstract
Although marine biofouling has been widely studied on different substrates, information on biofouling on plastics in the Arabian Gulf is limited. Substrate- and location-specific effects were investigated by comparing the microbial communities developed on polyethylene terephthalate (PET) and polyethylene (PE) with those on steel and wood, at two locations in the Sea of Oman. Total biomass was lower on PET and PE than on steel and wood. PET had the highest bacterial abundance at both locations, whereas chlorophyll a concentrations did not vary between substrates. MiSeq 16S ribosomal RNA sequencing revealed comparable operational taxonomic unit (OTU) richness on all substrates at one location but lower numbers on PET and PE at the other location. Non-metric multidimensional scaling (NMDS) showed distinct clusters of the bacterial communities based on substrate (analysis of similarity (ANOSIM), R = 0.45-0.97, p < 0.03) and location (ANOSIM, R = 0.56, p < 0.0001). The bacterial genera Microcystis and Hydrogenophaga and the diatoms Licmophora and Mastogloia were specifically detected on plastics. Desulfovibrio and Pseudomonas spp. exhibited their highest abundance on steel and Corynebacterium spp. on wood. Scanning electron microscopy (SEM) revealed fissure formation on PET and PE, indicating physical degradation. The presence of free radicals on PET and carbonyl bonds (C=O) on PE, as revealed by Fourier transform infrared (FTIR) spectroscopy, indicated abiotic degradation while hydroxyl groups and spectral peaks for proteins and polysaccharides on PE indicated biotic degradation. We conclude that fouling microbial communities are not only substrate-specific but also location-specific and microbes developing on plastics could potentially contribute to their degradation in the marine environment.
Collapse
Affiliation(s)
- Thirumahal Muthukrishnan
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box 36, PC, 123, Al Khoud, Sultanate of Oman
| | - Maryam Al Khaburi
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box 36, PC, 123, Al Khoud, Sultanate of Oman
| | - Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box 36, PC, 123, Al Khoud, Sultanate of Oman.
| |
Collapse
|
17
|
Park BS, Li Z, Kang YH, Shin HH, Joo JH, Han MS. Distinct Bloom Dynamics of Toxic and Non-toxic Microcystis (Cyanobacteria) Subpopulations in Hoedong Reservoir (Korea). MICROBIAL ECOLOGY 2018; 75:163-173. [PMID: 28721505 DOI: 10.1007/s00248-017-1030-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/28/2017] [Indexed: 05/06/2023]
Abstract
Despite the importance of understanding the bloom mechanisms that influence cyanobacterial toxin production, the dynamics of toxic Microcystis subpopulations are largely unknown. Here, we quantified both toxic and entire (i.e., toxic and non-toxic) Microcystis populations based on the microcystin synthetase E (mcyE) and 16S ribosomal RNA genes. Samples were collected from pelagic water and sediments twice per week from October to December 2011, and we investigated the effects of physicochemical factors (pH, water temperature, dissolved oxygen, nutrients, etc.) and biological factors (ciliates and zooplankton) on the abundance of toxic and non-toxic Microcystis. During the study period, Microcystis blooms were composed of toxic and non-toxic subpopulations. Resting stage Microcystis in sediment may be closely linked to Microcystis populations in pelagic water and may contribute to the toxic subpopulation composition in surface Microcystis blooms. In pelagic water, the toxic and entire Microcystis population had a significant positive correlation with the pH and water temperature (p < 0.05). However, their responses to changes in environmental factors were thought to be distinct. The ratio of the toxic to non-toxic Microcystis subpopulations was significantly (p < 0.05) enhanced by a lower pH and water temperature and an increase in protozoan grazers, reflecting environmental stresses. These results suggest that the toxic and non-toxic subpopulations of Microcystis have distinct tolerance levels against these stressors. The intracellular microcystin (MC) concentration was positively associated with the abundance of the mcyE-positive Microcystis. By comparison, the MC concentration in pelagic water body (extracellular) increased when Microcystis was lysed due to environmental stresses.
Collapse
Affiliation(s)
- Bum Soo Park
- Department of Life Science, Hanyang University, Seoul, 04763, South Korea
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, 78373, USA
| | - Zhun Li
- Department of Life Science, Hanyang University, Seoul, 04763, South Korea
- Library of Marine Samples, Korea Institute of Ocean Science and Technology, Geoje, 53201, South Korea
| | - Yoon-Ho Kang
- Department of Life Science, Hanyang University, Seoul, 04763, South Korea
- Monitoring and Analysis Division, Wonju Regional Environmental Office, Wonju, Gangwon-do, 26461, South Korea
| | - Hyeon Ho Shin
- Library of Marine Samples, Korea Institute of Ocean Science and Technology, Geoje, 53201, South Korea
| | - Jae-Hyoung Joo
- Department of Life Science, Hanyang University, Seoul, 04763, South Korea.
| | - Myung-Soo Han
- Department of Life Science, Hanyang University, Seoul, 04763, South Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
18
|
Dugan NR, Smith S, Sanan TT. The Impacts of Potassium Permanganate and Powdered Activated Carbon on Cyanotoxin Release. ACTA ACUST UNITED AC 2018; 110:31-42. [PMID: 31073245 DOI: 10.1002/awwa.1125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bench-scale trials were performed to: (1) Expose Microcystis aeruginosa cells to potassium permanganate doses of 1, 3 and 5 mg/L, at contact times of 15, 30 and 90 minutes, pH levels of 7 and 9, and turbidities of 0.1, 5 and 20 NTU; (2) Compare the impacts of oxidation alone and oxidation plus powdered activated carbon for the final 60 minutes of contact time and (3) evaluate the impact of these treatment conditions on extracellular microcystins, extra- plus intracellular (combined) microcystins, cell membrane integrity and chlorophyll-a concentrations. Toxin releases from the cells were observed at both pH levels. The greatest toxin releases were observed at the lowest KMnO4 doses. The toxin releases were accompanied by relatively stable total cell counts, increases in membrane compromised cells and decreases in chlorophyll-a. The application of 10 mg/L PAC resulted in extracellular toxin concentrations that were markedly lower than those observed in oxidant-only situations.
Collapse
Affiliation(s)
- Nicholas R Dugan
- U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, 513-569-7239,
| | - Samantha Smith
- Pegasus Technical Services, 46 East Hollister Street, Cincinnati, OH 45219, 513-569-7681,
| | - Toby T Sanan
- U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, 513-569-7667,
| |
Collapse
|
19
|
Saadaoui E, Ghazel N, Ben Romdhane C, Massoudi N. Phosphogypsum: potential uses and problems – a review. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/00207233.2017.1330582] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ezzeddine Saadaoui
- Laboratory GVRF, University of Carthage, Regional Station of Gabès–INRGREF, Gabès, Tunisia
| | - Naziha Ghazel
- Laboratory GVRF, University of Carthage, Regional Station of Gabès–INRGREF, Gabès, Tunisia
- Faculty of Sciences of Gabès, University of Gabès, Gabès, Tunisia
| | - Chokri Ben Romdhane
- Laboratory GVRF, University of Carthage, Regional Station of Gabès–INRGREF, Gabès, Tunisia
| | | |
Collapse
|
20
|
Chen Q, Jia R, Qu D, Li M. Changes and relations of photosynthesis and iron cycling in anoxic paddy soil amended with high concentrations of sulfate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11425-11434. [PMID: 28316044 DOI: 10.1007/s11356-017-8777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
Sulfate contamination is an increasingly serious environmental problem related to microbial reduction processes in anoxic paddy soil. This study revealed the changes and interrelations of ferric iron [Fe(III)] reduction, ferrous iron [Fe(II)] oxidation, and oxygenic photosynthesis in an anoxic paddy soil (Fe-accumuli-Stagnic Anthrosols) amended with a range of high sulfate concentrations. Soil slurries mixed with 0 (control), 50, 100, 200, and 400 mmol kg-1 Na2SO4 were incubated anaerobically under dark and light conditions. The changes in chlorophyll a (Chl a), Fe(II), pH levels, and the chlorophyll absorption spectrum were determined over a 42-day period. Fe(II) concentrations increased with the addition of sulfate under dark conditions, while Fe(III) reduction potential was enhanced by increasing sulfate addition. The effect of light on Fe(II) concentration was observed after 16 days of incubation, when Fe(II) started to decrease markedly in the control. The decrease in Fe(II) slowed with increasing sulfate addition. The concentrations of Chl a increased in all treatments after 16 days of incubation under light conditions. There was a reduction in Chl a accumulation with increasing sulfate at the same incubation time. The absorption peaks of chlorophyll remained shorter than the 700-nm wavelength throughout the incubation period. The pH of all treatments decreased in the first week and then increased thereafter. The pH increased with sulfate addition and light conditions. In conclusion, contamination with high concentrations of sulfate could accelerate Fe(III) reduction while inhibiting oxygenic photosynthesis, which correspondingly slows chemical Fe(II) oxidation in an anoxic paddy soil.
Collapse
Affiliation(s)
- Qin Chen
- College of Natural Resources and Environment, Northwest A & F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi Province, China
| | - Rong Jia
- College of Natural Resources and Environment, Northwest A & F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi Province, China
| | - Dong Qu
- College of Natural Resources and Environment, Northwest A & F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi Province, China.
| | - Ming Li
- College of Natural Resources and Environment, Northwest A & F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi Province, China
| |
Collapse
|
21
|
Species-dependent variation in sensitivity of Microcystis species to copper sulfate: implication in algal toxicity of copper and controls of blooms. Sci Rep 2017; 7:40393. [PMID: 28079177 PMCID: PMC5227962 DOI: 10.1038/srep40393] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/06/2016] [Indexed: 01/08/2023] Open
Abstract
Copper sulfate is a frequently used reagent for Microcystis blooms control but almost all the previous works have used Microcystis aeruginosa as the target organism to determine dosages. The aim of this study was to evaluate interspecific differences in the responses of various Microcystis species to varying Cu2+ concentrations (0, 0.05, 0.10, 0.25, and 0.50 mg L−1). The half maximal effective concentration values for M. aeruginosa, M. wesenbergii, M. flos-aquae, and M. viridis were 0.16, 0.09, 0.49, and 0.45 mg L−1 Cu2+, respectively. This showed a species-dependent variation in the sensitivity of Microcystis species to copper sulfate. Malonaldehyde content did not decrease with increasing superoxide dismutase content induced by increasing Cu2+, suggesting that superoxide dismutase failed to reduce Cu2+ damage in Microcystis. Considering the risk of microcystin release when Microcystis membranes are destroyed as a result of Cu2+ treatment and the stimulation effects of a low level of Cu2+ on growth in various species, our results suggest that copper sulfate treatment for Microcystis control could be applied before midsummer when M. aeruginosa and M. viridis are not the dominant species and actual amount of Cu2+ used to control M. wesenbergii should be much greater than 0.10 mg L−1.
Collapse
|