1
|
Liang X, Hu ZC, Liu YR, Gao C, Zhang Y, Hao YY, Zhang L, Zhao J, Zhu L. Precipitation patterns strongly affect vertical migration and methylation of mercury in legacy contaminated sites. WATER RESEARCH 2024; 267:122511. [PMID: 39340865 DOI: 10.1016/j.watres.2024.122511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Legacy-contaminated sites act as significant sources of mercury (Hg) to their surrounding surface and underground environments. Intensified extreme precipitation is posing great threats to the environment and human health by changing the fate of pollutants, yet little is known about its effect on the vertical migration and methylation of Hg in contaminated sites. Here, we applied a range of simulated extreme precipitation patterns (frequency and intensity) to column leaching assays with soils collected near a contaminated site. We observed that precipitation with high frequency but low intensity resulted in more vertical migration of Hg through the soil profile than that with low frequency but high intensity. The majority (> 90%) of leached Hg was prone to migrate vertically within the top 10 cm of the soil profile. Furthermore, rainfall stimulated microbial Hg methylation, as demonstrated by enhanced production of methylmercury (MeHg) in both simulated and field-contaminated soils. We identified specific microbial taxa including Geobacteraceae, Desulfuromonadaceae, Syntrophaceae, Oscillospiraceae, and Methanomicrobiaceae as key predictors of MeHg production, which differed from those typically observed in overlying water of croplands. Particularly, the relative abundance of these dominant Hg methylators significantly increased during rainfall-induced leaching compared to that of the control, suggesting the crucial yet previously overlooked impacts of increased precipitation events on the process of microbial Hg methylation in industry-contaminated sites. Given the rising incidences of extreme precipitation events worldwide due to climate change, this study highlights the significance of assessing Hg mobility and microbial transformation in legacy contaminated sites.
Collapse
Affiliation(s)
- Xujun Liang
- College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; School of Resources and Environment Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Zhi-Cheng Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Cunbin Gao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun-Yun Hao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lijie Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jiating Zhao
- College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; School of Resources and Environment Science, Quanzhou Normal University, Quanzhou, 362000, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China.
| | - Lizhong Zhu
- College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Wang YL, Ikuma K, Brown AMV, Deonarine A. Global survey of hgcA-carrying genomes in marine and freshwater sediments: Insights into mercury methylation processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124117. [PMID: 38714231 DOI: 10.1016/j.envpol.2024.124117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/09/2024]
Abstract
Mercury (Hg) methylation is a microbially mediated process that produces methylmercury (MeHg), a bioaccumulative neurotoxin. A highly conserved gene pair, hgcAB, is required for Hg methylation, which provides a basis for identifying Hg methylators and evaluating their genomic composition. In this study, we conducted a large-scale omics analysis in which 281 metagenomic freshwater and marine sediment samples from 46 geographic locations across the globe were queried. Specific objectives were to examine the prevalence of Hg methylators, to identify horizontal gene transfer (HGT) events involving hgcAB within Hg methylator communities, and to identify associations between hgcAB and microbial biochemical functions/genes. Hg methylators from the phyla Desulfobacterota and Bacteroidota were dominant in both freshwater and marine sediments while Firmicutes and methanogens belonging to Euryarchaeota were identified only in freshwater sediments. Novel Hg methylators were found in the Phycisphaerae and Planctomycetia classes within the phylum Planctomycetota, including potential hgcA-carrying anammox metagenome-assembled genomes (MAGs) from Candidatus Brocadiia. HGT of hgcA and hgcB were identified in both freshwater and marine methylator communities. Spearman's correlation analysis of methylator genomes suggested that in addition to sulfide, thiosulfate, sulfite, and ammonia may be important parameters for Hg methylation processes in sediments. Overall, our results indicated that the biochemical drivers of Hg methylation vary between marine and freshwater sites, lending insight into the influence of environmental perturbances, such as a changing climate, on Hg methylation processes.
Collapse
Affiliation(s)
- Yong-Li Wang
- Department of Civil, Environmental & Construction Engineering, Texas Tech University, Lubbock, TX, United States
| | - Kaoru Ikuma
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA, United States
| | - Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Amrika Deonarine
- Department of Civil, Environmental & Construction Engineering, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
3
|
Feng G, Gong S. Functional Genes and Transcripts Indicate the Existent and Active Microbial Mercury-Methylating Community in Mangrove Intertidal Sediments of an Urbanized Bay. Microorganisms 2024; 12:1245. [PMID: 38930626 PMCID: PMC11205478 DOI: 10.3390/microorganisms12061245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Mercury (Hg) methylation in mangrove sediments can result in the accumulation of neurotoxic methylmercury (MeHg). Identification of Hg methyltransferase gene hgcA provides the means to directly characterize the microbial Hg-methylating consortia in environments. Hitherto, the microbial Hg-methylating community in mangrove sediments was scarcely investigated. An effort to assess the diversity and abundance of hgcA genes and transcripts and link them to Hg and MeHg contents was made in the mangrove intertidal sediments along the urbanized Shenzhen Bay, China. The hgcA genes and transcripts associated with Thermodesulfobacteria [mainly Geobacteraceae, Syntrophorhabdaceae, Desulfobacterales, and Desulfarculales (these four lineages were previously classified into the Deltaproteobacteria taxon)], as well as Euryarchaeota (mainly Methanomicrobia and Theionarchaea) dominated the hgcA-harboring communities, while Chloroflexota, Nitrospirota, Planctomycetota, and Lentisphaerota-like hgcA sequences accounted for a small proportion. The hgcA genes appeared in greater abundance and diversity than their transcript counterparts in each sampling site. Correlation analysis demonstrated that the MeHg content rather than Hg content significantly correlated with the structure of the existent/active hgcA-harboring community and the abundance of hgcA genes/transcripts. These findings provide better insights into the microbial Hg methylation drivers in mangrove sediments, which could be helpful for understanding the MeHg biotransformation therein.
Collapse
Affiliation(s)
- Guofang Feng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
- Shenzhen Key Lab of Industrial Water Saving & Municipal Sewage Reclamation Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Sanqiang Gong
- Key Laboratory of Tropical Marine Bio-Resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
4
|
Cardona GI, Escobar MC, Acosta-González A, Díaz-Ruíz N, Niño-García JP, Vasquez Y, Marrugo-Negrete J, Marqués S. Microbial diversity and abundance of Hg related genes from water, sediment and soil the Colombian amazon ecosystems impacted by artisanal and small-scale gold mining. CHEMOSPHERE 2024; 352:141348. [PMID: 38340998 DOI: 10.1016/j.chemosphere.2024.141348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The Amazon region abounds in precious mineral resources including gold, copper, iron, and coltan. Artisanal and small-scale gold mining (ASGM) poses a severe risk in this area due to considerable mercury release into the surrounding ecosystems. Nonetheless, the impact of mercury on both the overall microbiota and the microbial populations involved in mercury transformation is not well understood. In this study we evaluated microbial diversity in samples of soil, sediment and water potentially associated with mercury contamination in two localities (Taraira and Tarapacá) in the Colombian Amazon Forest. To this end, we characterized the bacterial community structure and mercury-related functions in samples from sites with a chronic history of mercury contamination which today have different levels of total mercury content. We also determined mercury bioavailability and mobility in the samples with the highest THg and MeHg levels (up to 43.34 and 0.049 mg kg-1, respectively, in Taraira). Our analysis of mercury speciation showed that the immobile form of mercury predominated in soils and sediments, probably rendering it unavailable to microorganisms. Despite its long-term presence, mercury did not appear to alter the microbial community structure or composition, which was primarily shaped by environmental and physicochemical factors. However, an increase in the relative abundance of merA genes was detected in polluted sediments from Taraira. Several Hg-responsive taxa in soil and sediments were detected in sites with high levels of THg, including members of the Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes and Chloroflexi phyla. The results suggest that mercury contamination at the two locations sampled may select mercury-adapted bacteria carrying the merA gene that could be used in bioremediation processes for the region.
Collapse
Affiliation(s)
- Gladys Inés Cardona
- Instituto Amazónico de Investigaciones Científicas SINCHI. Laboratorio de Biotecnología y Recursos Genéticos, Bogotá, Colombia.
| | - Maria Camila Escobar
- Instituto Amazónico de Investigaciones Científicas SINCHI. Laboratorio de Biotecnología y Recursos Genéticos, Bogotá, Colombia; Escuela de Microbiología. Universidad de Antioquia, Medellín, Colombia
| | | | - Natalie Díaz-Ruíz
- Escuela de Microbiología. Universidad de Antioquia, Medellín, Colombia
| | | | - Yaneth Vasquez
- Chemistry Department, Universidad de Córdoba, Montería, Colombia
| | - José Marrugo-Negrete
- Convergence Science and Technology Cluster, Universidad Central, Bogotá, Colombia
| | - Silvia Marqués
- Department of Biotechnology and Environmental Protection. Estación Experimental Del Zaidín. Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
5
|
Wu Q, Wang B, Hu H, Bravo AG, Bishop K, Bertilsson S, Meng B, Zhang H, Feng X. Sulfate-reduction and methanogenesis are coupled to Hg(II) and MeHg reduction in rice paddies. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132486. [PMID: 37690197 DOI: 10.1016/j.jhazmat.2023.132486] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
Methylmercury (MeHg) produced in rice paddies is the main source of MeHg accumulation in rice, resulting in high risk of MeHg exposure to humans and wildlife. Net MeHg production is affected by Hg(II) reduction and MeHg demethylation, but it remains unclear to what extent these processes influence net MeHg production, as well as the role of the microbial guilds involved. We used isotopically labeled Hg species and specific microbial inhibitors in microcosm experiments to simultaneously investigate the rates of Hg(II) and MeHg transformations, as well as the key microbial guilds controlling these processes. Results showed that Hg(II) and MeHg reduction rate constants significantly decreased with addition of molybdate or BES, which inhibit sulfate-reduction and methanogenesis, respectively. This suggests that both sulfate-reduction and methanogenesis are important processes controlling Hg(II) and MeHg reduction in rice paddies. Meanwhile, up to 99% of MeHg demethylation was oxidative demethylation (OD) under the incubation conditions, suggesting that OD was the main MeHg degradative pathway in rice paddies. In addition, [202Hg(0)/Me202Hg] from the added 202Hg(NO3)2 was up to 13.9%, suggesting that Hg(II) reduction may constrain Hg(II) methylation in rice paddies at the abandoned Hg mining site. This study improves our understanding of Hg cycling pathways in rice paddies, and more specifically how reduction processes affect net MeHg production and related microbial metabolisms.
Collapse
Affiliation(s)
- Qingqing Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baolin Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Haiyan Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Andrea G Bravo
- Department of Marine Biology and Oceanography, Institut de Ciencies del Mar (ICM-CSIC), Barcelona E08003, Catalunya, Spain
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Peterson BD, Poulin BA, Krabbenhoft DP, Tate MT, Baldwin AK, Naymik J, Gastelecutto N, McMahon KD. Metabolically diverse microorganisms mediate methylmercury formation under nitrate-reducing conditions in a dynamic hydroelectric reservoir. THE ISME JOURNAL 2023; 17:1705-1718. [PMID: 37495676 PMCID: PMC10504345 DOI: 10.1038/s41396-023-01482-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Brownlee Reservoir is a mercury (Hg)-impaired hydroelectric reservoir that exhibits dynamic hydrological and geochemical conditions and is located within the Hells Canyon Complex in Idaho, USA. Methylmercury (MeHg) contamination in fish is a concern in the reservoir. While MeHg production has historically been attributed to sulfate-reducing bacteria and methanogenic archaea, microorganisms carrying the hgcA gene are taxonomically and metabolically diverse and the major biogeochemical cycles driving mercury (Hg) methylation are not well understood. In this study, Hg speciation and redox-active compounds were measured throughout Brownlee Reservoir across the stratified period in four consecutive years (2016-2019) to identify the location where and redox conditions under which MeHg is produced. Metagenomic sequencing was performed on a subset of samples to characterize the microbial community with hgcA and identify possible links between biogeochemical cycles and MeHg production. Biogeochemical profiles suggested in situ water column Hg methylation was the major source of MeHg. These profiles, combined with genome-resolved metagenomics focused on hgcA-carrying microbes, indicated that MeHg production occurs in this system under nitrate- or manganese-reducing conditions, which were previously thought to preclude Hg-methylation. Using this multidisciplinary approach, we identified the cascading effects of interannual variability in hydrology on the redox status, microbial metabolic strategies, abundance and metabolic diversity of Hg methylators, and ultimately MeHg concentrations throughout the reservoir. This work expands the known conditions conducive to producing MeHg and suggests that the Hg-methylation mitigation efforts by nitrate or manganese amendment may be unsuccessful in some locations.
Collapse
Affiliation(s)
- Benjamin D Peterson
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, WI, 53706, USA.
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, 53706, USA.
- Department of Environmental Toxicology, University of California - Davis, Davis, CA, 95616, USA.
| | - Brett A Poulin
- Department of Environmental Toxicology, University of California - Davis, Davis, CA, 95616, USA
| | - David P Krabbenhoft
- U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, Madison, WI, 53726, USA
| | - Michael T Tate
- U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, Madison, WI, 53726, USA
| | - Austin K Baldwin
- U.S. Geological Survey, Idaho Water Science Center, Boise, ID, 83702, USA
| | | | | | - Katherine D McMahon
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, 53706, USA
| |
Collapse
|
7
|
Cabrol L, Capo E, van Vliet DM, von Meijenfeldt FAB, Bertilsson S, Villanueva L, Sánchez-Andrea I, Björn E, G. Bravo A, Heimburger Boavida LE. Redox gradient shapes the abundance and diversity of mercury-methylating microorganisms along the water column of the Black Sea. mSystems 2023; 8:e0053723. [PMID: 37578240 PMCID: PMC10469668 DOI: 10.1128/msystems.00537-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 08/15/2023] Open
Abstract
In the global context of seawater deoxygenation triggered by climate change and anthropogenic activities, changes in redox gradients impacting biogeochemical transformations of pollutants, such as mercury, become more likely. Being the largest anoxic basin worldwide, with high concentrations of the potent neurotoxic methylmercury (MeHg), the Black Sea is an ideal natural laboratory to provide new insights about the link between dissolved oxygen concentration and hgcAB gene-carrying (hgc+) microorganisms involved in the formation of MeHg. We combined geochemical and microbial approaches to assess the effect of vertical redox gradients on abundance, diversity, and metabolic potential of hgc+ microorganisms in the Black Sea water column. The abundance of hgcA genes [congruently estimated by quantitative PCR (qPCR) and metagenomics] correlated with MeHg concentration, both maximal in the upper part of the anoxic water. Besides the predominant Desulfobacterales, hgc+ microorganisms belonged to a unique assemblage of diverse-previously underappreciated-anaerobic fermenters from Anaerolineales, Phycisphaerae (characteristic of the anoxic and sulfidic zone), Kiritimatiellales, and Bacteroidales (characteristic of the suboxic zone). The metabolic versatility of Desulfobacterota differed from strict sulfate reduction in the anoxic water to reduction of various electron acceptors in the suboxic water. Linking microbial activity and contaminant concentration in environmental studies is rare due to the complexity of biological pathways. In this study, we disentangle the role of oxygen in shaping the distribution of Hg-methylating microorganisms consistently with MeHg concentration, and we highlight their taxonomic and metabolic niche partitioning across redox gradients, improving the prediction of the response of marine communities to the expansion of oxygen-deficient zones. IMPORTANCE Methylmercury (MeHg) is a neurotoxin detected at high concentrations in certain marine ecosystems, posing a threat to human health. MeHg production is mainly mediated by hgcAB gene-carrying (hgc+) microorganisms. Oxygen is one of the main factors controlling Hg methylation; however, its effect on the diversity and ecology of hgc+ microorganisms remains unknown. Under the current context of seawater deoxygenation, mercury cycling is expected to be disturbed. Here, we show the strong effect of oxygen gradients on the distribution of potential Hg methylators. In addition, we show for the first time the significant contribution of a unique assemblage of potential fermenters from Anaerolineales, Phycisphaerae, and Kiritimatiellales to Hg methylation, stratified in different redox niches along the Black Sea gradient. Our results considerably expand the known taxonomic diversity and ecological niches prone to the formation of MeHg and contribute to better apprehend the consequences of oxygen depletion in seawater.
Collapse
Affiliation(s)
- Léa Cabrol
- Aix Marseille University, Univ. Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
- Institute of Ecology and Biodiversity (IEB), University of Chile, Santiago, Chile
| | - Eric Capo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences, CSIC, Barcelona, Spain
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Daan M. van Vliet
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
- Wageningen Food and Biobased Research, Wageningen, the Netherlands
| | - F. A. Bastiaan von Meijenfeldt
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, the Netherlands
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, the Netherlands
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Erik Björn
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Andrea G. Bravo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences, CSIC, Barcelona, Spain
| | - Lars-Eric Heimburger Boavida
- Aix Marseille University, Univ. Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
| |
Collapse
|
8
|
Zhang R, Aris-Brosou S, Storck V, Liu J, Abdelhafiz MA, Feng X, Meng B, Poulain AJ. Mining-impacted rice paddies select for Archaeal methylators and reveal a putative (Archaeal) regulator of mercury methylation. ISME COMMUNICATIONS 2023; 3:74. [PMID: 37454192 PMCID: PMC10349881 DOI: 10.1038/s43705-023-00277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Methylmercury (MeHg) is a microbially produced neurotoxin derived from inorganic mercury (Hg), which accumulation in rice represents a major health concern to humans. However, the microbial control of MeHg dynamics in the environment remains elusive. Here, leveraging three rice paddy fields with distinct concentrations of Hg (Total Hg (THg): 0.21-513 mg kg-1 dry wt. soil; MeHg: 1.21-6.82 ng g-1 dry wt. soil), we resorted to metagenomics to determine the microbial determinants involved in MeHg production under contrasted contamination settings. We show that Hg methylating Archaea, along with methane-cycling genes, were enriched in severely contaminated paddy soils. Metagenome-resolved Genomes of novel putative Hg methylators belonging to Nitrospinota (UBA7883), with poorly resolved taxonomy despite high completeness, showed evidence of facultative anaerobic metabolism and adaptations to fluctuating redox potential. Furthermore, we found evidence of environmental filtering effects that influenced the phylogenies of not only hgcA genes under different THg concentrations, but also of two housekeeping genes, rpoB and glnA, highlighting the need for further experimental validation of whether THg drives the evolution of hgcAB. Finally, assessment of the genomic environment surrounding hgcAB suggests that this gene pair may be regulated by an archaeal toxin-antitoxin (TA) system, instead of the more frequently found arsR-like genes in bacterial methylators. This suggests the presence of distinct hgcAB regulation systems in bacteria and archaea. Our results support the emerging role of Archaea in MeHg cycling under mining-impacted environments and shed light on the differential control of the expression of genes involved in MeHg formation between Archaea and Bacteria.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Stéphane Aris-Brosou
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Veronika Storck
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Mahmoud A Abdelhafiz
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | | |
Collapse
|
9
|
Capo E, Cosio C, Gascón Díez E, Loizeau JL, Mendes E, Adatte T, Franzenburg S, Bravo AG. Anaerobic mercury methylators inhabit sinking particles of oxic water columns. WATER RESEARCH 2023; 229:119368. [PMID: 36459894 DOI: 10.1016/j.watres.2022.119368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/27/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Increased concentration of mercury, particularly methylmercury, in the environment is a worldwide concern because of its toxicity in severely exposed humans. Although the formation of methylmercury in oxic water columns has been previously suggested, there is no evidence of the presence of microorganisms able to perform this process, using the hgcAB gene pair (hgc+ microorganisms), in such environments. Here we show the prevalence of hgc+ microorganisms in sinking particles of the oxic water column of Lake Geneva (Switzerland and France) and its anoxic bottom sediments. Compared to anoxic sediments, sinking particles found in oxic waters exhibited relatively high proportion of hgc+genes taxonomically assigned to Firmicutes. In contrast hgc+members from Nitrospirae, Chloroflexota and PVC superphylum were prevalent in anoxic sediment while hgc+ Desulfobacterota were found in both environments. Altogether, the description of the diversity of putative mercury methylators in the oxic water column expand our understanding on MeHg formation in aquatic environments and at a global scale.
Collapse
Affiliation(s)
- Eric Capo
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Pg Marítim de la Barceloneta 37-49, 08003, Spain
| | - Claudia Cosio
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Reims, France.
| | - Elena Gascón Díez
- Department F.-A. Forel for Environmental and Aquatic Sciences, and Institute for Environmental Sciences, University of Geneva, Geneva 1205, Switzerland; Direction générale de la santé, Secteur des produits chimiques, République et Canton de Genève, Switzerland
| | - Jean-Luc Loizeau
- Department F.-A. Forel for Environmental and Aquatic Sciences, and Institute for Environmental Sciences, University of Geneva, Geneva 1205, Switzerland
| | - Elsa Mendes
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Pg Marítim de la Barceloneta 37-49, 08003, Spain
| | - Thierry Adatte
- ISTE, Institut des Sciences de la Terre, Université de Lausanne, GEOPOLIS, 1015, Lausanne, Switzerland
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Andrea G Bravo
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Pg Marítim de la Barceloneta 37-49, 08003, Spain.
| |
Collapse
|
10
|
Wang B, Hu H, Bishop K, Buck M, Björn E, Skyllberg U, Nilsson MB, Bertilsson S, Bravo AG. Microbial communities mediating net methylmercury formation along a trophic gradient in a peatland chronosequence. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130057. [PMID: 36179622 DOI: 10.1016/j.jhazmat.2022.130057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Peatlands are generally important sources of methylmercury (MeHg) to adjacent aquatic ecosystems, increasing the risk of human and wildlife exposure to this highly toxic compound. While microorganisms play important roles in mercury (Hg) geochemical cycles where they directly and indirectly affect MeHg formation in peatlands, potential linkages between net MeHg formation and microbial communities involving these microorganisms remain unclear. To address this gap, microbial community composition and specific marker gene transcripts were investigated along a trophic gradient in a geographically constrained peatland chronosequence. Our results showed a clear spatial pattern in microbial community composition along the gradient that was highly driven by peat soil properties and significantly associated with net MeHg formation as approximated by MeHg concentration and %MeHg of total Hg concentration. Known fermentative, syntrophic, methanogenic and iron-reducing metabolic guilds had the strong positive correlations to net MeHg formation, while methanotrophic and methylotrophic microorganisms were negatively correlated. Our results indicated that sulfate reducers did not have a key role in net MeHg formation. Microbial activity as interpreted from 16S rRNA sequences was significantly correlated with MeHg and %MeHg. Our findings shed new light on the role of microbial community in net MeHg formation of peatlands that undergo ontogenetic change.
Collapse
Affiliation(s)
- Baolin Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Haiyan Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China.
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Andrea G Bravo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta 37-49, E08003 Barcelona, Catalunya, Spain
| |
Collapse
|
11
|
Gomes MP, Kubis GC, Kitamura RSA, Figueredo CC, Nogueira KDS, Vieira F, Navarro-Silva MA, Juneau P. Do anti-HIV drugs pose a threat to photosynthetic microorganisms? CHEMOSPHERE 2022; 307:135796. [PMID: 35917978 DOI: 10.1016/j.chemosphere.2022.135796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
We investigated the occurrence and risk assessment of three anti-HIV drugs [(tenofovir (TNF), lamivudine (LMV) and efavirenz (EFV)] in urban rivers from Curitiba (Brazil), as well as the individual and combined effects of their environmental representative concentrations on the freshwater periphytic species Synechococcus elongatus (Cyanobacteria) and Chlorococcum infusionum (Chlorophyta). The three studied drugs, except TNF, were found in 100% of the samples, and concentrations in samples ranged from 165 to 412 ng TNF L-1, 173-874 ng LMV L-1 and 13-1250 ng EFV L-1. Bioassays using artificial contaminated water showed that at environmental concentrations, TNF and LMV did not represent environmental risks to the studied photosynthetic organisms. However, EFV was shown to be toxic, affecting photosynthesis, respiration, and oxidative metabolism. The studied drugs demonstrated interactive effects. Indeed, when submitted to the combination of TNF and LMV, decreased photosynthesis was observed in C. infusionum cells. Moreover, the toxic effects of EFV were amplified in both species when TNF and/or LMV were added to the media. The simultaneous presence of TNF, LMV and EFV in environmental matrices associated with their interactive effects, lead to increased toxicological effects of water contaminated by anti-HIV drugs and thus to an ecological threat to photosynthetic microorganisms.
Collapse
Affiliation(s)
- Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil.
| | - Gabrielly Cristina Kubis
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Rafael Shinji Akiyama Kitamura
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Cleber Cunha Figueredo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerias, Avenida Antônio Carlos, 6627, Pampulha, C.P. 486, Belo Horizonte, 31270-901, Brazil
| | - Keite da Silva Nogueira
- Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Fabio Vieira
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, C.P. 486, Belo Horizonte, Brazil
| | - Mario Antônio Navarro-Silva
- Laboratório de Morfologia e Fisiologia de Culicidae e Chironomidae. Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Philippe Juneau
- Ecotoxicology of Aquatic Microorganisms Laboratory, EcotoQ, GRIL, TOXEN, Department of Biological Sciences, Université du Québec à Montréal, Montréal, Succ. Centre-Ville, H3C 3P8, Montréal, QC, Canada.
| |
Collapse
|
12
|
Schwartz GE, Muller KA, Rathore SS, Wilpiszeski RL, Carrell AA, Cregger MA, Elias DA, Podar M, Painter SL, Brooks SC. Incorporating concentration-dependent sediment microbial activity into methylmercury production kinetics modeling. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1392-1405. [PMID: 34727150 DOI: 10.1039/d1em00287b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In anoxic environments, anaerobic microorganisms carrying the hgcAB gene cluster can mediate the transformation of inorganic mercury (Hg(II)) to monomethylmercury (MMHg). The kinetics of Hg(II) transformation to MMHg in periphyton from East Fork Poplar Creek (EFPC) in Oak Ridge, TN have previously been modeled using a transient availability model (TAM). The TAM for Hg(II) methylation combines methylation/demethylation kinetics with kinetic expressions for processes that decrease Hg(II) and MMHg availability for methylation and demethylation (multisite sorption of Hg(II) and MMHg, Hg(II) reduction/Hg(0) oxidation). In this study, the TAM is used for the first time to describe MMHg production in sediment. We assessed MMHg production in sediment microcosms using two different sediment types from EFPC: a relatively anoxic, carbon-rich sediment with higher microbial activity (higher CO2 production from sediment) and a relatively oxic, sandy, carbon-poor sediment with lower microbial activity (lower CO2 production from sediment). Based on 16s rRNA sequencing, the overall microbial community structure in the two sediments was retained during the incubations. However, the hgcA containing methanogenic Euryarchaeota communities differed between sediment types and their growth followed different trajectories over the course of incubations, potentially contributing to the distinct patterns of MMHg production observed. The general TAM paradigm performed well in describing MMHg production in the sediments. However, the MMHg production and ancillary data suggested the need to revise the model structure to incorporate terms for concentration-dependent microbial activity over the course of the incubations. We modified the TAM to include Monod-type kinetics for methylation and demethylation and observed an improved fit for the carbon-rich, microbially active sediment. Overall our work shows that the TAM can be applied to describe Hg(II) methylation in sediments and that including expressions accounting for concentration-dependent microbial activity can improve the accuracy of the model description of the data in some cases.
Collapse
Affiliation(s)
- Grace E Schwartz
- Environmental Sciences Division, Oak Ridge National Laboratory, P. O. Box 2008, MS 6038, Oak Ridge, Tennessee 37831-6038, USA.
| | - Katherine A Muller
- Earth Systems Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Saubhagya S Rathore
- Environmental Sciences Division, Oak Ridge National Laboratory, P. O. Box 2008, MS 6038, Oak Ridge, Tennessee 37831-6038, USA.
| | - Regina L Wilpiszeski
- Biosciences Division, Oak Ridge National Laboratory, P. O. Box 2008, MS 6038, Oak Ridge, Tennessee 37831-6038, USA
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, P. O. Box 2008, MS 6038, Oak Ridge, Tennessee 37831-6038, USA
| | - Melissa A Cregger
- Biosciences Division, Oak Ridge National Laboratory, P. O. Box 2008, MS 6038, Oak Ridge, Tennessee 37831-6038, USA
| | - Dwayne A Elias
- Biosciences Division, Oak Ridge National Laboratory, P. O. Box 2008, MS 6038, Oak Ridge, Tennessee 37831-6038, USA
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, P. O. Box 2008, MS 6038, Oak Ridge, Tennessee 37831-6038, USA
| | - Scott L Painter
- Environmental Sciences Division, Oak Ridge National Laboratory, P. O. Box 2008, MS 6038, Oak Ridge, Tennessee 37831-6038, USA.
| | - Scott C Brooks
- Environmental Sciences Division, Oak Ridge National Laboratory, P. O. Box 2008, MS 6038, Oak Ridge, Tennessee 37831-6038, USA.
| |
Collapse
|
13
|
Liu J, Li Y, Duan D, Peng G, Li P, Lei P, Zhong H, Tsui MTK, Pan K. Effects and mechanisms of organic matter regulating the methylmercury dynamics in mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128690. [PMID: 35325865 DOI: 10.1016/j.jhazmat.2022.128690] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Mangrove ecosystems serve as an important carbon sink but also could be a hotspot that produces neurotoxic methylmercury (MeHg). Although many studies have focused on mercury (Hg) contamination in this carbon-rich ecosystem, our understanding of the effects and mechanisms of the organic matter (OM) regulation of MeHg production in mangrove sediments is still limited. Here, we examined the effects of Hg contamination and OM enrichment on MeHg production in anoxic mangrove sediments and identified the major microbial guilds attending this process. The mangrove sediments possessed a high potential for producing MeHg, but this was counterbalanced by its rapid degradation. Sulfate-reducing bacteria (SRB) such as Desulfobacterales, Desulfovibrionales, and Syntrophobacterales were the major methylators. OM diagenesis significantly changed the biogeochemical conditions, accelerating MeHg degradation in the sediments. The enhanced MeHg degradation could be attributed to the abundant sulfide produced during OM decomposition, which could potentially inhibit the Hg methylation by immobilization of inorganic Hg, abiotically degrade MeHg, and favor the non-mer-mediated degradation of MeHg by SRB. Our study provides both geochemical and microbial clues that can partly explain the low MeHg levels widely observed in mangrove sediments.
Collapse
Affiliation(s)
- Jingli Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Dandan Duan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Guogan Peng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Pei Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Martin Tsz-Ki Tsui
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
14
|
An Y, Zhang R, Yang S, Wang Y, Lei Y, Peng S, Song L. Microbial mercury methylation potential in a large-scale municipal solid waste landfill, China. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 145:102-111. [PMID: 35526502 DOI: 10.1016/j.wasman.2022.04.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Landfills harbor ideal conditions for microbial mercury methylation. However, the levels and distribution of mercury (Hg) and methylmercury (MeHg), potential microbial Hg methylation, and their linkage within landfills are largely unknown. In the present study, total mercury (THg), MeHg, the Hg methylation gene (hgcA) and mer operon were quantified in 30 waste samples from different depths (0-30 m) at 5 locations within a large-scale landfill in China. The average concentrations of THg and MeHg in the solid waste samples were 1422.91 ng/g and 3.15 ng/g, respectively. THg (up to 14405.29 ng/g) and MeHg (up to 10.42 ng/g) have high concentrations in the middle part (10-15 m) along the depth profiles. The concentration of THg was strongly positively (both p < 0.05) correlated with the MeHg concentration and the relative abundance of hgcA, indicating that the THg concentration can play an important role in microbial Hg methylation. The hgcA genes were detected in most samples and mer operon were detected in all samples. Combined hgcA qPCR and metagenomics data showed that Archaea Methanofollis may mainly account for Hg methylation within landfills. These findings provide fundamental knowledge on Hg cycles in landfills.
Collapse
Affiliation(s)
- Yuwei An
- Chongqing Jiaotong University, Chongqing 400074, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Rui Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Shu Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Yangqing Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yu Lei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Shaohong Peng
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Liyan Song
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
15
|
Jung E, Kim H, Yun D, Rahman MM, Lee JH, Kim S, Kim CK, Han S. Importance of hydraulic residence time for methylmercury accumulation in sediment and fish from artificial reservoirs. CHEMOSPHERE 2022; 293:133545. [PMID: 34998844 DOI: 10.1016/j.chemosphere.2022.133545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Excessive methylmercury (MeHg) accumulation in dietary fish is a global concern due to its harmful effects on human health, however, environmental factors affecting MeHg accumulation in reservoir ecosystems are not clearly known. In this study, we aim to identify the main sources of MeHg in the water column and the critical factors related to MeHg concentration and methylation rate constant (km) in sediment and total Hg concentration in fish using five-year (2016-2020) monitoring data of the five artificial reservoirs. The preliminary mass budgets constructed using the measurement and online data showed that sediment transport dominated over runoff in the long residence time reservoirs (400-475 days), while runoff dominated over sediment transport in the short residence time reservoirs (10 days). Whereas the sediment km showed a comparable variation with the algal biomass, the sediment MeHg concentration and the length-normalized Hg concentration in the barbel steed and bluegill increased in the longer residence time reservoirs with lower algal biomass. As MeHg accumulation in sediment and fish tends to increase in the slowly overturning reservoirs, the hydraulic residence time should be carefully managed to meet the best protection of human health from chronic Hg exposure by fish consumption.
Collapse
Affiliation(s)
- Eunji Jung
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyogyeong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Daseul Yun
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Md Moklesur Rahman
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jong-Hyeon Lee
- Environmental Human Research & Consulting (EHR&C), Incheon, 22689, Republic of Korea
| | - Suhyun Kim
- Environmental Human Research & Consulting (EHR&C), Incheon, 22689, Republic of Korea
| | - Chan-Kook Kim
- Marine Environment Research Institute, OCEANIC C&T Co., Ltd, Kangwon, 25601, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
16
|
Pelcová P, Kopp R, Ridošková A, Grmela J, Štěrbová D. Evaluation of mercury bioavailability and phytoaccumulation by means of a DGT technique and of submerged aquatic plants in an aquatic ecosystem situated in the vicinity of a cinnabar mine. CHEMOSPHERE 2022; 288:132545. [PMID: 34648791 DOI: 10.1016/j.chemosphere.2021.132545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/23/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
The ability of submerged aquatic plants (Elodea canadensis, Myriophyllum spicatum, Ceratophyllum demersum) and a natant plant (Eichhornia crassipes) to bioaccumulate mercury was evaluated in a laboratory experiment as well as in a real aquatic ecosystem situated in the vicinity of a cinnabar mine. Moreover, the ability of the diffusive gradients in the thin films technique (DGT) to predict mercury bioavailability for selected aquatic plants was tested. The submerged plants had sufficient bioaccumulation capacity for long-term phytoaccumulation of mercury in a real aquatic ecosystem. The determined bioaccumulation factor was greater than 1000. On average, the submerged plant leaves accumulated 13 times more mercury than the leaves of the natant aquatic plants. Chlorides at concentrations up to 200 mg/L had no statistically significant effect on mercury accumulation, nevertheless, the presence of humic acid in the water environment resulted in its significant (p < 0.002) decrease. A strong positive correlation (r > 0.66) was determined between mercury concentration in the input parts (leaves and/or roots) of the aquatic plants and the flow of mercury into DGT units.
Collapse
Affiliation(s)
- Pavlína Pelcová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic.
| | - Radovan Kopp
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic
| | - Andrea Ridošková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic; CEITEC MENDELU, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic
| | - Jan Grmela
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic
| | - Dagmar Štěrbová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic
| |
Collapse
|
17
|
Emerging and Persistent Pollutants in the Aquatic Ecosystems of the Lower Danube Basin and North West Black Sea Region—A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The tremendous impact of natural and anthropogenic organic and inorganic substances continuously released into the environment requires a better understanding of the chemical status of aquatic ecosystems. Water contamination monitoring studies were performed for different classes of substances in different regions of the world. Reliable analytical methods and exposure assessment are the basis of a better management of water resources. Our research comprised publications from 2010 regarding the Lower Danube and North West Black Sea region, considering regulated and unregulated persistent and emerging pollutants. The frequently reported ones were: pharmaceuticals (carbamazepine, diclofenac, sulfamethoxazole, and trimethoprim), pesticides (atrazine, carbendazim, and metolachlor), endocrine disruptors—bisphenol A and estrone, polycyclic aromatic hydrocarbons, organochlorinated pesticides, and heavy metals (Cd, Zn, Pb, Hg, Cu, Cr). Seasonal variations were reported for both organic and inorganic contaminants. Microbial pollution was also a subject of the present review.
Collapse
|
18
|
Millera Ferriz L, Ponton DE, Storck V, Leclerc M, Bilodeau F, Walsh DA, Amyot M. Role of organic matter and microbial communities in mercury retention and methylation in sediments near run-of-river hydroelectric dams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145686. [PMID: 33609815 DOI: 10.1016/j.scitotenv.2021.145686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Run-of-river power plants (RoRs) are expected to triple in number over the next decades in Canada. These structures are not anticipated to considerably promote the mobilization and transport of mercury (Hg) and its subsequent microbial transformation to methylmercury (MeHg), a neurotoxin able to biomagnify in food webs up to humans. To test whether construction of RoRs had an effect on Hg transport and transformation, we studied Hg and MeHg concentrations, organic matter contents and methylating microbial community abundance and composition in the sediments of a section of the St. Maurice River (Quebec, Canada). This river section has been affected by the construction of two RoR dams and its watershed has been disturbed by a forest fire, logging, and the construction of wetlands. Higher total Hg (THg) and MeHg concentrations were observed in the surface sediments of the flooded sites upstream of the RoRs. These peaks in THg and MeHg were correlated with organic matter proportions in the sediments (r2 = 0.87 and 0.82, respectively). In contrast, the proportion of MeHg, a proxy for methylation potential, was best explained by the carbon to nitrogen ratio suggesting the importance of terrigenous organic matter as labile substrate for Hg methylation in this system. Metagenomic analysis of Hg-methylating communities based on the hgcA functional gene marker indicated an abundance of methanogens, sulfate reducers and fermenters, suggesting that these metabolic guilds may be primary Hg methylators in these surface sediments. We propose that RoR pondages act as traps for sediments, organic matter and Hg, and that this retention can be amplified by other disturbances of the watershed such as forest fire and logging. RoR flooded sites can be conducive to Hg methylation in sediments and may act as gateways for bioaccumulation and biomagnification of MeHg along food webs, particularly in disturbed watersheds.
Collapse
Affiliation(s)
- L Millera Ferriz
- Département de sciences biologiques, Université de Montréal, Montreal H2V 2S9, QC, Canada; Biology Department, Concordia University, Montreal H4B 1R6, QC, Canada; GRIL, Groupe de Recherche Interuniversitaire en Limnologie, Département de sciences biologiques, Université de Montréal, Campus MIL, Montreal H3C 3J7, QC, Canada
| | - D E Ponton
- Département de sciences biologiques, Université de Montréal, Montreal H2V 2S9, QC, Canada; GRIL, Groupe de Recherche Interuniversitaire en Limnologie, Département de sciences biologiques, Université de Montréal, Campus MIL, Montreal H3C 3J7, QC, Canada
| | - V Storck
- Département de sciences biologiques, Université de Montréal, Montreal H2V 2S9, QC, Canada; Biology Department, Concordia University, Montreal H4B 1R6, QC, Canada
| | - M Leclerc
- Département de sciences biologiques, Université de Montréal, Montreal H2V 2S9, QC, Canada; GRIL, Groupe de Recherche Interuniversitaire en Limnologie, Département de sciences biologiques, Université de Montréal, Campus MIL, Montreal H3C 3J7, QC, Canada
| | - F Bilodeau
- Hydro-Québec Production, Environment Department, Montreal, QC, Canada
| | - D A Walsh
- Biology Department, Concordia University, Montreal H4B 1R6, QC, Canada; GRIL, Groupe de Recherche Interuniversitaire en Limnologie, Département de sciences biologiques, Université de Montréal, Campus MIL, Montreal H3C 3J7, QC, Canada
| | - M Amyot
- Département de sciences biologiques, Université de Montréal, Montreal H2V 2S9, QC, Canada; GRIL, Groupe de Recherche Interuniversitaire en Limnologie, Département de sciences biologiques, Université de Montréal, Campus MIL, Montreal H3C 3J7, QC, Canada.
| |
Collapse
|
19
|
Song W, Xiong H, Qi R, Wang S, Yang Y. Effect of salinity and algae biomass on mercury cycling genes and bacterial communities in sediments under mercury contamination: Implications of the mercury cycle in arid regions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116141. [PMID: 33290948 DOI: 10.1016/j.envpol.2020.116141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/22/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Lakes in arid regions are experiencing mercury pollution via air deposition and surface runoff, posing a threat to ecosystem safety and human health. Furthermore, salinity and organic matter input could influence the mercury cycle and composition of bacterial communities in the sediment. In this study, the effects of salinity and algae biomass as an important organic matter on the genes (merA and hgcA) involved in the mercury cycle under mercury contamination were investigated. Archaeal merA and hgcA were not detected in sediments of lake microcosms, indicating that bacteria rather than archaea played a crucial role in mercury reduction and methylation. The high content of mercury (300 ng g-1) could reduce the abundance of both merA and hgcA. The effects of salinity and algae biomass on mercury cycling genes depended on the gene type and dose. A higher input of algae biomass (250 mg L-1) led to an increase of merA abundance, but a decrease of hgcA abundance. All high inputs of mercury, salinity, and algae biomass decreased the richness and diversity of bacterial communities in sediment. Further analysis indicated that higher mercury (300 ng g-1) led to an increased relative abundance of mercury methylators, such as Ruminococcaceae, Bacteroidaceae, and Veillonellaceae. Under saline conditions (10 and 30 g L-1), the richness of specific bacteria associated with mercury reduction (Halomonadaceae) and methylation (Syntrophomonadaceae) increased compared to the control. The input of algae biomass led to an increase in the specific bacterial communities associated with the mercury cycle and the richness of bacteria involved in the decomposition of organic matter. These results provide insight into mercury cycle-related genes and bacterial communities in the sediments of lakes in arid regions.
Collapse
Affiliation(s)
- Wenjuan Song
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Heigang Xiong
- College of Applied Arts and Science of Beijing Union University, Beijing, 100191, China
| | - Ran Qi
- Command Center of Comprehensive Natural Resources Survey, China Geological Survey, Beijing, 100055, China; Institute of Geological Survey, China University of Geosciences, Wuhan, 430074, China
| | - Shuzhi Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
20
|
Iordache AM, Nechita C, Pluhacek T, Iordache M, Zgavarogea R, Ionete RE. Past and present anthropic environmental stress reflect high susceptibility of natural freshwater ecosystems in Romania. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115505. [PMID: 32892015 DOI: 10.1016/j.envpol.2020.115505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
The concentrations of twelve heavy metals and trace elements (Cr, Mn, Co, Ni, Cu, As, Cd, Pb, Hg, Zn, Fe, and Al) in bed sediment and river freshwater that received sewage discharge, industrial wastewater inputs and mining residue were discussed. Spatial distribution, intra-annual trends and diffuse flux in 2019 in the middle and lower reaches of Olt River Basin (ORB) were investigated using inductively coupled mass spectrometry (ICP-MS) and atomic absorption spectroscopy (AAS). We applied correlation and principal component analysis (PCA) to quantify metal distribution relationship within environmental factors (pH, air temperature) and organic matter existing in the ORB. Moreover, the 87Sr/86Sr and 206Pb/207Pb isotope ratios analysis was employed to conclude the possible origin of the contamination. PCA analysis categorized metal presence in the four-component model, which explains 91% (May), 92% (July) and 93% (September) of the variance and indicates the potential origins of pollutants. The HCA and correlation analysis emphasized the relationship between trace elements, heavy metals in water and sediments and physicochemical characteristics of water. It was observed a high discrepancy in metal distribution between riverbed sediments and water body. In September, correlation indices highlighted sparse positive relationship with trace elements in water and mainly negative correlation values with trace elements from sediments. The origin of pollutants in sediments and water appear to be both natural and human-related activities. In all seasons increased the total exchangeable concentration of Ni, Cu and Zn in the sediments downstream sewage treatment plants and upstream of dams. The consideration of environmental factors and physicochemical characteristics of water is required to develop strategies for pollution management, assessment and mitigation in the actual condition of climate change. This study evaluated the heavy metals pollution in the Olt River Basin over three periods in 2019 under human-induced changes.
Collapse
Affiliation(s)
- Andreea Maria Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI Rm, Valcea, 4 Uzinei Street, 240050, Rm. Valcea, Valcea, Romania
| | - Constantin Nechita
- National Research and Development Institute for Forestry "Marin Drăcea" Calea Bucovinei, 73 Bis, 725100, Câmpulung Moldovenesc, Romania.
| | - Tomas Pluhacek
- Department of Analytical Chemistry, Faculty of Science, Palacky University, 17 Listopadu 12, Olomouc, CZ-771 46, Czech Republic
| | - Mihaela Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI Rm, Valcea, 4 Uzinei Street, 240050, Rm. Valcea, Valcea, Romania
| | - Ramona Zgavarogea
- National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI Rm, Valcea, 4 Uzinei Street, 240050, Rm. Valcea, Valcea, Romania
| | - Roxana Elena Ionete
- National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI Rm, Valcea, 4 Uzinei Street, 240050, Rm. Valcea, Valcea, Romania
| |
Collapse
|
21
|
Capo E, Bravo AG, Soerensen AL, Bertilsson S, Pinhassi J, Feng C, Andersson AF, Buck M, Björn E. Deltaproteobacteria and Spirochaetes-Like Bacteria Are Abundant Putative Mercury Methylators in Oxygen-Deficient Water and Marine Particles in the Baltic Sea. Front Microbiol 2020; 11:574080. [PMID: 33072037 PMCID: PMC7536318 DOI: 10.3389/fmicb.2020.574080] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
Methylmercury (MeHg), a neurotoxic compound biomagnifying in aquatic food webs, can be a threat to human health via fish consumption. However, the composition and distribution of the microbial communities mediating the methylation of mercury (Hg) to MeHg in marine systems remain largely unknown. In order to fill this knowledge gap, we used the Baltic Sea Reference Metagenome (BARM) dataset to study the abundance and distribution of the genes involved in Hg methylation (the hgcAB gene cluster). We determined the relative abundance of the hgcAB genes and their taxonomic identity in 81 brackish metagenomes that cover spatial, seasonal and redox variability in the Baltic Sea water column. The hgcAB genes were predominantly detected in anoxic water, but some hgcAB genes were also detected in hypoxic and normoxic waters. Phylogenetic analysis identified putative Hg methylators within Deltaproteobacteria, in oxygen-deficient water layers, but also Spirochaetes-like and Kiritimatiellaeota-like bacteria. Higher relative quantities of hgcAB genes were found in metagenomes from marine particles compared to free-living communities in anoxic water, suggesting that such particles are hotspot habitats for Hg methylators in oxygen-depleted seawater. Altogether, our work unveils the diversity of the microorganisms with the potential to mediate MeHg production in the Baltic Sea and pinpoint the important ecological niches for these microorganisms within the marine water column.
Collapse
Affiliation(s)
- Eric Capo
- Department of Chemistry, Umeå University, Umeå, Sweden.,Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Andrea G Bravo
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Anne L Soerensen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Stockholm, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Caiyan Feng
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Anders F Andersson
- Department of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
22
|
McDaniel EA, Peterson BD, Stevens SLR, Tran PQ, Anantharaman K, McMahon KD. Expanded Phylogenetic Diversity and Metabolic Flexibility of Mercury-Methylating Microorganisms. mSystems 2020; 5:e00299-20. [PMID: 32817383 PMCID: PMC7438021 DOI: 10.1128/msystems.00299-20] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/29/2020] [Indexed: 11/23/2022] Open
Abstract
Methylmercury is a potent bioaccumulating neurotoxin that is produced by specific microorganisms that methylate inorganic mercury. Methylmercury production in diverse anaerobic bacteria and archaea was recently linked to the hgcAB genes. However, the full phylogenetic and metabolic diversity of mercury-methylating microorganisms has not been fully unraveled due to the limited number of cultured experimentally verified methylators and the limitations of primer-based molecular methods. Here, we describe the phylogenetic diversity and metabolic flexibility of putative mercury-methylating microorganisms by hgcAB identification in publicly available isolate genomes and metagenome-assembled genomes (MAGs) as well as novel freshwater MAGs. We demonstrate that putative mercury methylators are much more phylogenetically diverse than previously known and that hgcAB distribution among genomes is most likely due to several independent horizontal gene transfer events. The microorganisms we identified possess diverse metabolic capabilities spanning carbon fixation, sulfate reduction, nitrogen fixation, and metal resistance pathways. We identified 111 putative mercury methylators in a set of previously published permafrost metatranscriptomes and demonstrated that different methylating taxa may contribute to hgcA expression at different depths. Overall, we provide a framework for illuminating the microbial basis of mercury methylation using genome-resolved metagenomics and metatranscriptomics to identify putative methylators based upon hgcAB presence and describe their putative functions in the environment.IMPORTANCE Accurately assessing the production of bioaccumulative neurotoxic methylmercury by characterizing the phylogenetic diversity, metabolic functions, and activity of methylators in the environment is crucial for understanding constraints on the mercury cycle. Much of our understanding of methylmercury production is based on cultured anaerobic microorganisms within the Deltaproteobacteria, Firmicutes, and Euryarchaeota. Advances in next-generation sequencing technologies have enabled large-scale cultivation-independent surveys of diverse and poorly characterized microorganisms from numerous ecosystems. We used genome-resolved metagenomics and metatranscriptomics to highlight the vast phylogenetic and metabolic diversity of putative mercury methylators and their depth-discrete activities in thawing permafrost. This work underscores the importance of using genome-resolved metagenomics to survey specific putative methylating populations of a given mercury-impacted ecosystem.
Collapse
Affiliation(s)
- Elizabeth A McDaniel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin D Peterson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sarah L R Stevens
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- American Family Insurance Data Science Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Zhao L, Meng B, Feng X. Mercury methylation in rice paddy and accumulation in rice plant: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110462. [PMID: 32179234 DOI: 10.1016/j.ecoenv.2020.110462] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
The bioavailability and toxicity of mercury (Hg) are dependent on its chemical speciation, in which methylmercury (MeHg) is the most toxic compound. Inorganic Hg can be transformed into MeHg in anaerobic conditions. Subsequent accumulation and biomagnification in the food chain pose a potential threat to human health. Previous studies have confirmed that paddy soil is an important site for MeHg production, and rice fields are an important source of MeHg in terrestrial ecosystems. Rice (Oryza sativa L.) is recently confirmed as a potential bioaccumulator plant of MeHg. Understanding the behaviour of Hg in rice paddies is important, particularly the mechanisms involved in Hg sources, uptake, toxicity, detoxification, and accumulation in crops. This review highlights the issue of MeHg-contaminated rice, and presents the current understanding of the Hg cycling in the rice paddy ecosystem, including the mechanism and processes of Hg species accumulation in rice plants and Hg methylation/demethylation processes in rice paddies and the primary controlling factors. The review also identified various research gaps in previous studies and proposes future research objectives to reduce the impact of Hg-contamination in rice crops.
Collapse
Affiliation(s)
- Lei Zhao
- School of Management Science, Guizhou University of Finance and Economics, Guiyang, 550025, PR China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, PR China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, PR China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, PR China.
| |
Collapse
|
24
|
Bravo AG, Cosio C. Biotic formation of methylmercury: A bio-physico-chemical conundrum. LIMNOLOGY AND OCEANOGRAPHY 2020; 65:1010-1027. [PMID: 32612306 PMCID: PMC7319479 DOI: 10.1002/lno.11366] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 05/11/2023]
Abstract
Mercury (Hg) is a natural and widespread trace metal, but is considered a priority pollutant, particularly its organic form methylmercury (MMHg), because of human's exposure to MMHg through fish consumption. Pioneering studies showed the methylation of divalent Hg (HgII) to MMHg to occur under oxygen-limited conditions and to depend on the activity of anaerobic microorganisms. Recent studies identified the hgcAB gene cluster in microorganisms with the capacity to methylate HgII and unveiled a much wider range of species and environmental conditions producing MMHg than previously expected. Here, we review the recent knowledge and approaches used to understand HgII-methylation, microbial biodiversity and activity involved in these processes, and we highlight the current limits for predicting MMHg concentrations in the environment. The available data unveil the fact that HgII methylation is a bio-physico-chemical conundrum in which the efficiency of biological HgII methylation appears to depend chiefly on HgII and nutrients availability, the abundance of electron acceptors such as sulfate or iron, the abundance and composition of organic matter as well as the activity and structure of the microbial community. An increased knowledge of the relationship between microbial community composition, physico-chemical conditions, MMHg production, and demethylation is necessary to predict variability in MMHg concentrations across environments.
Collapse
Affiliation(s)
- Andrea G. Bravo
- Department of Marine Biology and Oceanography, Institute of Marine SciencesSpanish National Research Council (CSIC)BarcelonaSpain
| | - Claudia Cosio
- Université de Reims Champagne Ardennes, UMR‐I 02 INERIS‐URCA‐ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiquesReimsFrance
| |
Collapse
|
25
|
Inorganic Mercury and Methyl-Mercury Uptake and Effects in the Aquatic Plant Elodea nuttallii: A Review of Multi-Omic Data in the Field and in Controlled Conditions. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
(1) Background: Mercury is a threat for the aquatic environment. Nonetheless, the entrance of Hg into food webs is not fully understood. Macrophytes are both central for Hg entry in food webs and are seen as good candidates for biomonitoring and bioremediation; (2) Methods: We review the knowledge gained on the uptake and effects of inorganic Hg (IHg) and methyl-Hg (MMHg) in the macrophyte Elodea nuttallii found in temperate freshwaters; (3) Results: E. nuttallii bioaccumulates IHg and MMHg, but IHg shows a higher affinity to cell walls. At the individual level, IHg reduced chlorophyll, while MMHg increased anthocyanin. Transcriptomics and metabolomics in shoots revealed that MMHg regulated a higher number of genes than IHg. Proteomics and metabolomics in cytosol revealed that IHg had more effect than MMHg; (4) Conclusions: MMHg and IHg show different cellular toxicity pathways. MMHg’s main impact appears on the non-soluble compartment, while IHg’s main impact happens on the soluble compartment. This is congruent with the higher affinity of IHg with dissolved OM (DOM) or cell walls. E. nuttallii is promising for biomonitoring, as its uptake and molecular responses reflect exposure to IHg and MMHg. More generally, multi-omics approaches identify cellular toxicity pathways and the early impact of sublethal pollution.
Collapse
|
26
|
Influence of Macrophyte and Gut Microbiota on Mercury Contamination in Fish: A Microcosms Study. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The freshwater lakes of southwestern France are subject to the development of invasive macrophytes which are associated with mercury (Hg) contamination of the food web. The aim of this study was to determine the bioavailability of methylmercury (MeHg) produced by plant roots in aquatic ecosystems. A microcosm experiment was performed using isotopically enriched inorganic Hg at environmental concentrations (1 µg 199IHg·L−1). For all conditions, total Hg in fish as well as Hg species associated with different compartments (water, sediments, plant roots, fish) were analyzed by gas chromatography-inductively coupled plasma-mass spectrometry (GC-ICP-MS). In addition, sediment, plants, and fish gut microbiota were studied by MiSEQ sequencing. Some strains were isolated and tested for their ability to methylate Hg. The results revealed 199MeHg production in plant roots and the presence of this form in fish (tissues and gut), highlighting a MeHg trophic transfer. Moreover, methylator bacteria were identified from the gut contents of the fish when they were in the presence of plants. Some of them were related to bacteria found in the plant roots. On the basis of these results, the transfer of MeHg and bacteria from plants to fish is highlighted; in addition, Hg methylation is strongly suspected in the fish gut, potentially increasing the Hg bioaccumulation.
Collapse
|
27
|
Liu YR, Yang Z, Zhou X, Qu X, Li Z, Zhong H. Overlooked Role of Putative Non-Hg Methylators in Predicting Methylmercury Production in Paddy Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12330-12338. [PMID: 31603332 DOI: 10.1021/acs.est.9b03013] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rice ingestion has been recognized as an important route of dietary exposure to neurotoxic methylmercury (MeHg) that is commonly synthesized in rice paddy soils. Although Hg methylators are known to regulate soil MeHg formation, the effect of non-Hg methylating communities on MeHg production remains unclear. Here, we collected 141 paddy soil samples from main rice-producing areas across China to identify associations between bacterial community composition (including both Hg and putative non-Hg methylators) and MeHg production. Results showed that the MeHg content in the paddy soils varied from 0.11 to 8.36 ng g-1 at a national spatial scale, which could be due to the shifts of soil microbial community composition across different areas. Our structure equation modeling suggested a strong link between bacterial community composition and MeHg content and %MeHg. More importantly, random forest analyses suggested a more significant role of putative non-Hg methylators than Hg methylators in predicting variations of soil MeHg content. The relative abundance of putative non-Hg methylators such as unclassified Xanthomonadales and Chitinophagaceae were strongly correlated with soil MeHg contents. Further, microbial network analysis revealed strong co-occurrence patterns between the putative non-Hg and Hg methylators. These findings highlight an overlooked role of non-Hg methylating communities in predicting MeHg production in paddy soils.
Collapse
Affiliation(s)
| | - Ziming Yang
- Department of Chemistry , Oakland University , Rochester , Michigan 48309 , United States
| | | | | | - Zizhu Li
- School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Huan Zhong
- School of the Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
28
|
Christensen GA, Gionfriddo CM, King AJ, Moberly JG, Miller CL, Somenahally AC, Callister SJ, Brewer H, Podar M, Brown SD, Palumbo AV, Brandt CC, Wymore AM, Brooks SC, Hwang C, Fields MW, Wall JD, Gilmour CC, Elias DA. Determining the Reliability of Measuring Mercury Cycling Gene Abundance with Correlations with Mercury and Methylmercury Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8649-8663. [PMID: 31260289 DOI: 10.1021/acs.est.8b06389] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Methylmercury (MeHg) is a bioaccumulative toxic contaminant in many ecosystems, but factors governing its production are poorly understood. Recent work has shown that the anaerobic microbial conversion of mercury (Hg) to MeHg requires the Hg-methylation genes hgcAB and that these genes can be used as biomarkers in PCR-based estimators of Hg-methylator abundance. In an effort to determine reliable methods for assessing hgcA abundance and diversity and linking them to MeHg concentrations, multiple approaches were compared including metagenomic shotgun sequencing, 16S rRNA gene pyrosequencing and cloning/sequencing hgcAB gene products. Hg-methylator abundance was also determined by quantitative hgcA qPCR amplification and metaproteomics for comparison to the above measurements. Samples from eight sites were examined covering a range of total Hg (HgT; 0.03-14 mg kg-1 dry wt. soil) and MeHg (0.05-27 μg kg-1 dry wt. soil) concentrations. In the metagenome and amplicon sequencing of hgcAB diversity, the Deltaproteobacteria were the dominant Hg-methylators while Firmicutes and methanogenic Archaea were typically ∼50% less abundant. This was consistent with metaproteomics estimates where the Deltaproteobacteria were steadily higher. The 16S rRNA gene pyrosequencing did not have sufficient resolution to identify hgcAB+ species. Metagenomic and hgcAB results were similar for Hg-methylator diversity and clade-specific qPCR-based approaches for hgcA are only appropriate when comparing the abundance of a particular clade across various samples. Weak correlations between Hg-methylating bacteria and soil Hg concentrations were observed for similar environmental samples, but overall total Hg and MeHg concentrations poorly correlated with Hg-cycling genes.
Collapse
Affiliation(s)
- Geoff A Christensen
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Caitlin M Gionfriddo
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Andrew J King
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - James G Moberly
- College of Engineering , University of Idaho , Moscow , Idaho 83844 , United States
| | - Carrie L Miller
- School of Theoretical and Applied Science , Ramapo College of New Jersey , Mahwah , New Jersey 07430 , United States
| | - Anil C Somenahally
- Department of Soil and Crop Sciences , Texas A&M University , Overton , Texas 77843-2474 , United States
| | - Stephen J Callister
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Heather Brewer
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Mircea Podar
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Steven D Brown
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Anthony V Palumbo
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Craig C Brandt
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Ann M Wymore
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Scott C Brooks
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
| | - Chiachi Hwang
- Center for Biofilm Engineering , Montana State University , Bozeman , Montana 59717 , United States
| | - Matthew W Fields
- Department of Microbiology and Immunology , Montana State University , Bozeman , Montana 59717 , United States
- Center for Biofilm Engineering , Montana State University , Bozeman , Montana 59717 , United States
| | - Judy D Wall
- Department of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| | - Cynthia C Gilmour
- Smithsonian Environmental Research Center , Edgewater , Maryland 21037 , United States
| | - Dwayne A Elias
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| |
Collapse
|
29
|
Jones DS, Walker GM, Johnson NW, Mitchell CPJ, Coleman Wasik JK, Bailey JV. Molecular evidence for novel mercury methylating microorganisms in sulfate-impacted lakes. ISME JOURNAL 2019; 13:1659-1675. [PMID: 30809010 DOI: 10.1038/s41396-019-0376-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/02/2019] [Accepted: 02/08/2019] [Indexed: 11/09/2022]
Abstract
Methylmercury (MeHg) is a bioaccumulative neurotoxin that is produced by certain anaerobic microorganisms, but the abundance and importance of different methylating populations in the environment is not well understood. We combined mercury geochemistry, hgcA gene cloning, rRNA methods, and metagenomics to compare microbial communities associated with MeHg production in two sulfate-impacted lakes on Minnesota's Mesabi Iron Range. The two lakes represent regional endmembers among sulfate-impacted sites in terms of their dissolved sulfide concentrations and MeHg production potential. rRNA amplicon sequencing indicates that sediments and anoxic bottom waters from both lakes contained diverse communities with multiple clades of sulfate reducing Deltaproteobacteria and Clostridia. In hgcA gene clone libraries, however, hgcA sequences were from taxa associated with methanogenesis and iron reduction in addition to sulfate reduction, and the most abundant clones were from unknown groups. We therefore applied metagenomics to identify the unknown populations in the lakes with the capability to methylate mercury, and reconstructed 27 genomic bins with hgcA. Some of the most abundant potential methylating populations were from phyla that are not typically associated with MeHg production, including a relative of the Aminicenantes (formerly candidate phylum OP8) and members of the Kiritimatiellaeota (PVC superphylum) and Spirochaetes that, together, were more than 50% of the potential methylators in some samples. These populations do not have genes for sulfate reduction, and likely degrade organic compounds by fermentation or other anaerobic processes. Our results indicate that previously unrecognized populations with hgcAB are abundant and may be important for MeHg production in some freshwater ecosystems.
Collapse
Affiliation(s)
- Daniel S Jones
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA. .,Department of Earth Sciences, University of Minnesota, Minneapolis, MN, USA. .,Dept. of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, NM, USA.
| | - Gabriel M Walker
- Department of Earth Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Nathan W Johnson
- Department of Civil Engineering, University of Minnesota Duluth, Duluth, MN, USA
| | - Carl P J Mitchell
- Department of Physical and Environmental Sciences, University of Toronto - Scarborough, Toronto, ON, Canada
| | - Jill K Coleman Wasik
- Department of Plant and Earth Science, University of Wisconsin River Falls, River Falls, WI, USA
| | - Jake V Bailey
- Department of Earth Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
30
|
Mercury methylating microbial communities of boreal forest soils. Sci Rep 2019; 9:518. [PMID: 30679728 PMCID: PMC6345997 DOI: 10.1038/s41598-018-37383-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/29/2018] [Indexed: 02/05/2023] Open
Abstract
The formation of the potent neurotoxic methylmercury (MeHg) is a microbially mediated process that has raised much concern because MeHg poses threats to wildlife and human health. Since boreal forest soils can be a source of MeHg in aquatic networks, it is crucial to understand the biogeochemical processes involved in the formation of this pollutant. High-throughput sequencing of 16S rRNA and the mercury methyltransferase, hgcA, combined with geochemical characterisation of soils, were used to determine the microbial populations contributing to MeHg formation in forest soils across Sweden. The hgcA sequences obtained were distributed among diverse clades, including Proteobacteria, Firmicutes, and Methanomicrobia, with Deltaproteobacteria, particularly Geobacteraceae, dominating the libraries across all soils examined. Our results also suggest that MeHg formation is also linked to the composition of non-mercury methylating bacterial communities, likely providing growth substrate (e.g. acetate) for the hgcA-carrying microorganisms responsible for the actual methylation process. While previous research focused on mercury methylating microbial communities of wetlands, this study provides some first insights into the diversity of mercury methylating microorganisms in boreal forest soils.
Collapse
|
31
|
Regnell O, Watras CJ. Microbial Mercury Methylation in Aquatic Environments: A Critical Review of Published Field and Laboratory Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4-19. [PMID: 30525497 DOI: 10.1021/acs.est.8b02709] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Methylmercury (MeHg) is an environmental contaminant of concern because it biomagnifies in aquatic food webs and poses a health hazard to aquatic biota, piscivorous wildlife and humans. The dominant source of MeHg to freshwater systems is the methylation of inorganic Hg (IHg) by anaerobic microorganisms; and it is widely agreed that in situ rates of Hg methylation depend on two general factors: the activity of Hg methylators and their uptake of IHg. A large body of research has focused on the biogeochemical processes that regulate these two factors in nature; and studies conducted within the past ten years have made substantial progress in identifying the genetic basis for intracellular methylation and defining the processes that govern the cellular uptake of IHg. Current evidence indicates that all Hg methylating anaerobes possess the gene pair hgcAB that encodes proteins essential for Hg methylation. These genes are found in a large variety of anaerobes, including iron reducers and methanogens; but sulfate reduction is the metabolic process most often reported to show strong links to MeHg production. The uptake of Hg substrate prior to methylation may occur by passive or active transport, or by a combination of both. Competitive inhibition of Hg uptake by Zn speaks in favor of active transport and suggests that essential metal transporters are involved. Shortly after its formation, MeHg is typically released from cells, but the efflux mechanisms are unknown. Although methylation facilitates Hg depuration from the cell, evidence suggests that the hgcAB genes are not induced or favored by Hg contamination. Instead, high MeHg production can be linked to high Hg bioavailability as a result of the formation of Hg(SH)2, HgS nanoparticles, and Hg-thiol complexes. It is also possible that sulfidic conditions require strong essential metal uptake systems that inadvertently bring Hg into the cytoplasm of Hg methylating microbes. In comparison with freshwaters, Hg methylation in open ocean waters appears less restricted to anoxic environments. It does seem to occur mainly in oxygen deficient zones (ODZs), and possibly within anaerobic microzones of settling organic matter, but MeHg (CH3Hg+) and Me2Hg ((CH3)2Hg) have been shown to form also in surface water samples from the euphotic zone. Future studies may disclose whether several different pathways lead to Hg methylation in marine waters and explain why Me2Hg is a significant Hg species in oceans but seemingly not in most freshwaters.
Collapse
Affiliation(s)
- Olof Regnell
- Department of Biology/Aquatic Ecology , Lund University , SE-223 62 Lund , Sweden
| | - Carl J Watras
- Bureau of Water Quality , Wisconsin Department of Natural Resources , Madison , Wisconsin 53703 , United States
- Center for Limnology , University of Wisconsin-Madison , 3110 Trout Lake Station Drive , Boulder Junction , Wisconsin 54512 , United States
| |
Collapse
|
32
|
Liu YR, Johs A, Bi L, Lu X, Hu HW, Sun D, He JZ, Gu B. Unraveling Microbial Communities Associated with Methylmercury Production in Paddy Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13110-13118. [PMID: 30335986 DOI: 10.1021/acs.est.8b03052] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Rice consumption is now recognized as an important pathway of human exposure to the neurotoxin methylmercury (MeHg), particularly in countries where rice is a staple food. Although the discovery of a two-gene cluster hgcAB has linked Hg methylation to several phylogenetically diverse groups of anaerobic microorganisms converting inorganic mercury (Hg) to MeHg, the prevalence and diversity of Hg methylators in microbial communities of rice paddy soils remain unclear. We characterized the abundance and distribution of hgcAB genes using third-generation PacBio long-read sequencing and Illumina short-read metagenomic sequencing, in combination with quantitative PCR analyses in several mine-impacted paddy soils from southwest China. Both Illumina and PacBio sequencing analyses revealed that Hg methylating communities were dominated by iron-reducing bacteria (i.e., Geobacter) and methanogens, with a relatively low abundance of hgcA + sulfate-reducing bacteria in the soil. A positive correlation was observed between the MeHg content in soil and the relative abundance of Geobacter carrying the hgcA gene. Phylogenetic analysis also uncovered some hgcAB sequences closely related to three novel Hg methylators, Geobacter anodireducens, Desulfuromonas sp. DDH964, and Desulfovibrio sp. J2, among which G. anodireducens was validated for its ability to methylate Hg. These findings shed new light on microbial community composition and major clades likely driving Hg methylation in rice paddy soils.
Collapse
Affiliation(s)
- Yu-Rong Liu
- State Key Laboratory of Urban and Regional Ecology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing Shi 100085 , China
| | - Alexander Johs
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Li Bi
- State Key Laboratory of Urban and Regional Ecology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing Shi 100085 , China
| | - Xia Lu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Hang-Wei Hu
- Department of Veterinary and Agricultural Sciences , The University of Melbourne , Melbourne , Victoria 3004 , Australia
| | - Dan Sun
- Ocean College , Zhejiang University , Zhejiang , 310058 , China
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing Shi 100085 , China
- Department of Veterinary and Agricultural Sciences , The University of Melbourne , Melbourne , Victoria 3004 , Australia
| | - Baohua Gu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- Department of Biosystems Engineering and Soil Science , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
33
|
Methanogens and Iron-Reducing Bacteria: the Overlooked Members of Mercury-Methylating Microbial Communities in Boreal Lakes. Appl Environ Microbiol 2018; 84:AEM.01774-18. [PMID: 30242005 PMCID: PMC6238055 DOI: 10.1128/aem.01774-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/15/2018] [Indexed: 12/28/2022] Open
Abstract
Despite the global awareness that mercury, and methylmercury in particular, is a neurotoxin to which millions of people continue to be exposed, there are sizable gaps in the understanding of the processes and organisms involved in methylmercury formation in aquatic ecosystems. In the present study, we shed light on the diversity of the microorganisms responsible for methylmercury formation in boreal lake sediments. All the microorganisms identified are associated with the processing of organic matter in aquatic systems. Moreover, our results show that the well-known mercury-methylating sulfate-reducing bacteria constituted only a minor portion of the potential mercury methylators. In contrast, methanogens and iron-reducing bacteria were important contributors to methylmercury formation, highlighting their role in mercury cycling in the environment. Methylmercury is a potent human neurotoxin which biomagnifies in aquatic food webs. Although anaerobic microorganisms containing the hgcA gene potentially mediate the formation of methylmercury in natural environments, the diversity of these mercury-methylating microbial communities remains largely unexplored. Previous studies have implicated sulfate-reducing bacteria as the main mercury methylators in aquatic ecosystems. In the present study, we characterized the diversity of mercury-methylating microbial communities of boreal lake sediments using high-throughput sequencing of 16S rRNA and hgcA genes. Our results show that in the lake sediments, Methanomicrobiales and Geobacteraceae also represent abundant members of the mercury-methylating communities. In fact, incubation experiments with a mercury isotopic tracer and molybdate revealed that only between 38% and 45% of mercury methylation was attributed to sulfate reduction. These results suggest that methanogens and iron-reducing bacteria may contribute to more than half of the mercury methylation in boreal lakes. IMPORTANCE Despite the global awareness that mercury, and methylmercury in particular, is a neurotoxin to which millions of people continue to be exposed, there are sizable gaps in the understanding of the processes and organisms involved in methylmercury formation in aquatic ecosystems. In the present study, we shed light on the diversity of the microorganisms responsible for methylmercury formation in boreal lake sediments. All the microorganisms identified are associated with the processing of organic matter in aquatic systems. Moreover, our results show that the well-known mercury-methylating sulfate-reducing bacteria constituted only a minor portion of the potential mercury methylators. In contrast, methanogens and iron-reducing bacteria were important contributors to methylmercury formation, highlighting their role in mercury cycling in the environment.
Collapse
|
34
|
Molecular Effects of Inorganic and Methyl Mercury in Aquatic Primary Producers: Comparing Impact to A Macrophyte and A Green Microalga in Controlled Conditions. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8110393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mercury (Hg) remains hazardous in aquatic environments, because of its toxicity and high biomagnification in food webs. In phytoplankton and macrophytes, Hg compounds at high concentration have been reported to affect the growth, photosynthesis, and nutrient metabolism, as well as to induce oxidative stress and damage. Here, we reviewed the recent knowledge gained on cellular toxicity of inorganic and methyl Hg (IHg; MeHg) in aquatic primary producers at more relevant environmental concentrations, with a particular focus on omics data. In addition, we compared a case study conducted with transcriptomic on the green microalga Chlamydomonas reinhardtii and the macrophyte Elodea nuttallii. At lower concentrations, IHg and MeHg influenced similar gene categories, including energy metabolism, cell structure, and nutrition. In addition, genes involved in the cell motility in the microalgae, and in hormone metabolism in the macrophyte were regulated. At equivalent intracellular concentration, MeHg regulated more genes than IHg supporting a higher molecular impact of the former. At the organism level in C. reinhardtii, MeHg increased reactive oxygen species, while both IHg and MeHg increased photosynthesis efficiency, whereas in E. nuttallii MeHg induced anti-oxidant responses and IHg reduced chlorophyll content. Data showed differences, according to species and characteristics of life cycle, in responses at the gene and cellular levels, but evidenced a higher molecular impact of MeHg than IHg and different cellular toxicity pathways in aquatic primary producers.
Collapse
|
35
|
Abstract
Mercury (Hg) is a global pollutant emitted primarily as gaseous Hg0 that is deposited in aquatic and terrestrial ecosystems following its oxidation to HgII. From that point, microbes play a key role in determining Hg’s fate in the environment by participating in sequestration, oxidation, reduction, and methylation reactions. A wide diversity of chemotrophic and phototrophic microbes occupying oxic and anoxic habitats are known to participate directly in Hg cycling. Over the last few years, new findings have come to light that have greatly improved our mechanistic understanding of microbe-mediated Hg cycling pathways in the environment. In this review, we summarize recent advances in microbially mediated Hg cycling and take the opportunity to compare the relatively well-studied chemotrophic pathways to poorly understood phototrophic pathways. We present how the use of genomic and analytical tools can be used to understand Hg transformations and the physiological context of recently discovered cometabolic Hg transformations supported in anaerobes and phototrophs. Finally, we propose a conceptual framework that emphasizes the role that phototrophs play in environmental Hg redox cycling and the importance of better characterizing such pathways in the face of the environmental changes currently underway.
Collapse
Affiliation(s)
- Daniel S. Grégoire
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Alexandre J. Poulain
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
36
|
Bouchet S, Goñi-Urriza M, Monperrus M, Guyoneaud R, Fernandez P, Heredia C, Tessier E, Gassie C, Point D, Guédron S, Achá D, Amouroux D. Linking Microbial Activities and Low-Molecular-Weight Thiols to Hg Methylation in Biofilms and Periphyton from High-Altitude Tropical Lakes in the Bolivian Altiplano. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9758-9767. [PMID: 30037219 DOI: 10.1021/acs.est.8b01885] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The sources and factors controlling concentrations of monomethylmercury (MMHg) in aquatic ecosystems need to be better understood. Here, we investigated Hg transformations in sediments, periphyton associated with green algae's or aquatic plants, and benthic biofilms from the Lake Titicaca hydrosystem and compared them to the occurrence of active methylating microorganisms and extracellular Hg ligands. Intense Hg methylation was found in benthic biofilms and green algae's periphyton, while it remained low in sediments and aquatic plants' periphyton. Demethylation varied between compartments but remained overall in the same range. Hg methylation was mainly carried out by sulfate reducers, although methanogens also played a role. Its variability between compartments was first explained by the presence or absence of the hgcAB genes. Next, both benthic biofilm and green algae's periphyton exhibited a great diversity of extracellular low-molecular-weight (LMW) thiols (13 or 14 compounds) present at a range of a few nmol L-1 or μmol L-1 but clearly dominated by cysteine and 3-mercaptopropionic acid. Hg methylation was overall positively correlated to the total thiol concentrations, albeit to different extents according to the compartment and conditions. This work is the first examining the interplay between active methylating bacterial communities and extracellular ligands in heterotrophic biofilms and supports the involvement of LMW thiols in Hg methylation in real aquatic systems.
Collapse
Affiliation(s)
- Sylvain Bouchet
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
| | - Marisol Goñi-Urriza
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
| | - Mathilde Monperrus
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
| | - Rémy Guyoneaud
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
| | - Pablo Fernandez
- Unidad de Calidad Ambiental (UCA) , Instituto de Ecologia, Universidad Mayor de San Andres, Campus Universitario de Cota Cota , Calle 27 , 00000 La Paz , Bolivia
| | - Carlos Heredia
- Unidad de Calidad Ambiental (UCA) , Instituto de Ecologia, Universidad Mayor de San Andres, Campus Universitario de Cota Cota , Calle 27 , 00000 La Paz , Bolivia
| | - Emmanuel Tessier
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
| | - Claire Gassie
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
| | - David Point
- Unidad de Calidad Ambiental (UCA) , Instituto de Ecologia, Universidad Mayor de San Andres, Campus Universitario de Cota Cota , Calle 27 , 00000 La Paz , Bolivia
- Géosciences Environnement Toulouse, UMR5563, IRD UR 234 , Université Paul Sabatier , 14 Avenue Edouard Belin , 31400 Toulouse , France
| | - Stéphane Guédron
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre , 38000 Grenoble , France
- Laboratorio de Hidroquímica , Instituto de Investigaciones Químicas, Universidad Mayor de San Andrés, Campus Universitario de Cota-Cota , casilla 3161 , 00000 La Paz , Bolivia
| | - Dario Achá
- Unidad de Calidad Ambiental (UCA) , Instituto de Ecologia, Universidad Mayor de San Andres, Campus Universitario de Cota Cota , Calle 27 , 00000 La Paz , Bolivia
| | - David Amouroux
- CNRS/Univ Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , UMR5254, 64000 , Pau , France
- Unidad de Calidad Ambiental (UCA) , Instituto de Ecologia, Universidad Mayor de San Andres, Campus Universitario de Cota Cota , Calle 27 , 00000 La Paz , Bolivia
- Géosciences Environnement Toulouse, UMR5563, IRD UR 234 , Université Paul Sabatier , 14 Avenue Edouard Belin , 31400 Toulouse , France
| |
Collapse
|
37
|
Yang J, Takaoka M, Sano A, Matsuyama A, Yanase R. Vertical Distribution of Total Mercury and Mercury Methylation in a Landfill Site in Japan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061252. [PMID: 29899229 PMCID: PMC6025181 DOI: 10.3390/ijerph15061252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 11/25/2022]
Abstract
Mercury is a neurotoxin, with certain organic forms of the element being particularly harmful to humans. The Minamata Convention was adopted to reduce the intentional use and emission of mercury. Because mercury is an element, it cannot be decomposed. Mercury-containing products and mercury used for various processes will eventually enter the waste stream, and landfill sites will become a mercury sink. While landfill sites can be a source of mercury pollution, the behavior of mercury in solid waste within a landfill site is still not fully understood. The purpose of this study was to determine the depth profile of mercury, the levels of methyl mercury (MeHg), and the factors controlling methylation in an old landfill site that received waste for over 30 years. Three sampling cores were selected, and boring sampling was conducted to a maximum depth of 18 m, which reached the bottom layer of the landfill. Total mercury (THg) and MeHg were measured in the samples to determine the characteristics of mercury at different depths. Bacterial species were identified by 16S rRNA amplification and sequencing, because the methylation process is promoted by a series of genes. It was found that the THg concentration was 19–975 ng/g, with a geometric mean of 298 ng/g, which was slightly less than the 400 ng/g concentration recorded 30 years previously. In some samples, MeHg accounted for up to 15–20% of THg, which is far greater than the general level in soils and sediments, although the source of MeHg was unclear. The genetic data indicated that hgcA was present mostly in the upper and lower layers of the three cores, merA was almost as much as hgcA, while the level of merB was hundreds of times less than those of the other two genes. A significant correlation was found between THg and MeHg, as well as between MeHg and MeHg/THg. In addition, a negative correlation was found between THg and merA. The coexistence of the three genes indicated that both methylation and demethylation processes could occur, but the lack of merB was a barrier for demethylation.
Collapse
Affiliation(s)
- Jing Yang
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, C-kluster, Kyotodaigakukatsura, Nishikyo-ku, Kyoto 6158540, Japan.
| | - Masaki Takaoka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, C-kluster, Kyotodaigakukatsura, Nishikyo-ku, Kyoto 6158540, Japan.
- Graduate School of Global Environmental Studies, Kyoto University, C-kluster, Kyotodaigakukatsura, Nishikyo-ku, Kyoto 6158540, Japan.
| | - Akira Sano
- Graduate School of Global Environmental Studies, Kyoto University, C-kluster, Kyotodaigakukatsura, Nishikyo-ku, Kyoto 6158540, Japan.
| | - Akito Matsuyama
- National Institute for Minamata Disease, 4058-18 Hama, Minamata-City, Kumamoto 8670008, Japan.
| | - Ryuji Yanase
- Environmental Protection Center, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 8140180, Japan.
| |
Collapse
|
38
|
Liu X, Ma A, Zhuang G, Zhuang X. Diversity of microbial communities potentially involved in mercury methylation in rice paddies surrounding typical mercury mining areas in China. Microbiologyopen 2018. [PMID: 29527815 PMCID: PMC6079176 DOI: 10.1002/mbo3.577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mercury can be a serious hazard to human health, especially in paddy soils surrounding mining areas. In this study, mercury (Hg)‐methylating microbes with the potential biomarker gene hgcA were obtained from 45 paddy soil samples in mercury mining areas in Fenghuang, Wanshan, and Xunyang. In different areas, the abundance of the hgcA gene was affected by different environmental factors, including organic matter, pH, total carbon content, total nitrogen content, and total mercury content. Phylogenetic analysis showed that hgcA microbes in paddy soils were potentially members of the phyla Proteobacteria, Euryarchaeota, Chloroflexi, and two unnamed groups. Canonical correspondence analysis showed that pH and organic matter impacted the hgcA gene diversity and the microbial community structures in paddy soils. The identification of Hg‐methylating microbes may be crucial for understanding mercury methylation/demethylation processes, which would be helpful in assessing the risk of methylmercury contamination in the food chain.
Collapse
Affiliation(s)
- Xin Liu
- University of Sciences and Technology of China, Hefei, China.,CAS, Research Center for Eco-Environmental Sciences, Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, China
| | - Anzhou Ma
- CAS, Research Center for Eco-Environmental Sciences, Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Zhuang
- CAS, Research Center for Eco-Environmental Sciences, Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xuliang Zhuang
- CAS, Research Center for Eco-Environmental Sciences, Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Bravo AG, Zopfi J, Buck M, Xu J, Bertilsson S, Schaefer JK, Poté J, Cosio C. Geobacteraceae are important members of mercury-methylating microbial communities of sediments impacted by waste water releases. ISME JOURNAL 2018; 12:802-812. [PMID: 29321692 PMCID: PMC5864163 DOI: 10.1038/s41396-017-0007-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/29/2017] [Accepted: 10/18/2017] [Indexed: 11/16/2022]
Abstract
Microbial mercury (Hg) methylation in sediments can result in bioaccumulation of the neurotoxin methylmercury (MMHg) in aquatic food webs. Recently, the discovery of the gene hgcA, required for Hg methylation, revealed that the diversity of Hg methylators is much broader than previously thought. However, little is known about the identity of Hg-methylating microbial organisms and the environmental factors controlling their activity and distribution in lakes. Here, we combined high-throughput sequencing of 16S rRNA and hgcA genes with the chemical characterization of sediments impacted by a waste water treatment plant that releases significant amounts of organic matter and iron. Our results highlight that the ferruginous geochemical conditions prevailing at 1–2 cm depth are conducive to MMHg formation and that the Hg-methylating guild is composed of iron and sulfur-transforming bacteria, syntrophs, and methanogens. Deltaproteobacteria, notably Geobacteraceae, dominated the hgcA carrying communities, while sulfate reducers constituted only a minor component, despite being considered the main Hg methylators in many anoxic aquatic environments. Because iron is widely applied in waste water treatment, the importance of Geobacteraceae for Hg methylation and the complexity of Hg-methylating communities reported here are likely to occur worldwide in sediments impacted by waste water treatment plant discharges and in iron-rich sediments in general.
Collapse
Affiliation(s)
- Andrea G Bravo
- Limnology and Science for Life Laboratory, Uppsala University, Uppsala, SE-75236, Sweden
| | - Jakob Zopfi
- Aquatic and Stable Isotope Biogeochemistry, University of Basel, Basel, CH-4056, Switzerland
| | - Moritz Buck
- Limnology and Science for Life Laboratory, Uppsala University, Uppsala, SE-75236, Sweden
| | - Jingying Xu
- Limnology and Science for Life Laboratory, Uppsala University, Uppsala, SE-75236, Sweden
| | - Stefan Bertilsson
- Limnology and Science for Life Laboratory, Uppsala University, Uppsala, SE-75236, Sweden
| | - Jeffra K Schaefer
- Environmental Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - John Poté
- Environmental Biogeochemistry and Ecotoxicology, University of Geneva, Geneva, CH-1205, Switzerland
| | - Claudia Cosio
- Environmental Biogeochemistry and Ecotoxicology, University of Geneva, Geneva, CH-1205, Switzerland. .,Unité Stress Environnementaux et BIOSurveillance des Milieux Aquatiques UMR-I 02 (SEBIO), Université de Reims Champagne Ardenne, Reims, F-51687, France.
| |
Collapse
|
40
|
Dranguet P, Cosio C, Le Faucheur S, Beauvais-Flück R, Freiburghaus A, Worms IAM, Petit B, Civic N, Docquier M, Slaveykova VI. Transcriptomic approach for assessment of the impact on microalga and macrophyte of in-situ exposure in river sites contaminated by chlor-alkali plant effluents. WATER RESEARCH 2017; 121:86-94. [PMID: 28521238 DOI: 10.1016/j.watres.2017.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Water quality degradation is a worldwide problem, but risk evaluation of chronic pollution in-situ is still a challenge. The present study aimed to evaluate the potential of transcriptomic analyses in representative aquatic primary producers to assess the impact of environmental pollution in-situ: the microalga Chlamydomonas reinhardtii and the macrophyte Elodea nuttallii were exposed 2 h in the Babeni Reservoir of the Olt River impacted by chlor-alkali plant effluent release resulting in increased concentrations of Hg and NaCl in receiving water. The response at the transcriptomic level was strong, resulting in up to 5485, and 8700 dysregulated genes (DG) for the microalga and for the macrophyte exposed in the most contaminated site, respectively. Transcriptomic response was congruent with the concentrations of Hg and NaCl in the water of the impacted reservoir. Genes involved in development, energy metabolism, lipid metabolism, nutrition, and RedOx homeostasis were dysregulated during in-situ exposure of both organisms. In addition, genes involved in the cell motility of C. reinhardtii and development of the cell wall of E. nuttallii were affected. DG were in line with adverse outcome pathways and transcriptomic studies reported after exposure to high concentrations of Hg and NaCl under controlled conditions in the laboratory. Transcriptomic response provided a sensitive measurement of the exposure as well as hints on the tolerance mechanisms of environmental pollution, and is thus promising as an early-warning tool to assess water quality degradation.
Collapse
Affiliation(s)
- Perrine Dranguet
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland
| | - Claudia Cosio
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland.
| | - Séverine Le Faucheur
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland
| | - Rebecca Beauvais-Flück
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland
| | - Aline Freiburghaus
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland
| | - Isabelle A M Worms
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland
| | - Brice Petit
- iGE3 Genomics Platform, University of Geneva Medical School - CMU, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| | - Natacha Civic
- iGE3 Genomics Platform, University of Geneva Medical School - CMU, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| | - Mylène Docquier
- iGE3 Genomics Platform, University of Geneva Medical School - CMU, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland.
| |
Collapse
|
41
|
Beauvais-Flück R, Gimbert F, Méhault O, Cosio C. Trophic fate of inorganic and methyl-mercury in a macrophyte-chironomid food chain. JOURNAL OF HAZARDOUS MATERIALS 2017; 338:140-147. [PMID: 28550790 DOI: 10.1016/j.jhazmat.2017.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Dietary transfer of mercury (Hg) is central for its effects on higher trophic animals, nonetheless, its driving parameters and characteristics are not well understood. Here we measured Hg species transfer (uptake) from the macrophyte Elodea nuttallii -mimicking tissues incorporation in sediments after decay- to Chironomus riparius. Methyl-Hg (MMHg) was more transferable than inorganic Hg (IHg) from plant's intracellular and cell wall compartments. After 10-d-long exposure, MMHg was predominantly found in MMHg form in the cytosolic compartment (S) of chironomids, while IHg showed similar concentrations in S and insoluble debris (P) compartments. After cessation of Hg species exposure (depuration), only MMHg resulted in a bioaccumulation factor >1. Toxicokinetics modelling indicated a demethylation of MMHg in the S fraction and its concomitant storage in the P fraction as IHg during both uptake and depuration, revealing an elimination and detoxification mechanism. Our data support that MMHg is more transferable than IHg to sensitive subcellular targets as well as bioavailable fraction in chironomids, in line with field studies showing higher MMHg transfer than IHg in food webs. Hence our data point out macrophytes as a potential Hg source to benthic food webs to be considered for enhancing aquatic environment protection during phytoremediation programs.
Collapse
Affiliation(s)
- Rebecca Beauvais-Flück
- Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 bd Carl-Vogt, CH-1211 Geneva 4, Switzerland.
| | - Frédéric Gimbert
- Laboratoire Chrono-environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon Cedex, France.
| | - Ophélie Méhault
- Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 bd Carl-Vogt, CH-1211 Geneva 4, Switzerland.
| | - Claudia Cosio
- Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 bd Carl-Vogt, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
42
|
Gentès S, Taupiac J, Colin Y, André JM, Guyoneaud R. Bacterial periphytic communities related to mercury methylation within aquatic plant roots from a temperate freshwater lake (South-Western France). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19223-19233. [PMID: 28664497 DOI: 10.1007/s11356-017-9597-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Macrophyte floating roots are considered as hotspots for methylmercury (MeHg) production in aquatic ecosystems through microbial activity. Nevertheless, very little is known about periphyton bacterial communities and mercury (Hg) methylators in such ecological niches. The ability to methylate inorganic Hg is broadly distributed among prokaryotes; however, sulfate-reducers have been reported to be the most important MeHg producers in macrophyte floating roots. In the present work, the periphyton bacterial communities colonizing Ludwigia sp. floating roots were investigated through molecular methods. Among the 244 clones investigated, anaerobic microorganisms associated with the sulfur biogeochemical cycle were identified. Notably, members of the sulfur-oxidizing prokaryotes and the anoxygenic, purple non-sulfur bacteria (Rhodobacteraceae, Comamonadaceae, Rhodocyclaceae, Hyphomicrobiaceae) and the sulfate reducers (Desulfobacteraceae, Syntrophobacteraceae, and Desulfobulbaceae) were detected. In addition, 15 sulfate-reducing strains related to the Desulfovibrionaceae family were isolated and their Hg-methylation capacity was tested using a biosensor. The overall results confirmed that Hg methylation is a strain-specific process since the four strains identified as new Hg-methylators were closely related to non-methylating isolates. This study highlights the potential involvement of periphytic bacteria in Hg methylation when favorable environmental conditions are present in such ecological micro-niches.
Collapse
Affiliation(s)
- Sophie Gentès
- Equipe Environnement et Microbiologie, UMR IPREM5254 Université de Pau et des Pays de l'Adour, Bâtiment IBEAS, BP1153, 64013, Pau Cedex, France.
- Université de Bordeaux, EPOC, UMR CNRS 5805, 33120, Arcachon, France.
| | - Julie Taupiac
- Equipe Environnement et Microbiologie, UMR IPREM5254 Université de Pau et des Pays de l'Adour, Bâtiment IBEAS, BP1153, 64013, Pau Cedex, France
| | - Yannick Colin
- Equipe Environnement et Microbiologie, UMR IPREM5254 Université de Pau et des Pays de l'Adour, Bâtiment IBEAS, BP1153, 64013, Pau Cedex, France
| | - Jean-Marc André
- Equipe CIH, IMS UMR 5218, Ecole Nationale Supérieure de Cognitique, 109 Avenue Roul, 33400, Talence, France
| | - Rémy Guyoneaud
- Equipe Environnement et Microbiologie, UMR IPREM5254 Université de Pau et des Pays de l'Adour, Bâtiment IBEAS, BP1153, 64013, Pau Cedex, France
| |
Collapse
|
43
|
Dranguet P, Cosio C, Le Faucheur S, Hug Peter D, Loizeau JL, Ungureanu VG, Slaveykova VI. Biofilm composition in the Olt River (Romania) reservoirs impacted by a chlor-alkali production plant. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:687-695. [PMID: 28379244 DOI: 10.1039/c7em00033b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Freshwater biofilms can be useful indicators of water quality and offer the possibility to assess contaminant effects at the community level. The present field study examines the effects of chlor-alkali plant effluents on the community composition of biofilms grown in the Olt River (Romania) reservoirs. The relationship between ambient water quality variables and community composition alterations was explored. Amplicon sequencing revealed a significant modification of the composition of microalgal, bacterial and fungal communities in the biofilms collected in the impacted reservoirs in comparison with those living in the uncontaminated control reservoir. The abundance corrected Simpson index showed lower richness and diversity in biofilms collected in the impacted reservoirs than in the control reservoir. The biofilm bacterial communities of the impacted reservoirs were characterized by the contaminant-tolerant Cyanobacteria and Bacteroidetes, whereas microalgal communities were predominantly composed of Bacillariophyta and fungal communities of Lecanoromycetes and Paraglomycetes. A principal component analysis revealed that major contaminants present in the waste water of the chlor-alkali production plant, i.e. Na+, Ca2+, Cl- and Hg, were correlated with the alteration of biofilm community composition in the impacted reservoirs. However, the biofilm composition was also influenced by water quality variables such as NO3-, SO42-, DOC and Zn from unknown sources. The results of the present study imply that, even when below the environmental quality standards, typical contaminants of chlor-alkali plant releases may affect biofilm composition and that their impacts on the microbial biodiversity might be currently overlooked.
Collapse
Affiliation(s)
- P Dranguet
- University of Geneva, Faculty of Sciences, Earth and Environmental Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Uni Carl Vogt, 66 Bvd. Carl Vogt, CH-1211, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
44
|
Dranguet P, Le Faucheur S, Cosio C, Slaveykova VI. Influence of chemical speciation and biofilm composition on mercury accumulation by freshwater biofilms. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:38-49. [PMID: 27942649 DOI: 10.1039/c6em00493h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mercury (Hg) is a pollutant of high concern for aquatic systems due to the biomagnification of its methylated form along the food chain. However, in contrast to other metals, gaining knowledge of its bioavailable forms for aquatic microorganisms remains challenging, making Hg risk assessment difficult. Ubiquitous and sessile freshwater biofilms are well known to accumulate and to transform Hg present in their ambient environment. The present study thus aims to evaluate whether non-extractable (proxy of intracellular) Hg accumulated by biofilms could be a good indicator of Hg bioavailability for microorganisms in freshwater. To that end, the link between Hg concentration and speciation, as well as biofilm composition (percentage of abiotic, biotic, chlorophyll and phycocyanin-fractions and abundance of dsrA, gcs, merA and hgcA bacterial genes) and biofilm Hg accumulation was examined. The studied biofilms were grown on artificial substrata in four reservoirs along the Olt River (Romania), which was contaminated by Hg coming from chlor-alkali plant effluents. The 0.45 μm-filterable Hg concentrations in ambient waters were measured and inorganic IHg speciation was modelled. Biofilms were analyzed for their non-extractable IHg and methylmercury (MeHg) contents as well as for their composition. The non-extractable IHg content was related, but not significantly, to the concentration of total IHg (r2 = 0.88, p = 0.061) whereas a significant correlation was found with the predicted IHg concentration that is not bound to dissolved organic matter (r2 = 0.95, p = 0.027), despite its extremely low concentrations (10-25 M), showing a limitation of the thermodynamic Hg modelling to predict Hg bioavailability. The studied biofilms were different in biomass and composition and a principal component analysis showed that the non-extractable IHg content correlated with the abundance of the merA and hgcA genes, while MeHg accumulation was only linked with the abundance of the rRNA 16S gene. The present study suggests that non-extractable IHg concentrations in biofilms are a useful proxy of IHg bioavailable forms in waters whereas the hgcA and merA genes are good biomarkers of both biofilm IHg exposure and bioavailability.
Collapse
Affiliation(s)
- P Dranguet
- University of Geneva, Faculty of Science, Earth and Environmental Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Uni Carl Vogt, 66 Bvd. Carl Vogt, CH-1211 Geneva, Switzerland.
| | - S Le Faucheur
- University of Geneva, Faculty of Science, Earth and Environmental Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Uni Carl Vogt, 66 Bvd. Carl Vogt, CH-1211 Geneva, Switzerland.
| | - C Cosio
- University of Geneva, Faculty of Science, Earth and Environmental Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Uni Carl Vogt, 66 Bvd. Carl Vogt, CH-1211 Geneva, Switzerland.
| | - V I Slaveykova
- University of Geneva, Faculty of Science, Earth and Environmental Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Uni Carl Vogt, 66 Bvd. Carl Vogt, CH-1211 Geneva, Switzerland.
| |
Collapse
|
45
|
Regier N, Beauvais-Flück R, Slaveykova VI, Cosio C. Elodea nuttallii exposure to mercury exposure under enhanced ultraviolet radiation: Effects on bioaccumulation, transcriptome, pigment content and oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:218-226. [PMID: 27744139 DOI: 10.1016/j.aquatox.2016.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/16/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
The hypothesis that increased UV radiation result in co-tolerance to Hg toxicity in aquatic plants was studied at the physiological and transcriptomic level in Elodea nuttallii. At the transcriptomic level, combined exposure to UV+Hg enhanced the stress response in comparison with single treatments, affecting the expression level of transcripts involved in energy metabolism, lipid metabolism, nutrition, and redox homeostasis. Single and combined UV and Hg treatments dysregulated different genes but with similar functions, suggesting a fine regulation of the plant to stresses triggered by Hg, UV and their combination but lack of co-tolerance. At the physiological level, UV+Hg treatment reduced chlorophyll content and depleted antioxidative compounds such as anthocyanin and GSH/GSSG in E. nuttallii. Nonetheless, combined exposure to UV+Hg resulted in about 30% reduction of Hg accumulation into shoots vs exposure to Hg alone, which was congruent with the level of expression of several transporter genes, as well as the UV effect on Hg bioavailability in water. The findings of the present work underlined the importance of performing experimentation under environmentally realistic conditions and to consider the interplay between contaminants and environmental variables such as light that might have confounding effects to better understand and anticipate the effects of multiple stressors in aquatic environment.
Collapse
Affiliation(s)
- Nicole Regier
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 boulevard Carl-Vogt, CH-1211 Geneva, Switzerland
| | - Rebecca Beauvais-Flück
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 boulevard Carl-Vogt, CH-1211 Geneva, Switzerland
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 boulevard Carl-Vogt, CH-1211 Geneva, Switzerland
| | - Claudia Cosio
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 boulevard Carl-Vogt, CH-1211 Geneva, Switzerland.
| |
Collapse
|
46
|
Le Faucheur S, Vasiliu D, Catianis I, Zazu M, Dranguet P, Beauvais-Flück R, Loizeau JL, Cosio C, Ungureanu C, Ungureanu VG, Slaveykova VI. Environmental quality assessment of reservoirs impacted by Hg from chlor-alkali technologies: case study of a recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22542-22553. [PMID: 27557957 DOI: 10.1007/s11356-016-7405-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Mercury (Hg) pollution legacy of chlor-alkali plants will be an important issue in the next decades with the planned phase out of Hg-based electrodes by 2025 within the Minamata convention. In such a context, the present study aimed to examine the extent of Hg contamination in the reservoirs surrounding the Oltchim plant and to evaluate the possible improvement of the environmental quality since the closure of its chlor-alkali unit. This plant is the largest chlor-alkali plant in Romania, which partly switched to Hg-free technology in 1999 and definitely stopped the use of Hg electrolysis in May 2012. Total Hg (THg) and methylmercury (CH3Hg) concentrations were found to decrease in the surface waters and sediments of the reservoirs receiving the effluents of the chlor-alkali platform since the closure of Hg units. Hence, calculated risk quotients (RQ) indicated no adverse effect of Hg for aquatic organisms from the ambient water exposure. RQ of Hg in sediments were mostly all higher than 1, showing important risks for benthic organisms. However, ecotoxicity testing of water and sediments suggest possible impact of other contaminants and their mixtures. Hg hotspots were found in soils around the platform with RQ values much higher than 1. Finally, THg and CH3Hg concentrations in fish were below the food safety limit set by the WHO, which contrasts with previous measurements made in 2007 revealing that 92 % of the studied fish were of high risk of consumption. Discontinuing the use of Hg electrodes greatly improved the surrounding environment of chlor-alkali plants within the following years and led to the decrease environmental exposure to Hg through fish consumption. However, sediment and soil still remained highly contaminated and problematic for the river reservoir management. The results of this ecological risk assessment study have important implications for the evaluation of the benefits as well as limits of the Minamata Convention implementation.
Collapse
Affiliation(s)
- Séverine Le Faucheur
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Institute F.-A. Forel, Environmental Biogeochemistry and Ecotoxicology, Uni Carl Vogt, 66 Bvd Carl-Vogt, 1211, Geneva 4, Switzerland.
| | - Dan Vasiliu
- National Institute for Research and Development of Marine Geology and Geoecology (GeoEcoMar), 23-25 Dimitrie Onciul Street, 024053, Bucharest, Romania
| | - Irina Catianis
- National Institute for Research and Development of Marine Geology and Geoecology (GeoEcoMar), 23-25 Dimitrie Onciul Street, 024053, Bucharest, Romania
| | - Mariana Zazu
- National Institute for Research and Development of Marine Geology and Geoecology (GeoEcoMar), 23-25 Dimitrie Onciul Street, 024053, Bucharest, Romania
| | - Perrine Dranguet
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Institute F.-A. Forel, Environmental Biogeochemistry and Ecotoxicology, Uni Carl Vogt, 66 Bvd Carl-Vogt, 1211, Geneva 4, Switzerland
| | - Rebecca Beauvais-Flück
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Institute F.-A. Forel, Environmental Biogeochemistry and Ecotoxicology, Uni Carl Vogt, 66 Bvd Carl-Vogt, 1211, Geneva 4, Switzerland
| | - Jean-Luc Loizeau
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Institute F.-A. Forel, Environmental Biogeochemistry and Ecotoxicology, Uni Carl Vogt, 66 Bvd Carl-Vogt, 1211, Geneva 4, Switzerland
| | - Claudia Cosio
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Institute F.-A. Forel, Environmental Biogeochemistry and Ecotoxicology, Uni Carl Vogt, 66 Bvd Carl-Vogt, 1211, Geneva 4, Switzerland
| | - Costin Ungureanu
- National Institute for Research and Development of Marine Geology and Geoecology (GeoEcoMar), 23-25 Dimitrie Onciul Street, 024053, Bucharest, Romania
| | - Viorel Gheorghe Ungureanu
- National Institute for Research and Development of Marine Geology and Geoecology (GeoEcoMar), 23-25 Dimitrie Onciul Street, 024053, Bucharest, Romania
| | - Vera I Slaveykova
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Institute F.-A. Forel, Environmental Biogeochemistry and Ecotoxicology, Uni Carl Vogt, 66 Bvd Carl-Vogt, 1211, Geneva 4, Switzerland.
| |
Collapse
|
47
|
Development and Validation of Broad-Range Qualitative and Clade-Specific Quantitative Molecular Probes for Assessing Mercury Methylation in the Environment. Appl Environ Microbiol 2016; 82:6068-78. [PMID: 27422835 PMCID: PMC5038027 DOI: 10.1128/aem.01271-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/08/2016] [Indexed: 01/07/2023] Open
Abstract
Two genes, hgcA and hgcB, are essential for microbial mercury (Hg) methylation. Detection and estimation of their abundance, in conjunction with Hg concentration, bioavailability, and biogeochemistry, are critical in determining potential hot spots of methylmercury (MeHg) generation in at-risk environments. We developed broad-range degenerate PCR primers spanning known hgcAB genes to determine the presence of both genes in diverse environments. These primers were tested against an extensive set of pure cultures with published genomes, including 13 Deltaproteobacteria, nine Firmicutes, and nine methanogenic Archaea genomes. A distinct PCR product at the expected size was confirmed for all hgcAB+ strains tested via Sanger sequencing. Additionally, we developed clade-specific degenerate quantitative PCR (qPCR) primers that targeted hgcA for each of the three dominant Hg-methylating clades. The clade-specific qPCR primers amplified hgcA from 64%, 88%, and 86% of tested pure cultures of Deltaproteobacteria, Firmicutes, and Archaea, respectively, and were highly specific for each clade. Amplification efficiencies and detection limits were quantified for each organism. Primer sensitivity varied among species based on sequence conservation. Finally, to begin to evaluate the utility of our primer sets in nature, we tested hgcA and hgcAB recovery from pure cultures spiked into sand and soil. These novel quantitative molecular tools designed in this study will allow for more accurate identification and quantification of the individual Hg-methylating groups of microorganisms in the environment. The resulting data will be essential in developing accurate and robust predictive models of Hg methylation potential, ideally integrating the geochemistry of Hg methylation to the microbiology and genetics of hgcAB. IMPORTANCE The neurotoxin methylmercury (MeHg) poses a serious risk to human health. MeHg production in nature is associated with anaerobic microorganisms. The recent discovery of the Hg-methylating gene pair, hgcA and hgcB, has allowed us to design and optimize molecular probes against these genes within the genomic DNA for microorganisms known to methylate Hg. The protocols designed in this study allow for both qualitative and quantitative assessments of pure-culture or environmental samples. With these protocols in hand, we can begin to study the distribution of Hg-methylating organisms in nature via a cultivation-independent strategy.
Collapse
|