1
|
Pham HAL, Nguyen VH, Lee T, Nguyen VC, Nguyen TD. Construction of BiOCl/bismuth-based halide perovskite heterojunctions derived from the metal-organic framework CAU-17 for effective photocatalytic degradation. CHEMOSPHERE 2024; 357:142114. [PMID: 38663679 DOI: 10.1016/j.chemosphere.2024.142114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 04/30/2024]
Abstract
The designed synthesis of an S-scheme heterojunction has possessed a great potential for improving photocatalytic wastewater treatment by demonstrating increased the photoredox capacity and improved the charge separation efficiency. Here, we introduce the fabrication of a heterojunction-based photocatalyst comprising bismuth oxychloride (BiOCl) and bismuth-based halide perovskite (BHP) nanosheets, derived from metal-organic frameworks (MOFs). Our composite photocatalyst is synthesized through a one-pot solvothermal strategy, where a halogenation process is applied to a bismuth-based metal-organic framework (CAU-17) as the precursor for bismuth sourcing. As a result, the rod-like structure of CAU-17 transforms into well-defined plate and nanosheet architectures after 4 and 8 h of solvothermal treatment, respectively. The modulation of the solvothermal reaction time facilitates the establishment of an S-scheme heterojunction, resulting in an increase in the photocatalytic degradation efficiency of rhodamine B (RhB) and sulfamethoxazole (SMX). The optimized BiOCl/BHP composite exhibits superior RhB and SMX degradation rates, achieving 99.8% degradation of RhB in 60 min and 75.1% degradation of SMX in 300 min. Also, the optimized BiOCl/BHP composite (CAU-17-st-8h sample) exhibited the highest rate constant (k = 3.48 × 10-3 min-1), nearly 6 times higher than that of the bare BHP in the photocatalytic degradation process of SMX. The enhanced photocatalytic efficiency can be endorsed to various factors: (i) the in-situ formation of two-components BiOCl/BHP photocatalyst, derived from CAU-17, effectively suppresses the aggregation of pristine BHP and BiOCl particles; (ii) the S-scheme heterostructure establishes a closely-knit interfacial connection, thereby facilitating efficient pathways for charge separation/transfer; and (iii) the BiOCl/BHP heterostructure enhances its capacity to absorb visible light. Our investigation establishes an effective strategy for constructing heterostructured photocatalysts, offering significant potential for application in photocatalytic wastewater treatment.
Collapse
Affiliation(s)
- Hoang Ai Le Pham
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, No. 12 Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City, 700000, Viet Nam
| | - Vinh Huu Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Van Cuong Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, No. 12 Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City, 700000, Viet Nam
| | - Trinh Duy Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
2
|
Liu P, Han D, Wang Z, Gu F. Metal-organic framework CAU-17 derived Bi/BiVO4 photocatalysts for the visible light-driven degradation of tetracycline hydrochloride. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
3
|
Sulaeman U, Fauziyyah Ramadhanti S, Diastuti H, Iswanto P, Isnaeni I, Yin S. The enhanced photo-stability of defective Ag3PO4 tetrahedron prepared using tripolyphosphate. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
4
|
Lu Z, Xu Y, Akbari MZ, Liang C, Peng L. Insight into integration of photocatalytic and microbial wastewater treatment technologies for recalcitrant organic pollutants: From sequential to simultaneous reactions. CHEMOSPHERE 2022; 295:133952. [PMID: 35167831 DOI: 10.1016/j.chemosphere.2022.133952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The more and more stringent environmental standards for recalcitrant organic pollutants pushed forward the development of integration of photocatalytic and microbial wastewater treatment technologies. The past studies proposed mainly two typical integration ways: a) Independent sequence of photocatalysis and biodegradation (ISPB) conducting the sequential reactions; b) Intimate coupling of photocatalysis and biodegradation (ICPB) conducting the simultaneous reactions. Although ICPB has received more attraction recently due to its novelty, ISPB gives an edge in certain cases. The article reviews the state-of-the-art ISPB and ICPB studies to comprehensively compare the two systems. The strengths and weaknesses of ISPB and ICPB regarding the treatment efficiency, cost, toxicity endurance and flexibility are contradistinguished. The reactor set-ups, photocatalysts, microbial characteristics of ISPB and ICPB are summarized. The applications for different kinds of recalcitrant compounds are elaborated to give a holistic view of the removal efficiencies and transformation pathways by the two technologies. Currently, in-depth understandings about the interference among mixed pollutants, co-existing components and key parameters in realistic wastewater are urgently needed. The long-term and large-scale application cases of the integration technologies are still rare. Overall, we conclude that both ISPB and ICPB technologies are reaching maturity while challenges still exist for two systems especially regarding the reliability, economy and generalization for realistic wastewater treatment plants. Future research should not only manage to reduce the cost and energy consumption by upgrading reactors and developing novel catalysts, but also attach importance to the cocktail effects of wastewater during the sequential or simultaneous photocatalysis and biodegradation.
Collapse
Affiliation(s)
- Zhikun Lu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Mohammad Zahir Akbari
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China.
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China.
| |
Collapse
|
5
|
Wang C, Wu G, Zhu X, Xing Y, Yuan X, Qu J. Synergistic degradation for o-chlorophenol and enhancement of power generation by a coupled photocatalytic-microbial fuel cell system. CHEMOSPHERE 2022; 293:133517. [PMID: 34995621 DOI: 10.1016/j.chemosphere.2022.133517] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
A hierarchically photocatalytic microbial fuel cell system (PMFC) coupled with TiO2 photoanode and bioanode was established to enhance the power generation based on single-chamber MFC. Compared with the conventional anaerobic mode, oxygen in the solution could be utilized by the photoanode of PMFC to improve the removal of o-chlorophenol (2-CP). The maximum power densities were increasing from 261 (MFC) to 301 mW/m2 (PMFC). The removal efficiency of 2-CP (5 mg/L) in PMFC was 76.20% and higher than that in MFC (19.33%) and by photocatalysis (49.23%). The electron-hole separation efficiencies were decreasing with the increasing of dissolved oxygen, causing a low efficiency of photocatalysis, due to the reduction of the current density of the systems. The abundance of Geobacter sp., PHOS-HE36 fam., and Pseudomonas sp. was increased with illumination, contributing to improve the electricity production and 2-CP degradation. The only detective intermediate of 1,2-dichlorobenzene in PMFC indicated that the microbes could regulate the degradation pathway of 2-CP in the coupling system. These findings provided an feasible method for the effective degradation of refractory organic compounds and simultaneous energy recovery by combining photocatalysis and microbial power generation.
Collapse
Affiliation(s)
- Chengzhi Wang
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Guanlan Wu
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Xiaolin Zhu
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China.
| | - Yi Xing
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Xing Yuan
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China.
| |
Collapse
|
6
|
Construction of Ag3PO4/TiO2/C with p-n heterojunction using Shiff base-Ti complex as precursor: Preparation, performance and mechanism. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Cao X, Guan Y, Hu Y, Liu W, Zuo S, Yao C, Wu F. Mace‐Shaped Cu
7
S
4
NW/ECF Composites for Photocatalytic Degradation of Antibiotics. ChemistrySelect 2021. [DOI: 10.1002/slct.202101691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoman Cao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 China
| | - Yiyin Guan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 China
| | - Yuhui Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 China
| | - Wenjie Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 China
| | - Shixiang Zuo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 China
| | - Chao Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 China
| | - Fengqin Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 China
| |
Collapse
|
8
|
Liao Q, Rong H, Zhao M, Luo H, Chu Z, Wang R. Interaction between tetracycline and microorganisms during wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143981. [PMID: 33316507 DOI: 10.1016/j.scitotenv.2020.143981] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Tetracycline (TC) is a commonly used human and veterinary antibiotic that is mostly discharged into wastewater in the form of the parent compounds. At present, wastewater treatment plants (WWTPs) use activated sludge processes that are not specifically designed to remove such pollutants. Considering the biological toxicity of TC in aquatic environment, the migration and fate of TC in the process of wastewater treatment deserve attention. This paper reviews the influence of TC on the functional bacteria in the sludge matrix and the development of tetracycline-resistant genes, and also discusses their adsorption removal rates, their adsorption kinetics and adsorption isotherm models, and infers their adsorption mechanism. In addition, the biodegradation of TC in the process of biological treatment is reviewed. Co-metabolism and the role of dominant bacteria in the degradation process are described, along with the formation of degradation byproducts and their toxicity. Furthermore, the current popular integrated coupling-system for TC degradation is also introduced. This paper systematically introduces the interaction between TC and activated sludge in WWTPs. The review concludes by providing directions to address research and knowledge gaps in TC removal from wastewater.
Collapse
Affiliation(s)
- Quan Liao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China.
| | - Meihua Zhao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Huayong Luo
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhaorui Chu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Randeng Wang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
9
|
Yin Y, Liu J, Wu Z, Zhang T, Li Z. ZIF-8 calcination derived Cu 2O–ZnO* material for enhanced visible-light photocatalytic performance. NEW J CHEM 2021. [DOI: 10.1039/d0nj05481j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of TC degradation over Cu2O–ZnO* rich in oxygen vacancies.
Collapse
Affiliation(s)
- Yilin Yin
- School of Chemistry
- Beijing University of Chemical Technology
- Chaoyang
- China
| | - Jingchao Liu
- School of Chemistry
- Beijing University of Chemical Technology
- Chaoyang
- China
| | - Zengnan Wu
- School of Chemistry
- Beijing University of Chemical Technology
- Chaoyang
- China
| | - Ting Zhang
- School of Chemistry
- Beijing University of Chemical Technology
- Chaoyang
- China
| | - Zenghe Li
- School of Chemistry
- Beijing University of Chemical Technology
- Chaoyang
- China
| |
Collapse
|
10
|
Facile synthesis of ZnO/GO/Ag3PO4 heterojunction photocatalyst with excellent photodegradation activity for tetracycline hydrochloride under visible light. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Xu J, Xu J, Jiang S, Cao Y, Xu K, Zhang Q, Wang L. Facile synthesis of a novel Ag 3PO 4/MIL-100(Fe) Z-scheme photocatalyst for enhancing tetracycline degradation under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37839-37851. [PMID: 32613509 DOI: 10.1007/s11356-020-09903-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
In this work, a novel visible light-driven heterostructure Ag3PO4/MIL-100(Fe) composite photocatalyst was successfully synthesized via facile chemical deposition method at room temperature. Especially when the mass ratio of Ag3PO4 was 20% of MIL-100(Fe) (APM-2), it displayed the best photocatalytic performance, for which the degradation rate of tetracycline (TC) in conventional environment was 6.8 times higher than that of bare MIL-100(Fe). In addition, the effects of the initial concentration and pH of the solution on the degradation of tetracycline were also studied, and the results showed that the degradation of tetracycline was more favorable in a weakly alkaline environment. The excellent performance of Ag3PO4/MIL-100(Fe) composites was attributed to the fact that on the basis of having adequate photocatalytic active sites, modifying MIL-100(Fe) with an appropriate amount of Ag3PO4 particles can more effectively separate photogenerated electron-hole pairs. Five cycles of experiments showed that APM-2 has good photostability. Lastly, it was proved through quenching experiments that •O2-, h+, and •OH all played corresponding roles in the degradation process, and a possible Z-scheme heterostructure photocatalytic degradation mechanism was proposed.
Collapse
Affiliation(s)
- Jun Xu
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Jinmei Xu
- Changzhou University Huaide College, Jingjiang, 214500, China
| | - Shanqing Jiang
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China.
| | - Yu Cao
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Kailin Xu
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Qiuya Zhang
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Liping Wang
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China.
- Changzhou University Huaide College, Jingjiang, 214500, China.
| |
Collapse
|
12
|
Yu M, Wang J, Tang L, Feng C, Liu H, Zhang H, Peng B, Chen Z, Xie Q. Intimate coupling of photocatalysis and biodegradation for wastewater treatment: Mechanisms, recent advances and environmental applications. WATER RESEARCH 2020; 175:115673. [PMID: 32171097 DOI: 10.1016/j.watres.2020.115673] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Due to the increase of emerging contaminants in water, how to use new treatment technology to make up for the defects of traditional wastewater treatment method has become one of the research hotspots at present. Intimate coupling of photocatalysis and biodegradation (ICPB) as a novel wastewater treatment method, which combines the advantages of biological treatment and photocatalytic reactions, has shown a great potential as a low-cost, environmental friendly and sustainable treatment technology. The system mainly consists of photocatalytic materials, porous carriers and biofilm. The key principle of ICPB is to transform bio-recalcitrant pollutants into biodegradable products by photocatalysis on the surface of porous carriers. The biodegradable products were mineralized simultaneously through the biofilm inside the carriers. Because of the protection of the carriers, the microorganism can remain active even under the UV-light, the mechanical force of water flow or the attack of free radicals. ICPB breaks the traditional concept that photocatalytic reaction and biodegradation must be separated in different reactors, improves the purification capacity of sewage and saves the cost. This review summarizes the recent advances of ICPB photocatalysts, carriers and biofilm being applied, and focuses on the mechanisms and reactor configurations which is particularly novel. Furthermore, the possible ongoing researches on ICPB are also put forward. This review will provide a valuable insight into the design and application of ICPB in environment and energy field.
Collapse
Affiliation(s)
- Mingliang Yu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Chengyang Feng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Haoyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Hao Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Bo Peng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zhaoming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Qingqing Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
13
|
Wang Y, Chen C, Zhou D, Xiong H, Zhou Y, Dong S, Rittmann BE. Eliminating partial-transformation products and mitigating residual toxicity of amoxicillin through intimately coupled photocatalysis and biodegradation. CHEMOSPHERE 2019; 237:124491. [PMID: 31394448 DOI: 10.1016/j.chemosphere.2019.124491] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Intimately coupled photocatalysis and biodegradation (ICPB) is a promising technology for treating wastewater containing antibiotics. While past work has documented the benefits of ICPB for removing and mineralizing antibiotics, its impacts on mitigating biotoxicity from products has not been studied. We fabricated an ICPB carrier by coating Ag-doped TiO2 on the outer skeleton of sponge carriers and allowing biofilm to grow in the internal macro-pores. We used amoxicillin (C16H19N3O5S) as the model antibiotic. The amoxicillin-removal rate contents with ICPB was greater by 40% vs. photocatalysis and 65% vs. biodegradation, based on the first-order kinetic simulation. While mineralization of amoxicillin was minimal for photocatalysis or biodegradation alone, it was ∼35% with ICPB. Photocatalysis alone led to accumulation of C14H21N3O2S; biodegradation alone resulted in accumulation of C14H21N3O3, C16H18N2O4S, and C15H21N3O3; but they were negligible after ICPB. As a result, ICPB reduced toxicity impacts measured by Staphylococcus aureas growth, Daphnia magna mobility, and teratogenicity to Zebrafish embryos. In contrast, photocatalysis alone increased each of the toxicity effects. In sum, ICPB gave greater removal and mineralization of amoxicillin, and it mitigated biotoxicity from treatment products.
Collapse
Affiliation(s)
- Yue Wang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Congli Chen
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China; National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Houfeng Xiong
- School of Chemistry and Environmental Engineering, Jiujiang University, Jiujiang, 332005, China
| | - Yihan Zhou
- National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shuangshi Dong
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, AZ, 85287-5701, USA
| |
Collapse
|
14
|
Zhu P, Hu M, Duan M, Chen Y, Wang R, Liu M, Liang Z. Adsorption photocatalysts of carbon-entrained and roasted bentonite carrier for Ag3PO4 in efficient removal of antibiotics. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1674155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Pengfei Zhu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, P. R. China
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan, P. R. China
| | - Min Hu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, P. R. China
| | - Ming Duan
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, P. R. China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, P. R. China
| | - Yanjun Chen
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, P. R. China
| | - Ruoxu Wang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, P. R. China
| | - Mei Liu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, P. R. China
| | - Zhenzhen Liang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, P. R. China
| |
Collapse
|
15
|
Wang X, Hu J, Chen Q, Zhang P, Wu L, Li J, Liu B, Xiao K, Liang S, Huang L, Hou H, Yang J. Synergic degradation of 2,4,6-trichlorophenol in microbial fuel cells with intimately coupled photocatalytic-electrogenic anode. WATER RESEARCH 2019; 156:125-135. [PMID: 30909125 DOI: 10.1016/j.watres.2019.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
A microbial fuel cell system with intimately coupled photocatalytic-electrogenic anode (photocatalytic-MFC) was proposed for the synergetic degradation of 2,4,6-trichlorophenol (2,4,6-TCP) which has a structure of three chlorine groups connecting to a phenol ring and is well recognized as a recalcitrant pollutant for its high toxicity, bioaccumulation and persistence. The photocatalytic-electrogenic anode was prepared by coating mpg-C3N4 on a carbon felt anode, followed by inoculating with municipal sewage and acclimating with 2,4,6-TCP at gradient concentrations. Improved TCP degradation was achieved, showing 79.3% of TCP removal in 10 h with an original concentration of 200 mg L-1, which was higher than that obtained with the unilluminated MFC (66.0%) and the photocatalytic-only process (56.1%). The coupled photocatalytic-electrogenic process demonstrated different degradation pathways compared with the photocatalytic-only process, with one open-chain compound (2-chloro-4-keto-2-hexenedioic acid, 2-CMA) detected in the photocatalytic-MFC system. Microbial community analysis revealed that Pseudomonas, instead of Geobacter observed in the unilluminated MFC bioanode, dominated in the photocatalytic-electrogenic anode MFC biofilm, which might be responsible for enhanced current generation in the coupled system. In addition, biofilm rich with Rhodococcus on air-cathode was also responsible for the enhanced TCP removal. This research provides an efficient strategy for the treatment of wastewater with recalcitrant contaminants by intimate-coupling of the photocatalytic and the electrogenic processes.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074, PR China
| | - Jingping Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Qin Chen
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074, PR China
| | - Peng Zhang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074, PR China
| | - Longsheng Wu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074, PR China
| | - Jianfeng Li
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074, PR China
| | - Bingchuan Liu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074, PR China
| | - Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074, PR China
| | - Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074, PR China
| | - Long Huang
- China Metallurgical Group Corporation Wuhan Metallurgy Research Institute Co. Ltd, Wuhan, Hubei, 430081, PR China
| | - Huijie Hou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074, PR China.
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| |
Collapse
|
16
|
ZIF-8 derived hollow CuO/ZnO material for study of enhanced photocatalytic performance. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.01.072] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Nahyoon NA, Liu L, Rabé K, Nahyoon SA, Abro AH, Yang F. Efficient degradation of rhodamine B with sustainable electricity generation in a photocatalytic fuel cell using visible light Ag3PO4/Fe/GTiP photoanode and ZnIn2S4 photocathode. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Zhou L, Cai M, Zhang X, Cui N, Chen G, Zou GY. Key role of hydrochar in heterogeneous photocatalytic degradation of sulfamethoxazole using Ag3PO4-based photocatalysts. RSC Adv 2019; 9:35636-35645. [PMID: 35528073 PMCID: PMC9074729 DOI: 10.1039/c9ra07843f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
To overcome the practical application limitations of Ag3PO4 such as photocorrosion and relatively low efficiency of photogenerated carrier seperation, Ag3PO4 particles were loaded onto hydrochar. The particles in the composite had a smaller crystallite size and different phase structure with more edges than pure Ag3PO4 particles. The as-prepared composite catalyst exhibited a different photocatalytic performance for sulfamethoxazole (SMX) degradation when varying the mass ratio of hydrochar and Ag3PO4. In addition to higher SMX degradation efficiency, the composite exhibited much higher TOC degradation efficiency, recycling stability, and less-toxic intermediate production. The composites enhanced visible light response, and accelerated electron transfer and photogenerated carrier separation as well. The addition of H2O2 to the photocatalytic system enhanced the photocatalytic activity of the composite catalyst. According to a mechanistic examination, the hole (h+) is the dominant reactive species for SMX degradation. This study provides new insight into high-efficiency, low cost, and easily prepared photocatalysts for pollution removal from water. To overcome the practical application limitations of Ag3PO4 such as photocorrosion and relatively low efficiency of photogenerated carrier seperation, Ag3PO4 particles were loaded onto hydrochar.![]()
Collapse
Affiliation(s)
- Li Zhou
- Institute of Eco-environment and Plant Protection
- Shanghai Academy of Agricultural Sciences
- Shanghai 201403
- China
- Shanghai Engineering Research Centre of Low-carbon Agriculture
| | - Min Cai
- Institute of Eco-environment and Plant Protection
- Shanghai Academy of Agricultural Sciences
- Shanghai 201403
- China
- Shanghai Engineering Research Centre of Low-carbon Agriculture
| | - Xu Zhang
- Institute of Eco-environment and Plant Protection
- Shanghai Academy of Agricultural Sciences
- Shanghai 201403
- China
- Shanghai Engineering Research Centre of Low-carbon Agriculture
| | - Naxin Cui
- Institute of Eco-environment and Plant Protection
- Shanghai Academy of Agricultural Sciences
- Shanghai 201403
- China
- Shanghai Engineering Research Centre of Low-carbon Agriculture
| | - Guifa Chen
- Institute of Eco-environment and Plant Protection
- Shanghai Academy of Agricultural Sciences
- Shanghai 201403
- China
- Shanghai Engineering Research Centre of Low-carbon Agriculture
| | - Guo-yan Zou
- Institute of Eco-environment and Plant Protection
- Shanghai Academy of Agricultural Sciences
- Shanghai 201403
- China
- Shanghai Engineering Research Centre of Low-carbon Agriculture
| |
Collapse
|
19
|
Cao Y, Lei X, Chen Q, Kang C, Li W, Liu B. Enhanced photocatalytic degradation of tetracycline hydrochloride by novel porous hollow cube ZnFe2O4. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.07.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
TiO₂ Nanotubes/Ag/MoS₂ Meshy Photoelectrode with Excellent Photoelectrocatalytic Degradation Activity for Tetracycline Hydrochloride. NANOMATERIALS 2018; 8:nano8090666. [PMID: 30150575 PMCID: PMC6163688 DOI: 10.3390/nano8090666] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 11/17/2022]
Abstract
A novel type of TiO2 nanotubes (NTs)/Ag/MoS2 meshy photoelectrode was fabricated with highly oriented TiO2 nanotube arrays grown from a Ti mesh supporting Ag nanoparticles and three-dimensional MoS2 nanosheets. In this structure, Ag nanoparticles act as bridges to connect MoS2 and TiO2 and pathways for electron transfer, ensuring the abundant production of active electrons, which are the source of •O2−. The TiO2 NTs/Ag/MoS2 mesh can be used as both photocatalyst and electrode, exhibiting enhanced photoelectrocatalytic efficiency in degrading tetracycline hydrochloride under visible light irradiation (λ ≥ 420 nm). Compared to unmodified TiO2 NTs, the improved photoelectrocatalytic activity of the TiO2 NTs/Ag/MoS2 arise from the formation of Z-scheme heterojunctions, which facilitate the efficient separation of photogenerated electron-hole pairs through the Schottky barriers at the interfaces of TiO2 NTs–Ag and Ag–MoS2.
Collapse
|
21
|
Xiong H, Dong S, Zhang J, Zhou D, Rittmann BE. Roles of an easily biodegradable co-substrate in enhancing tetracycline treatment in an intimately coupled photocatalytic-biological reactor. WATER RESEARCH 2018; 136:75-83. [PMID: 29500974 DOI: 10.1016/j.watres.2018.02.061] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/23/2018] [Accepted: 02/25/2018] [Indexed: 06/08/2023]
Abstract
Intimately coupled photocatalysis and biodegradation (ICPB) was realized in a macroporous carrier in which a photocatalyst was present on the outer surface, while a biofilm accumulated inside the carrier. In ICPB, photocatalysis products are rapidly biodegraded by a protected biofilm, leading to mineralization of the refractory organics, such as antibiotics. However, mineralization in ICPB could be compromised if the photocatalysis products remain refractory or are inhibitory. To address this, we attempted to increase metabolic activity by providing a readily biodegradable co-substrate (acetate) that could act as a source of energy and electrons to improve biotransformation and mineralization of the refractory antibiotic tetracycline (TCH). When we added acetate during ICPB of TCH, TCH removal increased by ∼5%, mineralization increased by ∼20%, and almost all photocatalysis products disappeared. Acetate addition also led to an increase in active biomass, an increase in the biomass's respiratory activity, and evolution of the microbial community to having more members able to biodegrade photocatalysis and biotransformation intermediates. Thus, providing an easily biodegradable co-substrate was an effective means for enhancing TCH removal and mineralization with the ICPB technology.
Collapse
Affiliation(s)
- Houfeng Xiong
- School of Environment, Northeast Normal University, Changchun 130117, China; School of Chemistry and Environmental Engineering, Jiujiang University, Jiujiang 332005, China
| | - Shuangshi Dong
- Engineering Lab for Water Pollution Control and Resources Recovery, Jilin Province, Northeast Normal University, Changchun 130117, China; Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Jun Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Dandan Zhou
- School of Environment, Northeast Normal University, Changchun 130117, China; Engineering Lab for Water Pollution Control and Resources Recovery, Jilin Province, Northeast Normal University, Changchun 130117, China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, AZ 85287-5701, USA
| |
Collapse
|
22
|
Torki F, Faghihian H. Visible Light Degradation of Naproxen by Enhanced Photocatalytic Activity of NiO and NiS, Scavenger Study and Focus on Catalyst Support and Magnetization. Photochem Photobiol 2018; 94:491-502. [PMID: 29442359 DOI: 10.1111/php.12906] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/19/2017] [Indexed: 01/26/2023]
Abstract
This research was aimed to prepare a magnetically photocatalyst enabling to degrade pharmaceutical wastewater and detoxification of pollutant such as naproxen, by visible light irradiation. The nano-sized NiS and NiO photocatalysts exhibit higher reactivity than their microsized counterparts, but separation of the used photocatalyst from the degradation solution is hard and imperfect. To remove this difficulty, magnetic polypyrrole core-shell (Fe3 O4 @PPY) was synthesized and employed as catalyst support. The magnetization property of the synthesized photocatalysts measured by VSM technique indicated that the photocatalysts were sufficiently magnetized to be readily separated from degradation solution by use of external magnetic field. The DRS study showed that the band gap of the photocatalysts shifted to lower energy after immobilization on the support materials leading to higher degradation efficiency. The optimal efficiency was obtained with the catalysts loaded with 50% of NiO and 50% of NiS. The augmenting effect of H2 O2 and the inhibition influence of some organic and inorganic compounds on the degradation process were studied. Regeneration of the used photocatalyst was performed by heat treatment, and the catalyst treated at 400°C retained most of its initial capacity. The degradation capacity was kinetically fast, and the equilibrium was attained within 30 min.
Collapse
Affiliation(s)
- Firoozeh Torki
- Department of Chemistry, Islamic Azad University, Shahreza Branch, Shahreza, Iran
| | - Hossein Faghihian
- Department of Chemistry, Islamic Azad University, Shahreza Branch, Shahreza, Iran
| |
Collapse
|
23
|
Panneri S, Ganguly P, Nair BN, Mohamed AAP, Warrier KGK, Hareesh UNS. Role of precursors on the photophysical properties of carbon nitride and its application for antibiotic degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:8609-8618. [PMID: 28194678 DOI: 10.1007/s11356-017-8538-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/01/2017] [Indexed: 06/06/2023]
Abstract
In this paper, we provide a comprehensive evaluation of graphitic carbon nitride (C3N4) powders derived from the four different precursors melamine, cyanamide, thiourea, and urea for the photocatalytic degradation of tetracycline (TC) antibiotic under sunlight irradiation. The powders were synthesized by employing the conventional thermal decomposition method. The synthesized powders were examined using different characterization tools for evaluating the photophysical properties. The degradation profile revealed that urea-derived C3N4 showed the highest activity while melamine-derived C3N4 showed the least activity. The TC degradation efficiency of the photocatalyst was found to be influenced more by the surface area values despite extended absorption by melamine in the visible light region. Stability tests on urea-derived C3N4 and others were checked by four runs of TC degradation under sunlight irradiation. The synthesized C3N4 powders also confirmed the dominance of urea-derived powders for cyclic stability.
Collapse
Affiliation(s)
- Suyana Panneri
- Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Industrial Estate PO Pappanamcode, Thiruvananthapuram, 695019,, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Priyanka Ganguly
- Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Industrial Estate PO Pappanamcode, Thiruvananthapuram, 695019,, India
| | - Balagopal N Nair
- R&D Center, Noritake Co. Limited, Aichi, 470-0293, Japan
- Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box UI987, Perth, WA, 6845, Australia
| | - Abdul Azeez Peer Mohamed
- Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Industrial Estate PO Pappanamcode, Thiruvananthapuram, 695019,, India
| | - Krishna Gopa Kumar Warrier
- Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Industrial Estate PO Pappanamcode, Thiruvananthapuram, 695019,, India
| | - Unnikrishnan Nair Saraswathy Hareesh
- Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Industrial Estate PO Pappanamcode, Thiruvananthapuram, 695019,, India.
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
24
|
Torki F, Faghihian H. Photocatalytic activity of NiS, NiO and coupled NiS–NiO for degradation of pharmaceutical pollutant cephalexin under visible light. RSC Adv 2017. [DOI: 10.1039/c7ra09461b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Highly efficient visible light cephalexin degradation obtained by photocatalyst prepared by immobilization of NiS, and NiO on the Fe3O4@PPY support.
Collapse
Affiliation(s)
- F. Torki
- Department of Chemistry
- Islamic Azad University
- Shahreza
- Iran
| | - H. Faghihian
- Department of Chemistry
- Islamic Azad University
- Shahreza
- Iran
| |
Collapse
|