1
|
Wang Y, Lai J, Chen Z, Sun L, Ma Y, Wu J. Exploring the therapeutic mechanisms of heart failure with Chinese herbal medicine: a focus on miRNA-mediated regulation. Front Pharmacol 2024; 15:1475975. [PMID: 39564110 PMCID: PMC11573571 DOI: 10.3389/fphar.2024.1475975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Heart failure (HF) is a clinical condition caused by abnormalities in the heart's structure or function, primarily manifested as diminished ability of the heart to pump blood, which leads to compensatory activation of neurohormones and increased left ventricular filling pressure. HF is one of the fastest-growing cardiovascular diseases globally in terms of incidence and mortality, negatively impacting patients' quality of life and imposing significant medical and economic burdens. Despite advancements in the treatment of HF, hospitalization and mortality remain rates high. In China, Chinese herbal medicine (CHM) has historically played a prominent role in addressing HF, with significant proven efficacy. MicroRNA (miRNA) exerts a pivotal regulatory influence on the maintenance of regular cardiac activity and the progression of HF. MiRNAs, a category of single-stranded RNA molecules, are characterized by their inability to code for proteins. They regulate gene expression by binding to the 3'-untranslated region (3'-UTR) of target mRNAs, thereby influencing the onset and progression of various diseases. Abnormal expression of specific miRNAs is closely associated with HF pathological processes, such as cardiomyocyte apoptosis, myocardial fibrosis, and cardiac hypertrophy. This abnormal expression can influence the pathological progression of HF through the regulation of miRNA expression. This article reviews the regulatory role of miRNAs in HF pathology discusses how CHM compounds and their active ingredients can ameliorate HF pathology through the regulation of miRNA expression. In conclusion, miRNAs represent promising therapeutic targets for HF, and CHM provides a novel strategy for treatment through the regulation of miRNA expression. Future studies must delve deeper into the precise mechanisms by which CHM modulates miRNAs and fully explore its potential for clinical application in HF treatment.
Collapse
Affiliation(s)
- Yang Wang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Junyu Lai
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhengtao Chen
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liqiang Sun
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Yirong Ma
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jianguang Wu
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Guo Y, Liu J, Tuo Q, Zhang D, Wanapat M, Xin G. The effect of dietary supplementation of Lycium barbarum leaves on the growth performance, organ indexes and intestinal microflora of rats. Front Vet Sci 2024; 11:1416793. [PMID: 39144075 PMCID: PMC11322056 DOI: 10.3389/fvets.2024.1416793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024] Open
Abstract
This study was conducted to investigate both fruit and different levels of leaf supplementation on the growth performance, organ indices and intestinal microflora of rats. Twenty-five healthy male Sprague-Dawley rats were randomly divided into five groups. The rats in the control (NC) and positive control (PC) groups were fed by gavage a basal diet and a basal diet with 4 g/kg of L. barbarum fruit homogenate, respectively. The test (LD, MD, and HD) groups were fed basal diets with additional 2, 4, and 8 g/kg of L. barbarum leaf homogenate, respectively. The feeding period was 35 d. The result revealed that the rats in the LD group had the highest average weight gain (p < 0.05). The cardiac and renal indexes in the LD and MD groups were significantly higher than in NC group, respectively (p < 0.05). Diversity analysis revealed that adding low concentrations of L. barbarum leaf homogenates markedly reduced the Shannon index of the rats cecum (p < 0.05). The relative abundance of Verrucomicrobiota was higher in the LD group than those in other groups (p < 0.05). The relative abundance of Actinobacteriota was found significantly higher in PC group than others (p < 0.05). The relative abundance of Akkermansia in LD group was the highest (p < 0.05). The relative abundance of Romboutsia in the PC group was considerably higher than that in other groups. The relative abundance of Candidatus_Saccharimonas in the supplementation groups was appreciably lower than those found in other groups. The relative abundance of Alloprevotella was significantly lower in PC, LD, and MD groups than in NC and HD groups (p < 0.05). The relative abundance of Oscillibacter was significantly higher in HD group than in other groups (p < 0.05). Thus, L. barbarum leaf homogenate fed to rats could increase their growth performance, internal organ weights and additionally enhance the relative abundance of beneficial bacteria. Therefore, based on the obtained data in the current study, a dose of L. barbarum leaf homogenate supplemented with 2 g/kg in diet is recommended, however, further studies are required to confirm, especially in animals.
Collapse
Affiliation(s)
- Yindi Guo
- School of Life Science, Ningxia University, Yinchuan, China
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Jie Liu
- School of Life Science, Ningxia University, Yinchuan, China
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Qiang Tuo
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Agricultural College, Ningxia University, Yinchuan, China
| | - Dongtao Zhang
- School of Life Science, Ningxia University, Yinchuan, China
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Metha Wanapat
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Khon Kaen Univ, Fac Agr, Trop Feed Resources Res & Dev Ctr TROFREC, Dept Anim Sci, Khon Kaen, Thailand
| | - Guosheng Xin
- School of Life Science, Ningxia University, Yinchuan, China
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| |
Collapse
|
3
|
Chen N, Hu M, Jiang T, Xiao P, Duan JA. Insights into the molecular mechanisms, structure-activity relationships and application prospects of polysaccharides by regulating Nrf2-mediated antioxidant response. Carbohydr Polym 2024; 333:122003. [PMID: 38494201 DOI: 10.1016/j.carbpol.2024.122003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
The occurrence and development of many diseases are closely related to oxidative stress. In this context, accumulating evidence suggests that Nrf2, as the master switch of cellular antioxidant signaling, plays a central role in controlling the expression of antioxidant genes. The core molecular mechanism of polysaccharides treatment of oxidative stress-induced diseases is to activate Keap1/Nrf2/ARE signaling pathway, promote nuclear translocation of Nrf2, and up-regulate the expression of antioxidant enzymes. However, recent studies have shown that other signaling pathways in which polysaccharides exert antioxidant effects, such as PI3K/Akt/GSK3β, JNK/Nrf2 and NF-κB, have complex crosstalk with Keap1/Nrf2/ARE, may have direct effects on the nuclear translocation of Nrf2. This suggests a new strategy for designing polysaccharides as modulators of Nrf2-dependent pathways to target the antioxidant response. Therefore, in this work, we investigate the crosstalk between Keap1/Nrf2/ARE and other antioxidant signaling pathways of polysaccharides by regulating Nrf2-mediated antioxidant response. For the first time, the structural-activity relationship of polysaccharides, including molecular weight, monosaccharide composition, and glycosidic linkage, is systematically elucidated using principal component analysis and cluster analysis. This review also summarizes the application of antioxidant polysaccharides in food, animal production, cosmetics and biomaterials. The paper has significant reference value for screening antioxidant polysaccharides targeting Nrf2.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Meifen Hu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Tingyue Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
4
|
Koyama H, Kamogashira T, Yamasoba T. Heavy Metal Exposure: Molecular Pathways, Clinical Implications, and Protective Strategies. Antioxidants (Basel) 2024; 13:76. [PMID: 38247500 PMCID: PMC10812460 DOI: 10.3390/antiox13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Heavy metals are often found in soil and can contaminate drinking water, posing a serious threat to human health. Molecular pathways and curation therapies for mitigating heavy metal toxicity have been studied for a long time. Recent studies on oxidative stress and aging have shown that the molecular foundation of cellular damage caused by heavy metals, namely, apoptosis, endoplasmic reticulum stress, and mitochondrial stress, share the same pathways as those involved in cellular senescence and aging. In recent aging studies, many types of heavy metal exposures have been used in both cellular and animal aging models. Chelation therapy is a traditional treatment for heavy metal toxicity. However, recently, various antioxidants have been found to be effective in treating heavy metal-induced damage, shifting the research focus to investigating the interplay between antioxidants and heavy metals. In this review, we introduce the molecular basis of heavy metal-induced cellular damage and its relationship with aging, summarize its clinical implications, and discuss antioxidants and other agents with protective effects against heavy metal damage.
Collapse
Affiliation(s)
- Hajime Koyama
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Tokyo Teishin Hospital, Tokyo 102-0071, Japan
| |
Collapse
|
5
|
Duan Y, Zhang Y, Wang T, Sun J, Ali W, Ma Y, Yuan Y, Gu J, Bian J, Liu Z, Zou H. Interactive mechanism between connexin43 and Cd-induced autophagic flux blockage and gap junctional intercellular communication dysfunction in rat hepatocytes. Heliyon 2023; 9:e21052. [PMID: 37876489 PMCID: PMC10590978 DOI: 10.1016/j.heliyon.2023.e21052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
Cadmium (Cd) is a significant environmental contaminant known for its potential hepatotoxic effects. However, the precise mechanisms underlying Cd-induced hepatotoxicity have yet to be fully understood. Therefore, the purpose of this study was to investigate the dynamic role of connexin 43 (Cx43) in response to Cd exposure, particularly its impact on gap junctional intercellular communication (GJIC) and autophagy in hepatocytes. To establish an in vitro model of Cd-induced hepatocyte injury, the Buffalo rat liver 3A cell line (BRL3A) was utilized.In order to elucidate the mechanism by which Cx43 influences Cd-induced hepatocyte toxic injury, inhibitors of Cx43 (Dynasore) and P-Cx43 (Ro318220) were employed in the model. The findings revealed that inhibiting Cx43 and its phosphorylation further compromised GJIC function, exacerbating the impairment, while also intensifying the blockage of autophagic flux. To gain further insight into the role of Cx43, siRNA was utilized to knock down Cx43 expression, yielding similar results. The down-regulation of Cx43 expression was found to worsen the morphological damage induced by cadmium exposure, diminish the cell proliferation capacity of BRL3A cells, and exacerbate the disruption of GJIC and autophagic flow caused by Cd.These findings suggest that Cx43 may serve as a potential therapeutic target for the treatment of liver damage resulting from Cd exposure. By targeting Cx43, it may be possible to mitigate the adverse effects of Cd on hepatocytes.
Collapse
Affiliation(s)
- Yuntian Duan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yi Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
6
|
Contreras-Solís I, Pasciu V, Porcu C, Sotgiu FD, Todorova N, Baralla E, Mara L, Gallus M, Cabiddu A, Dattena M, Abecia JA, Berlinguer F. The Effect of By-Pass Linseed Oil Supplementation on the Maternal Antioxidant System during the Embryo-Maternal Recognition Period in Ewes. Animals (Basel) 2023; 13:2565. [PMID: 37627356 PMCID: PMC10451800 DOI: 10.3390/ani13162565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
This study analyzed the effects of dietary supplementation with by-pass linseed oil (LO; rich in α-linolenic acid) on maternal antioxidant systems at Days 14 and 16 of pregnancy in Sarda ewes. This trial used sixteen dry ewes. Eight ewes (CT group) were fed with a control diet without LO, and eight ewes (LO group) were fed with a diet supplemented with LO (10.8 g of α-linolenic acid/ewe/day). Both diets had similar crude protein and energy levels. The experiment included 10 days of an adaptation period and 31 days of a supplementation period. This supplementation period was divided into Period -2 (from Day -15 to -8), Period -1 (from Day -7 to -1; before synchronized mating period/Day 0), Period +1 (from Day +1 to + 7 after mating), and Period +2 (from Day +8 to +15 after mating). Estrous synchronization was induced in all the ewes using an intravaginal sponge (45 mg fluorgestone acetate) for 14 days and equine chorionic gonadotropin (350 UI/ewe) at the end of the treatment. On Days 14 (CT, N = 4; LO, N = 4) and 16 (CT, N = 4; LO, N = 4) after mating, the ewes were slaughtered. Samples of plasma, uterine, and luteal tissues were collected. Thiols, total antioxidant activity (TEAC), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content were measured. On Day 16, thiol and TEAC in luteal tissues were higher in the LO group when compared with the control one (p < 0.05). Moreover, TEAC was higher for the LO group in uterine tissues on Days 14 and 16 (p < 0.05). SOD activity was higher in the LO group in luteal and uterine tissues on Day 14 and Day 16, respectively (p < 0.001). On Day 16, uterine MDA content was lower for the LO group (p < 0.001). No differences were found between groups at the plasmatic level. However, the by-pass LO supplementation enhanced the analyzed antioxidant parameters in luteal and uterine tissues. In conclusion, these results demonstrate that by-pass LO supplementation exerted a positive effect on antioxidative defenses on maternal structures during the embryo-maternal recognition period in ewes. Thus, this could contribute to improving the maternal environment during the embryo-maternal recognition period in mammals.
Collapse
Affiliation(s)
- Ignacio Contreras-Solís
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (C.P.); (F.D.S.); (N.T.); (E.B.); (F.B.)
| | - Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (C.P.); (F.D.S.); (N.T.); (E.B.); (F.B.)
| | - Cristian Porcu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (C.P.); (F.D.S.); (N.T.); (E.B.); (F.B.)
| | - Francesca D. Sotgiu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (C.P.); (F.D.S.); (N.T.); (E.B.); (F.B.)
| | - Neda Todorova
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (C.P.); (F.D.S.); (N.T.); (E.B.); (F.B.)
| | - Elena Baralla
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (C.P.); (F.D.S.); (N.T.); (E.B.); (F.B.)
| | - Laura Mara
- Department of Animal Science, AGRIS Sardegna, Loc. Bonassai, 07100 Sassari, Italy; (L.M.); (M.G.); (A.C.); (M.D.)
| | - Marilia Gallus
- Department of Animal Science, AGRIS Sardegna, Loc. Bonassai, 07100 Sassari, Italy; (L.M.); (M.G.); (A.C.); (M.D.)
| | - Andrea Cabiddu
- Department of Animal Science, AGRIS Sardegna, Loc. Bonassai, 07100 Sassari, Italy; (L.M.); (M.G.); (A.C.); (M.D.)
| | - Maria Dattena
- Department of Animal Science, AGRIS Sardegna, Loc. Bonassai, 07100 Sassari, Italy; (L.M.); (M.G.); (A.C.); (M.D.)
| | | | - Fiammetta Berlinguer
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (C.P.); (F.D.S.); (N.T.); (E.B.); (F.B.)
| |
Collapse
|
7
|
Liu Y, Li H, Ren P, Che Y, Zhou J, Wang W, Yang Y, Guan L. Polysaccharide from Flammulina velutipes residues protects mice from Pb poisoning by activating Akt/GSK3β/Nrf-2/HO-1 signaling pathway and modulating gut microbiota. Int J Biol Macromol 2023; 230:123154. [PMID: 36610568 DOI: 10.1016/j.ijbiomac.2023.123154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/10/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Lead (Pb) can cause damages to the brain, liver, kidney, endocrine and other systems. Flammulina velutipes residues polysaccharide (FVRP) has been reported to exhibit anti-heavy metal toxicity on yeast, but its regulating mechanism is unclear. Therefore, the protective effect and the underlying mechanism of FVRP on Pb-intoxicated mice were investigated. The results showed that FVRP could reduce liver and kidney function indexes, serum inflammatory factor levels, and increase antioxidant enzyme activity of Pb-poisoned mice. FVRP also exhibited a protective effect on histopathological damages in organs of Pb-intoxicated mice. Furthermore, FVRP attenuated Pb-induced kidney injury by inhibiting apoptosis via activating the Akt/GSK3β/Nrf-2/HO-1 signaling pathway. In addition, based on 16 s rRNA and ITS-2 sequencing data, FVRP regulated the imbalance of gut microbiota to alleviate the damage of Pb-poisoned mice by increasing the abundance of beneficial microbiota (Lachnospiraceae, Lactobacillaceae, Saccharomyces and Mycosphaerella) and decreasing the abundance of harmful microbiota (Muribaculaceae and Pleosporaceae). In conclusion, FVRP inhibited kidney injury in Pb-poisoned mice by inhibiting apoptosis via activating Akt/GSK3β/Nrf-2/HO-1 signaling pathway, and regulating gut fungi and gut bacteria. This study not only revealed the role of gut fungi in Pb-toxicity, but also laid a theoretical foundation for FVRP as a natural drug against Pb-toxicity.
Collapse
Affiliation(s)
- Yingying Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Hailong Li
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ping Ren
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yange Che
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jiaming Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Wanting Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yiting Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Lili Guan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China; Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
8
|
Li Z, Qiu Y, Li J, Wan K, Nie H, Su S. Chronic Cadmium Exposure Induces Impaired Olfactory Learning and Altered Brain Gene Expression in Honey Bees ( Apis mellifera). INSECTS 2022; 13:insects13110988. [PMID: 36354812 PMCID: PMC9696575 DOI: 10.3390/insects13110988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 06/01/2023]
Abstract
The honey bee (Apis mellifera) plays vital ecological roles in the pollination of crops and the maintenance of ecological balance, and adult honey bees may be exposed to exogenous chemicals including heavy metals during their foraging activities. Cadmium (Cd) is regarded as a nonessential toxic metal and is readily accumulated in plants; honey bees can therefore acquire Cd through the collection of contaminated nectar. In the present study, honey bees were chronically exposed to Cd to investigate the effects of sublethal cadmium doses on the olfactory learning and brain gene expression profiles of honey bees. The results showed that Cd-treated bees exhibited significantly impaired olfactory learning performances in comparison with control bees. Moreover, the head weight was significantly lower in Cd-treated bees than in control bees after chronic exposure to Cd. Gene expression profiles between the Cd treatment and the control revealed that 79 genes were significantly differentially expressed. Genes encoding chemoreceptors and olfactory proteins were downregulated, whereas genes involved in response to oxidative stress were upregulated in Cd-treated bees. The results suggest that Cd exposure exerts oxidative stress in the brain of honey bees, and the dysregulated expression of genes encoding chemoreceptors, olfactory proteins, and cytochrome P450 enzymes is probably associated with impaired olfactory learning in honey bees.
Collapse
Affiliation(s)
| | | | | | | | | | - Songkun Su
- Correspondence: ; Tel.: +86-136-6500-5782
| |
Collapse
|
9
|
Huang R, Ding L, Ye Y, Wang K, Yu W, Yan B, Liu Z, Wang J. Protective effect of quercetin on cadmium-induced renal apoptosis through cyt-c/caspase-9/caspase-3 signaling pathway. Front Pharmacol 2022; 13:990993. [PMID: 36052148 PMCID: PMC9425064 DOI: 10.3389/fphar.2022.990993] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Cadmium (Cd), a heavy metal, has harmful effects on animal and human health, and it can also obviously induce cell apoptosis. Quercetin (Que) is a flavonoid compound with antioxidant and other biological activities. To investigate the protective effect of Que on Cd-induced renal apoptosis in rats. 24 male SD rats were randomly divided into four groups. They were treated as follows: control group was administered orally with normal saline (10 ml/kg); Cd group was injected with 2 mg/kg CdCl2 intraperitoneally; Cd + Que group was injected with 2 mg/kg CdCl2 and intragastric administration of Que (100 mg/kg); Que group was administered orally with Que (100 mg/kg). The experimental results showed that the body weight of Cd-exposed rats significantly decreased and the kidney coefficient increased. In addition, Cd significantly increased the contents of Blood Urea Nitrogen, Creatinine and Uric acid. Cd also increased the glutathione and malondialdehyde contents in renal tissues. The pathological section showed that Cd can cause pathological damages such as narrow lumen and renal interstitial congestion. Cd-induced apoptosis of kidney, which could activate the mRNA and protein expression levels of Cyt-c, Caspase-9 and Caspase-3 were significantly increased. Conversely, Que significantly reduces kidney damage caused by Cd. Kidney pathological damage was alleviated by Que. Que inhibited Cd-induced apoptosis and decreased Cyt-c, Caspase-9 and Caspase-3 proteins and mRNA expression levels. To sum up, Cd can induce kidney injury and apoptosis of renal cells, while Que can reduce Cd-induced kidney damage by reducing oxidative stress and inhibiting apoptosis. These results provide a theoretical basis for the clinical application of Que in the prevention and treatment of cadmium poisoning.
Collapse
Affiliation(s)
- Ruxue Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Lulu Ding
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Ying Ye
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Ke Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Wenjing Yu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Bingzhao Yan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Jicang Wang,
| |
Collapse
|
10
|
Treviño S, Pulido G, Fuentes E, Handal-Silva A, Moreno-Rodríguez A, Venegas B, Flores G, Guevara J, Díaz A. Effect of cadmium administration on the antioxidant system and neuronal death in the hippocampus of rats. Synapse 2022; 76:1-16. [PMID: 35709361 DOI: 10.1002/syn.22242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 11/12/2022]
Abstract
Cadmium (Cd) is a heavy metal classified as a carcinogen whose exposure could affect the function of the central nervous system. Studies suggest that Cd modifies neuronal morphology in the hippocampus and affects cognitive tasks. The oxidative stress pathway is proposed as a mechanism of toxicity. However, this mechanism is not precise yet. This study aimed to evaluate the effect of Cd administration on oxidative stress markers in the male rat's hippocampus. Male Wistar rats were divided into (1) control (drinking water) and (2) treatment with Cd (32.5 ppm of cadmium chloride (CdCl2 ) in water). The Cd was administered for 2, 3, and 4 months. The results show that the oral administration of CdCl2 increased the concentration of Cd in plasma and hippocampus, and this response is time-dependent on its administration. Likewise, it caused an increase in lipid peroxidation and nitrosative stress markers. Moreover, it increased reactive astrogliosis and antioxidant enzyme activity. Consequently, the progression of the oxidative response exacerbated neurodegeneration in hippocampal cells. Our results suggest that Cd exposure induces a severe oxidative response that contributes critically to hippocampal neurodegeneration. It is suggested that exposure to Cd increases the risk of developing neurological diseases, which contributes to a decrease in the quality of life of the human and the environment in which it lives.
Collapse
Affiliation(s)
- Samuel Treviño
- Faculty of Chemical Sciences, Department of Pharmacy, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Guadalupe Pulido
- Faculty of Chemical Sciences, Department of Pharmacy, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Estefania Fuentes
- Faculty of Chemical Sciences, Department of Pharmacy, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Anabella Handal-Silva
- Department of Biology and Reproductive Toxicology, Science Institute, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Albino Moreno-Rodríguez
- Faculty of Chemical Sciences, Department of Pharmacy, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Berenice Venegas
- Biological Sciences Faculty, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Gonzalo Flores
- Neuropsychiatry Laboratory, Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Jorge Guevara
- Faculty of Medicine, Department of Biochemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alfonso Díaz
- Faculty of Chemical Sciences, Department of Pharmacy, Benemerita Autonomous University of Puebla, Puebla, Mexico
| |
Collapse
|
11
|
Liu HS, Zhou MY, Zhang X, Li YL, Kong JW, Gao X, Ge DY, Liu JJ, Ma PG, Peng GY, Liao Y. Sagittaria sagittifolia polysaccharide protects against six-heavy-metal-induced hepatic injury associated with the activation of Nrf2 pathway to regulate oxidative stress and apoptosis. J Inorg Biochem 2022; 232:111810. [DOI: 10.1016/j.jinorgbio.2022.111810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022]
|
12
|
Zhong JX, Jin SS, Wu KS, Yu GC, Tu LL, Liu L. Effect of nano-selenium loaded with lycium barbarum polysaccharide on the proliferation of lens epithelial cells after UVB damage in vitro. Int J Ophthalmol 2022; 15:9-14. [PMID: 35047350 DOI: 10.18240/ijo.2022.01.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/18/2021] [Indexed: 01/02/2023] Open
Abstract
AIM To investigate the effect of nano-selenium loaded with different concentrations of lycium barbarum polysaccharide (LBP-SeNPs) on the proliferation of human lens epithelial cells (HLECs) from UV irradiation. METHODS LBP-SeNPs were prepared and their particle size was detected. HLECs (SRA01/04) were irradiated with UVB for different time (0, 10, 20, 30, 40, 50, 60min) to construct a damaged model, the survival rate of cells was determined by methylthiazol tetrazolium (MTT) assay. The 4',6-Diamidine-2'-phenylindole dihydrochloride (DAPI) staining was used to observe the status of cell nucleus and drug entering cytoplasm through cell membrane in SRA01/04 cells after adding LBP-SENPS loaded with coumarin fluorescence agent 24h under fluorescence microscope. SRA01/04 normal and UVB-damaged cells were treated with different amounts of LBP-SeNPs at different concentrations, cells proliferation were observed. RESULTS The particle size of LBP-SeNPs was stable in the range of 150-200 nm. The survival rate changes with time after UVB irradiation were statistically significant. The 10min of UVB exposure as the time was chosen to construct the cell damage model. With DAPI staining, LBP-SeNPs were observed to enter the cytoplasm through the cell membrane under fluorescence inverted microscope. Cytotoxicity of SRA01/04 at different concentrations of LBP-SeNPs were measured. Cell survival rate was statistically different compared with the control group. The higher the loading concentration of LBP in nano-Se drugs was, the higher the cell proliferation rate was (P<0.05). The lower the concentration of LBP-SeNPs, the higher the cell proliferation rate, showing a negative growth trend (P<0.05). The group with the highest average cell proliferation rate was 0.5 µmol/L 2.0 mg/mL LBP-SeNPs (128.80%). When the 2.0 mg/mL LBP-SeNPs group was selected for cell photography, the cell density was higher at 0.5 µmol/L. With the increase of concentration, SRA01/04 cells appeared more cytoplasm dehydration, cell shrinkage and apoptotic bodies, and cell density decreased. CONCLUSION LBP-SeNPs has moderate particle size and good stability. LBP-SeNPs can protect HLECs (SRA01/04) from UVB-induced damage, and the cell proliferation rate is further increased with increasing the amount of loaded LBP and decreasing nano-selenium concentration.
Collapse
Affiliation(s)
- Jing-Xiang Zhong
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Shan-Shan Jin
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Kang-Sheng Wu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Guo-Cheng Yu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Lei-Lei Tu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Lian Liu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
13
|
Pasciu V, Baralla E, Varoni MV, Demontis MP. Evaluation of curcuma and ginger mixture ability to prevent ROS production induced by bisphenol S: an in vitro study. Drug Chem Toxicol 2022; 45:324-330. [PMID: 31742468 DOI: 10.1080/01480545.2019.1690499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/23/2019] [Accepted: 11/03/2019] [Indexed: 12/22/2022]
Abstract
The use of bisphenol S (BPS) as a substitute of Bisphenol A is increasing in several products and it can be found in different environmental and biological matrices. Its toxicity has been studied at different levels and one of BPS toxic mechanisms at high concentrations seems to be the induction of oxidative stress through the generation of reactive oxygen species (ROS). This study evaluates the ability of a curcuma and ginger (CG) mixture to exert an antioxidant effect on rat hepatocytes treated with BPS. The effects of the mixture were compared to those of a well-known antioxidant (Trolox). Three different BPS concentrations were used in order to verify ROS production. 70 µg/mL and 150 µg/mL of BPS generated a significant ROS increase (p < 0.01) as compared to control, while CG mixture was able to decrease this ROS production in hepatic cells, as compared to cells treated with 70 µg/ml of BPS (p < 0.01) restoring control levels. BPS 70 µg/mL was tested for total antioxidant capacity (TEAC), superoxide dismutase (SOD) and total thiols. TEAC and SOD significant decreased (p < 0.05 and p < 0.01, respectively) as compared to controls and CG mixture was able to restore control values. Given the widespread BPS use, results obtained in this study can be of high impact for the community, demonstrating the ability of a mixture of natural products to prevent BPS-induced oxidative stress.
Collapse
Affiliation(s)
- Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Elena Baralla
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | | | |
Collapse
|
14
|
Lo ACY, Yang M. Lycium barbarum polysaccharides and ferroptosis: jumping into the era of novel regulated cell death. Neural Regen Res 2021; 17:1473-1474. [PMID: 34916422 PMCID: PMC8771082 DOI: 10.4103/1673-5374.330600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ming Yang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
15
|
Ilesanmi OB, Inala ER. Hepatoprotective effect of Ipomoea cairica (Convolvulaceae) leaf extract against cadmium chloride induced liver damage. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2021. [DOI: 10.1016/j.toxac.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Zhao F, Guan S, Fu Y, Wang K, Liu Z, Ng TB. Lycium barbarum polysaccharide attenuates emotional injury of offspring elicited by prenatal chronic stress in rats via regulation of gut microbiota. Biomed Pharmacother 2021; 143:112087. [PMID: 34474339 DOI: 10.1016/j.biopha.2021.112087] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/23/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
Stress during pregnancy is not only detrimental to a woman's own physical and mental health, but can also cause changes in the intrauterine environment and even have an impact on later growth and development, this study was designed to understand the changes of gut microbiota in the maternal and offspring caused by prenatal chronic stress, and to explore the regulatory effect of LBP on gut microbiota, and then to improve the emotional damage caused by prenatal chronic stress in the offspring. A rat model of prenatal chronic stress was made and used LBP to intervene by gavage. Fresh feces of offspring were collected, the concentration of microbial metabolites were tested by ELISA. Illumina MiSeqPE300 sequencing technology was used to determine the sequence of 16S rRNA V3-V4 of microorganisms. On the PND 42, the emotional function of offspring were tested by open-field test (OFT), sucrose preference test (SPT) and tail of suspend test (TST). Results indicated that stress factors increased the plasma corticosterone level of rats during pregnancy and they appeared depressive behaviors. The body weight of offspring during prenatal chronic stress was lower than the control group, and the plasma corticosterone level was increased. Prenatal chronic stress had a significant impact on emotional performance of the offspring on OFT, SPT and TST. Alpha diversity of gut microbiota and microbiota composition in offspring of prenatal chronic stress was attenuated and some relationships existed between these parameters. LBP treatment reduced offspring's plasma corticosterone level and improved their body weight, changed the emotional function, increased the diversity of gut microbiota. Collectively, these findings disclose that prenatal chronic stress not only causes emotional injury on the offspring, but also changes the gut microbiota of the mother and offspring; LBP may regulate the intestinal flora of the mother, then reducing the influence of stress factors on the emotional injury of offspring.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Occupational Health and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750001, Ningxia, China
| | - Suzhen Guan
- Department of Occupational Health and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750001, Ningxia, China
| | - Youjuan Fu
- Department of Occupational Health and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750001, Ningxia, China
| | - Kai Wang
- Department of Occupational Health and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750001, Ningxia, China
| | - Zhihong Liu
- Department of Occupational Health and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750001, Ningxia, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
17
|
Pan H, Niu L, Wu Y, Chen L, Zhou X, Zhao Y. Lycium barbarum polysaccharide protects rats and cardiomyocytes against ischemia/reperfusion injury via Nrf2 activation through autophagy inhibition. Mol Med Rep 2021; 24:778. [PMID: 34498711 PMCID: PMC8436221 DOI: 10.3892/mmr.2021.12418] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
The irreversible loss of cardiomyocytes is mainly the result of ischemic/reperfusion (I/R) myocardial injury, leading to persistent heart dysfunction and heart failure. It has been reported that Lycium barbarum polysaccharide (LBP) has protective effects on cardiomyocytes, but the specific mechanism is still not completely understood. The present study examined the protective role of LBP in myocardial I/R injury. Rats were subjected to myocardial I/R injury and LBP treatment. Moreover, rat myocardial H9C2 cells exposed to hypoxia/reoxygenation (H/R) were used to simulate cardiac injury during myocardial I/R process and were exposed to LBP, rapamycin (an autophagy activator) or nuclear factor-erythroid factor 2-related factor 2 (Nrf2) transfection. Morphological examination, histopathological examination and echocardiography were used to determine the cardiac injury after I/R injury. Cell viability and apoptosis were determined via MTT and flow cytometry assays, respectively. The levels of lactate dehydrogenase (LDH), creatine kinase (CK), cardiac troponin T (cTnT), IL-1β, IL-6, TNF-α, malondialdehyde (MDA) and superoxidase dismutase (SOD) in rat serum, hearts and/or cells were assessed using ELISAs. The expression levels of Beclin 1, LC3II/LC3I, P62 and Nrf2 were analyzed via reverse transcription-quantitative PCR and western blotting. The results demonstrated that LBP improved heart function and repaired cardiomyocyte damage in I/R model rats, as well as reduced the production of cTnT, CK, LDH, IL-1β, IL-6 and TNF-α. The in vitro study results indicated that LBP increased cell viability, the apoptosis rate, and the levels of SOD and P62, as well as reduced the levels of LDH, CK, IL-1β, IL-6, TNF-α, MDA, Beclin 1 and LC3-II/LC3-I in H/R-injured H9C2 cells. Moreover, LBP promoted Nrf2 nuclear translocation, but decreased Nrf2 expression in the cytoplasm. Rapamycin exacerbated the aforementioned effects in H/R injured H9C2 cells, and partially reversed LBP-induced effects. Overexpressing Nrf2 counteracted I/R-induced effects and partially resisted rapamycin-induced effects. These findings demonstrated that LBP exhibited a cardiac protective effect on the ischemic myocardium of rats after reperfusion and attenuated myocardial I/R injury via autophagy inhibition-induced Nrf2 activation.
Collapse
Affiliation(s)
- Hao Pan
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Lin Niu
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yihao Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Liuying Chen
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaowei Zhou
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yan Zhao
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
18
|
Liang R, Zhao Q, Zhu Q, He X, Gao M, Wang Y. Lycium barbarum polysaccharide protects ARPE‑19 cells against H 2O 2‑induced oxidative stress via the Nrf2/HO‑1 pathway. Mol Med Rep 2021; 24:769. [PMID: 34490478 PMCID: PMC8436232 DOI: 10.3892/mmr.2021.12409] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/13/2021] [Indexed: 01/03/2023] Open
Abstract
Age-related macular degeneration (AMD) is a global health problem. Lycium barbarum polysaccharide (LBP), a traditional Chinese herbal medicine, has been proven to be effective against several eye diseases. However, only a few studies have investigated the effectiveness of LBP for AMD. In the present study, the human retinal epithelial cell line, ARPE-19, was pretreated with LBP for 24 h before exposure to H2O2 (500 µM). Cell viability was assessed, and a series of oxidative and antioxidant indicators were evaluated to determine the influence of LBP on H2O2-triggered oxidative stress. The present study also determined the apoptosis status, as well as the expression levels of apoptotic proteins and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway proteins. The present study aimed to determine the protective role for LBP pretreatment and its underlying molecular mechanism. The results of the present study suggest that pretreatment of ARPE-19 cells with LBP exhibit high efficacy at reducing oxidative damage and inhibiting cell apoptosis. Furthermore, LBP may modulate the expression of proteins involved in the apoptotic pathway and activate the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Ran Liang
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Qi Zhao
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Qing Zhu
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Xin He
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Mingjun Gao
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Yiru Wang
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| |
Collapse
|
19
|
Xie W, Huang YY, Chen HG, Zhou X. Study on the Efficacy and Mechanism of Lycium barbarum Polysaccharide against Lead-Induced Renal Injury in Mice. Nutrients 2021; 13:nu13092945. [PMID: 34578823 PMCID: PMC8470764 DOI: 10.3390/nu13092945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022] Open
Abstract
Lead is one of the most common heavy metal pollutants in the environment. Prolonged exposure to lead will induce oxidative stress, inflammation, and apoptosis in the kidneys, which in turn causes kidney injury. Lycium barbarum polysaccharide (LBP) is well known for its numerous pharmacological properties. This study aims to explore the efficacy and mechanism of LBP against lead-induced kidney damage in mice. Symptoms of renal injury were induced in mice by using 25 mg/kg lead acetate (PbAc2), and different doses of LBP (200, 400, and 600 mg/kg BW) were orally administrated to PbAc2-treated mice for five weeks. The results of the pharmacodynamics experiment showed that the renal pathological damages, serum creatinine (Cre), blood urea nitrogen (BUN), and kidney index of PbAc2-treated mice could be significantly alleviated by treatment with LBP. Further, LBP treatment significantly increased the weight and feed intake of PbAc2-treated mice. The dose effect results indicated that a medium dose of LBP was superior to high and low doses. The results of mechanistic experiments showed that LBP could attenuate oxidative stress, inflammation, and apoptosis in the kidneys of mice with lead toxicity by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway.
Collapse
Affiliation(s)
- Wen Xie
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (W.X.); (Y.-Y.H.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Yuan-Yuan Huang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (W.X.); (Y.-Y.H.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Hua-Guo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (W.X.); (Y.-Y.H.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- Correspondence: (H.-G.C.); (X.Z.)
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (W.X.); (Y.-Y.H.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- Correspondence: (H.-G.C.); (X.Z.)
| |
Collapse
|
20
|
Ni J, Au M, Kong H, Wang X, Wen C. Lycium barbarum polysaccharides in ageing and its potential use for prevention and treatment of osteoarthritis: a systematic review. BMC Complement Med Ther 2021; 21:212. [PMID: 34404395 PMCID: PMC8371808 DOI: 10.1186/s12906-021-03385-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lycium barbarum polysaccharide (LBP), the most abundant functional component of wolfberry, is considered a potent antioxidant and an anti-ageing substance. This review aims to outline the hallmarks of ageing in the pathogenesis of osteoarthritis (OA), followed by the current understanding of the senolytic effect of LBP and its potential use in the prevention and treatment of OA. This will be discussed through the lens of molecular biology and herbal medicine. METHODS A literature search was performed from inception to March 2020 using following keywords: "Lycium barbarum polysaccharide", "DNA damage", antioxidant, anti-apoptosis, anti-inflammation, anti-ageing, osteoarthritis, chondrocytes, fibroblasts, osteoblasts, osteoclasts, and "bone mesenchymal stem cell". The initial search yielded 2287 papers, from which 35 studies were selected for final analysis after screening for topic relevancy by the authors. RESULTS In literature different in vitro and in vivo ageing models are used to demonstrate LBP's ability to reduce oxidative stress, restore mitochondrial function, mitigate DNA damage, and prevent cellular senescence. All the evidence hints that LBP theoretically attenuates senescent cell accumulation and suppresses the senescence-associated secretory phenotype as observed by the reduction in pro-inflammatory cytokines, like interleukin-1beta, and matrix-degrading enzymes, such as MMP-1 and MMP-13. However, there remains a lack of evidence on the disease-modifying effect of LBP in OA, although its chondroprotective, osteoprotective and anti-inflammatory effects were reported. CONCLUSION Our findings strongly support further investigations into the senolytic effect of LBP in the context of age-related OA.
Collapse
Affiliation(s)
- Junguo Ni
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Manting Au
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hangkin Kong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xinluan Wang
- Centre for Translational Medical Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shen Zhen, China
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong.
| |
Collapse
|
21
|
Hu X, Mu L, Zhu L, Chang X, Nie L, Wang L, Li G. Lycium barbarum polysaccharides attenuate cardiovascular oxidative stress injury by enhancing the Keap1/Nrf2 signaling pathway in exhaustive exercise rats. Mol Med Rep 2021; 24:643. [PMID: 34278476 DOI: 10.3892/mmr.2021.12282] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 03/12/2021] [Indexed: 11/05/2022] Open
Abstract
Moderate exercise is beneficial to physical and mental health. When the amount of exercise and exercise intensity exceeds a certain limit and reaches the state of exhaustion, oxidative stress levels in the body increase, which can lead to oxidative stress‑associated damage. Lycium barbarum polysaccharide (LBP) is one of the primary active ingredients extracted from wolfberry. Following exhausting exercise in rats, LBP supplements decrease damage to the myocardium and blood vessels, indicating that LBP exerts a protective effect on the cardiovascular system. The Kelch‑like ECH‑associated protein 1 (Keap1)/NF‑E2‑related factor 2 (Nrf2) anti‑oxidative stress signaling pathway improves total oxidizing ability; anti‑apoptosis and other aspects serve a vital role. In the present study, LBP intervention was performed in vivo and in vitro to observe its effect on the Keap1/Nrf2 pathway and oxidative stress‑associated indicators in order to clarify its protective mechanism. For the in vivo experiments, 60 male Sprague‑Dawley rats were randomly divided into normal control and aerobic, exhaustive and exhaustive exercise + LBP (200 mg/kg/day) groups. For the in vitro experiments, a rat thoracic aortic endothelial cell (RTAEC) oxidative stress model was established using angiotensin II (AngII) and divided into blank control, LBP (3,200 µg/ml), AngII (1x10‑4 mol/l) and AngII + LBP groups. For in vitro experiments, small interfering (si)RNA (50 nmol) was used to transfect RTAEC and induce gene silencing of Nrf2. ELISA, hematoxylin and eosin staining, TUNEL, immunofluorescence, western blotting, immunohistochemistry and reverse transcription‑quantitative PCR were used to evaluate and verify the effect of LBP on oxidative stress indicators and the expression of Keap1/Nrf2 antioxidative stress signaling pathway. The in vivo experiments showed that LBP decreased the expression of serum malondialdehyde (MDA) and AngII, as well as apoptosis of blood vessels and cardiomyocytes and expression of TNF‑α in rats following exhaustive exercise. Meanwhile, LBP enhanced expression of the Keap1/Nrf2 signaling pathway and downstream associated protein glutamyl‑cysteine synthetase catalytic subunit (GCLC), quinone oxidoreductase 1 (NQO1) and glutamate‑cysteine ligase modified subunit (GCLM) in the thoracic aorta and myocardium of rats following exhaustive exercise. In RTAEC in vitro, LBP decreased the expression of MDA and TNF‑α in the supernatant, promoted the nuclear translocation of Nrf2 and increased expression levels of GCLC, NQO1 and GCLM. Following siNrf2 transfection into endothelial cells, the anti‑inflammatory and antioxidant stress effects of LBP were decreased. LBP was found to enhance the expression of the Keap1/Nrf2 antioxidant stress signaling pathway in endothelial cells, decreasing oxidative stress and the inflammatory response. Moreover, LBP improved the antioxidant stress ability of endothelial cells and alleviated injury of myocardial vascular tissue, thereby protecting the cardiovascular system.
Collapse
Affiliation(s)
- Xiaohui Hu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Le Mu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Lingqin Zhu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiaoyu Chang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Lihong Nie
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Li Wang
- Department of General Practice, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Guanghua Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
22
|
Kim DW, Ock J, Moon KW, Park CH. Association between Pb, Cd, and Hg Exposure and Liver Injury among Korean Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6783. [PMID: 34202682 PMCID: PMC8297092 DOI: 10.3390/ijerph18136783] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Exposure to lead (Pb), cadmium (Cd), and mercury (Hg) has been reported to be associated with liver-related diseases. However, studies examining the association between heavy metal exposure and liver injury in a large population are scant and characterized by inconsistent results. This study aimed to evaluate the association between levels of heavy metal exposure and liver injury in the general population. METHODS Data for 2953 participants aged 19 years or more obtained from the Korean National Environmental Health Survey (KoNEHS) Cycle 3 (2015-2017) were used. The associations between levels of blood or urine heavy metals (Pb, Cd, and Hg) and liver function biomarkers [aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT)] were evaluated using multiple linear regression analysis. RESULTS Regarding the blood Pb (BPb), AST was higher in those of the 4th quartile, ALT was higher in those of the 2nd and 4th quartiles, and GGT was higher in those of the 3rd and 4th quartiles than in the 1st quartile. For urinary Cd (UCd), AST was higher in those of the 4th quartile; ALT was higher in those of the 2nd, 3rd, and 4th quartiles; and GGT was higher in the 4th quartile than in the 1st quartile. For the blood Hg (BHg), AST was higher in those of the 2nd and 4th quartile, ALT was higher in those of the 2nd, 3rd, and 4th quartiles; and GGT was higher in those of the 3rd and 4th quartiles than in the 1st quartile. There was no significant difference between urinary Hg (UHg) and liver function markers. CONCLUSION Heavy metal exposure showed an association with liver injury among the general adult population in Korea. Further studies are required to clarify the relationship between heavy metals and liver injury.
Collapse
Affiliation(s)
- Do-Won Kim
- Environmental Health Research Division, National institute of Environmental Research, Ministry of Environment, Incheon 22689, Korea; (D.-W.K.); (J.O.)
- BK21 FOUR R & E Center for Learning Health System, Department of Health and Environmental Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Korea;
| | - Jeongwon Ock
- Environmental Health Research Division, National institute of Environmental Research, Ministry of Environment, Incheon 22689, Korea; (D.-W.K.); (J.O.)
| | - Kyong-Whan Moon
- BK21 FOUR R & E Center for Learning Health System, Department of Health and Environmental Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Korea;
| | - Choong-Hee Park
- Environmental Health Research Division, National institute of Environmental Research, Ministry of Environment, Incheon 22689, Korea; (D.-W.K.); (J.O.)
| |
Collapse
|
23
|
Liu RJ, He YJ, Liu H, Zheng DD, Huang SW, Liu CH. Protective effect of Lycium barbarum polysaccharide on di-(2-ethylhexyl) phthalate-induced toxicity in rat liver. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23501-23509. [PMID: 33449321 DOI: 10.1007/s11356-020-11990-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Di-(2-ethylhexyl)-phthalate (DEHP) is the most commonly used plasticizer and it has been a ubiquitous environmental contaminant which affects health. The purpose of this study was to investigate the protective effect of the Lycium barbarum polysaccharide (LBP) at dosages of 100, 200, and 300 mg/kg bw on DEHP-induced (3000 mg/kg) toxicity in rat liver through a 28-day animal experiment. The results showed that LBP attenuated oxidative stress slightly by lowering the production of ROS and improving the activity of SOD and GSH-Px in liver and serum of DEHP treatment rats. At the same time, the levels of PXR, CYP450, CYP2E1, CYP3A1, UGT1, and GST were reduced after LBP treatment. Moreover, LBP decreased the mRNA expression of PXR, UGT1, and GST significantly. These findings suggested that LBP might ameliorate DEHP-induced liver injury by down-regulating the expression of PXR in liver, further down-regulating the downstream phase I and II detoxification enzymes, thus reducing the damage caused by DEHP. Therefore, LBP may have the potential to become an auxiliary therapeutic agent as a natural ingredient of health food.
Collapse
Affiliation(s)
- Rui-Jing Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- Laboratory of Quality and Safety Risk Assessment to Post-harvested Product Storage, Ministry of Agriculture, Guangzhou, 510642, China
| | - Yong-Jian He
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- Laboratory of Quality and Safety Risk Assessment to Post-harvested Product Storage, Ministry of Agriculture, Guangzhou, 510642, China
| | - Huan Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- Laboratory of Quality and Safety Risk Assessment to Post-harvested Product Storage, Ministry of Agriculture, Guangzhou, 510642, China
| | - Dong-Dong Zheng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- Laboratory of Quality and Safety Risk Assessment to Post-harvested Product Storage, Ministry of Agriculture, Guangzhou, 510642, China
| | - Shao-Wen Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- Laboratory of Quality and Safety Risk Assessment to Post-harvested Product Storage, Ministry of Agriculture, Guangzhou, 510642, China
| | - Chun-Hong Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Laboratory of Quality and Safety Risk Assessment to Post-harvested Product Storage, Ministry of Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
24
|
He Q, Luo Y, Xie Z. Sulforaphane ameliorates cadmium induced hepatotoxicity through the up-regulation of /Nrf2/ARE pathway and the inactivation of NF-κB. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
25
|
Dong A, Huo J, Yan J, Dong A, Liu B. Lipid peroxidation of kidney of the turtle Mauremys reevesii caused by cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6811-6817. [PMID: 33011946 DOI: 10.1007/s11356-020-11054-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
This research was designed to investigate lipid peroxidation of the kidney of turtle (Mauremys reevesii) caused by cadmium. Turtles were injected intraperitoneally with cadmium at the concentration of 0 (control), 7.5, 15, and 30 mg/kg, and 5 turtles were taken from each group after exposure for 1 week (1 w), 2 weeks (2 w), and 3 weeks (3 w). Superoxide dismutase (SOD) and catalase (CAT) activities as well as glutathione (GSH) and malonyldialdehyde (MDA) contents in the homogenate of kidney tissue were analyzed. The results demonstrated that a short time of low dose of cadmium could stimulate the increase of SOD activity in the kidney of turtles, but a long time of high dose of cadmium could induce the decrease of SOD activity in the kidney of turtles. Cadmium could decrease CAT activity and GSH content in turtle kidney, but increased MDA content in turtle kidney. There were some other effects on the turtles, such as depression and diarrhea. The experimental results indicate that cadmium causes temporary oxidative stress on the kidney of turtles.
Collapse
Affiliation(s)
- Aiguo Dong
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Junfeng Huo
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China.
| | - Juanjuan Yan
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Ailing Dong
- Bureau of agriculture and rural affairs of Qianan, Tangshan, Hebei Province, China
| | - Biwang Liu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| |
Collapse
|
26
|
Dong A, Huo J, Yan J, Dong A. Oxidative stress in liver of turtle Mauremys reevesii caused by cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6405-6410. [PMID: 32989702 DOI: 10.1007/s11356-020-11017-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The research was designed to examine oxidative stress of the liver of turtle Mauremys reevesii caused by cadmium (Cd). Turtles were injected intraperitoneally with cadmium at the concentration of 7.5, 15, and 30 mg/kg, and 5 turtles were taken from each group after exposure for 1 week (1 w), 2 weeks (2 w), and 3 weeks (3 w). The activities of SOD and CAT as well as the contents of GSH and MDA in liver tissues were detected by using a kit. The results showed that the difference between the control group and the Cd-treated group was statistically significant with the increase of Cd concentration and the prolongation of exposure time, which suggested that Cd caused oxidative stress on the liver of turtles.
Collapse
Affiliation(s)
- Aiguo Dong
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Junfeng Huo
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China.
| | - Juanjuan Yan
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Ailing Dong
- Bureau of agriculture and rural affairs of Qianan, Tangshan, Hebei Province, China
| |
Collapse
|
27
|
Fang J, Yin H, Yang Z, Tan M, Wang F, Chen K, Zuo Z, Shu G, Cui H, Ouyang P, Guo H, Chen Z, Huang C, Geng Y, Liu W. Vitamin E protects against cadmium-induced sub-chronic liver injury associated with the inhibition of oxidative stress and activation of Nrf2 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111610. [PMID: 33396130 DOI: 10.1016/j.ecoenv.2020.111610] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Hepatic oxidative stress, as one important mechanism of cadmium (Cd)-induced hepatic toxicity, could, as known, be ameliorated by vitamin E (VE). However, the underlying mechanism remains to be elucidated. To investigate whether the antioxidant vitamin E can protect against Cd-induced sub-chronic liver injury associated with oxidative stress and nuclear factor erythrocyte 2-related factor 2 (Nrf2) pathway, male Sprague-Dawley rats (nine-week-old) were randomly divided into four groups (eight rats/group), namely, control, VE (100 mg/kg VE), Cd (5 mg/kg CdCl2) and VE+Cd (100 mg/kg VE+5 mg/kg CdCl2), and received intragastric administration of Cd and/or VE for four weeks. Cd-exposure alone resulted in reduced liver weight, liver histological alteration and oxidative stress, accumulation of Cd in the liver, elevated ALT and AST concentrations in serum together with decreased mRNA and protein expressions of Nrf2 pathway related molecules (Nrf2, HO-1, NQO-1, GCLC, GCLM and GST). However, the co-treatment of Cd and VE significantly ameliorated the changes mentioned above, and promoted the expression of genes and proteins of Nrf2 pathway related molecules in comparison to the Cd-exposure alone. Our results indicate that the protective effect of VE against Cd-induced sub-chronic hepatic damage in rats is associated with the inhibition of oxidative stress and activation of Nrf2 pathway.
Collapse
Affiliation(s)
- Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Heng Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhuangzhi Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Maoyun Tan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Fengyuan Wang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chendu, Sichuan 610041, PR China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China.
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Wentao Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
28
|
Yan B, Zhang X, Wang J, Jia S, Zhou Y, Tian J, Wang H, Tang Y. Inhibitory effect of Lycium barbarum polysaccharide on sperm damage during cryopreservation. Exp Ther Med 2020; 20:3051-3063. [PMID: 32855672 PMCID: PMC7444372 DOI: 10.3892/etm.2020.9060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
With the development of cryopreservation technology, marked progress has been made regarding sperm cryopreservation. However, as conventional cryopreservation agents are not effective at freezing weak sperm, improved cryopreservation agents are in demand. In the present study, the addition of Lycium barbarum polysaccharides to glycerol-egg-yolk-citrate sperm cryopreservation agent was determined to improve sperm forward speed, reduce the DNA fragmentation index and improve the mitochondrial membrane potential. Furthermore, during the freezing and thawing of sperm, the improved cryopreservative increased the content of Bcl-2 while reducing the content of Bax, cytochrome C and caspase-3. These results indicated that polysaccharides added as a protective agent preserved the normal function of sperm mitochondria. Transmission electron microscopy also confirmed the protective effect of the polysaccharides on the structure of mitochondria. It was also indicated that improved cryopreservative lowered the levels of reactive oxygen species (ROS) during the freeze-thawing process. Therefore, it is hypothesized that improved cryopreservative agents may be beneficial for maintaining the structure and function of the mitochondria of weak sperm when cryopreserved, which may be facilitated via reducing the production of ROS in the freezing-thawing process, thus avoiding activation of the apoptotic pathway in sperm mitochondria and protecting mitochondrial structure and sperm function.
Collapse
Affiliation(s)
- Bei Yan
- Ningxia Human Sperm Bank, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, P.R. China
| | - Xinzong Zhang
- National Health Committee Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, Guangdong 510600, P.R. China
| | - Juan Wang
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Shaotong Jia
- Reproductive Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, P.R. China
| | - Yue Zhou
- Ningxia Human Sperm Bank, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, P.R. China
| | - Jia Tian
- Ningxia Human Sperm Bank, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, P.R. China
| | - Hongyan Wang
- Ningxia Human Sperm Bank, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, P.R. China
| | - Yunge Tang
- National Health Committee Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, Guangdong 510600, P.R. China
| |
Collapse
|
29
|
Cui F, Shi CL, Zhou XJ, Wen W, Gao XP, Wang LY, He B, Yin M, Zhao JQ. Lycium barbarum Polysaccharide Extracted from Lycium barbarum Leaves Ameliorates Asthma in Mice by Reducing Inflammation and Modulating Gut Microbiota. J Med Food 2020; 23:699-710. [PMID: 32392444 DOI: 10.1089/jmf.2019.4544] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study was designed to explore the impact of Lycium barbarum polysaccharide (LBP) on inflammation and gut microbiota in mice with allergic asthma. Mice were divided into four groups: control group, OVA (ovalbumin) group, Con+LBP group, OVA+LBP group. After 28 days of LBP intervention, mice were euthanized and associated indications were investigated. Histopathological examination demonstrated that LBP reduced lung injury. The results of our current study provide evidence that supplementation with LBP in asthmatic mice decreases TNF, IL-4, IL-6, MCP-1, and IL-17A in plasma and bronchoalveolar lavage fluid (BALF). Sequencing and analysis of gut microbiota indicated that compared with the OVA group, Lactobacillus and Bifidobacterium were increased, but Firmicutes, Actinobacteria, Alistipes, and Clostridiales were decreased in the OVA+LBP group. We also found that gut microbiota were related to inflammation-related factors. Therefore, we speculate that LBP may improve allergic asthma by altering gut microbiota and inhibiting inflammation in mice.
Collapse
Affiliation(s)
- Fang Cui
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Chun-Li Shi
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiao-Jing Zhou
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Wang Wen
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiao-Ping Gao
- Department of Otolaryngology Head and Neck Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Li-Ying Wang
- Ningxia Senmiao Goji Technology and Development Co., Ltd., Yinchuan, China
| | - Bin He
- Ningxia Senmiao Goji Technology and Development Co., Ltd., Yinchuan, China
| | - Mei Yin
- Department of Respiratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jia-Qing Zhao
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.,Medical Science Research Institution of NingXia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|
30
|
Huo J, Dong A, Yan J, Dong A. Effects of cadmium on the activities of ALT and AST as well as the content of TP in plasma of freshwater turtle Mauremys reevesii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18025-18028. [PMID: 32170612 DOI: 10.1007/s11356-020-08338-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is one of the toxic metals in the aquatic environment. This study was designed to examine the effects of Cd on the activities of ALT and AST and the concentrations of TP in plasma of freshwater turtle Mauremys reevesii. Experiment turtles were exposed to Cd at the concentration of 15 mg/kg by intraperitoneal injection. The activities of ALT and AST and the concentrations of TP were investigated. Compared with the controls, the activities of ALT and AST in plasma of the treated turtles significantly increased. The concentrations of TP were comparable between the treated turtles and the controls except that were higher than the control turtles in 14 days (14 d) and 56 days (56 d). As a result that turtles exposed to Cd were led to liver function damage.
Collapse
Affiliation(s)
- Junfeng Huo
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Aiguo Dong
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China.
| | - Juanjuan Yan
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Ailing Dong
- Bureau of Agriculture and Rural Affairs of Qianan, Tangshan, Hebei Province, China
| |
Collapse
|
31
|
Lu Y, Yang J, Wang X, Ma Z, Li S, Liu Z, Fan X. Research progress in use of traditional Chinese medicine for treatment of spinal cord injury. Biomed Pharmacother 2020; 127:110136. [PMID: 32335299 DOI: 10.1016/j.biopha.2020.110136] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious central nervous system disorder caused by trauma that has gradually become a major challenge in clinical medical research. As an important branch of worldwide medical research, traditional Chinese medicine (TCM) is rapidly moving towards a path of reform and innovation. Therefore, this paper systematically reviews research related to existing TCM treatments for SCI, with the aims of identifying deficits and shortcomings within the field, and proposing feasible alternative prospects. METHODS All data and conclusions in this paper were obtained from articles published by peers in relevant fields. PubMed, SciFinder, Google Scholar, Web of Science, and CNKI databases were searched for relevant articles. Results regarding TCM for SCI were identified and retrieved, then manually classified and selected for inclusion in this review. RESULTS The literature search identified a total of 652 articles regarding TCM for SCI. Twenty-eight treatments (16 active ingredients, nine herbs, and three compound prescriptions) were selected from these articles; the treatments have been used for the prevention and treatment of SCI. In general, these treatments involved antioxidative, anti-inflammatory, neuroprotective, and/or antiapoptotic effects of TCM compounds. CONCLUSIONS This paper showed that TCM treatments can serve as promising auxiliary therapies for functional recovery of patients with SCI. These findings will contribute to the development of diversified treatments for SCI.
Collapse
Affiliation(s)
- Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuexi Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Sheng Li
- Lanzhou First People's Hospital, Lanzhou, Gansu 730000, China
| | - Zhaoyang Liu
- Department of Medical Imaging, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Xuegong Fan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
32
|
Liu L, Sha XY, Wu YN, Chen MT, Zhong JX. Lycium barbarum polysaccharides protects retinal ganglion cells against oxidative stress injury. Neural Regen Res 2020; 15:1526-1531. [PMID: 31997818 PMCID: PMC7059572 DOI: 10.4103/1673-5374.274349] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The accumulation of excessive reactive oxygen species can exacerbate any injury of retinal tissue because free radicals can trigger lipid peroxidation, protein damage and DNA fragmentation. Increased oxidative stress is associated with the common pathological process of many eye diseases, such as glaucoma, diabetic retinopathy and ischemic optic neuropathy. Many studies have demonstrated that Lycium barbarum polysaccharides (LBP) protects against oxidative injury in numerous cells and tissues. For the model of hypoxia we used cultured retinal ganglion cells and induced hypoxia by incubating with 200 µM cobalt chloride (CoCl2) for 24 hours. To investigate the protective effect of LBP and its mechanism of action against oxidative stress injury, the retinal tissue was pretreated with 0.5 mg/mL LBP for 24 hours. The results of flow cytometric analysis showed LBP could effectively reduce the CoCl2-induced retinal ganglion cell apoptosis, inhibited the generation of reactive oxygen species and the reduction of mitochondrial membrane potential. These findings suggested that LBP could protect retinal ganglion cells from CoCl2-induced apoptosis by reducing mitochondrial membrane potential and reactive oxygen species.
Collapse
Affiliation(s)
- Lian Liu
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xiao-Yuan Sha
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Yi-Ning Wu
- Department of Ophthalmology, Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Meng-Ting Chen
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Jing-Xiang Zhong
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
33
|
Ren F, Fang Q, Feng T, Li Y, Wang Y, Zhu H, Hu J. Lycium barbarum and Laminaria japonica polysaccharides improve Cashmere goat sperm quality and fertility rate after cryopreservation. Theriogenology 2019; 129:29-36. [PMID: 30797137 DOI: 10.1016/j.theriogenology.2019.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/25/2019] [Accepted: 02/10/2019] [Indexed: 01/10/2023]
Abstract
Cashmere goat is known for the highest cashmere yield and best fiber quality. Here, the effects of Lycium barbarum polysaccharide (LBP) and Laminaria japonica polysaccharide (LJP) on goat sperm quality were investigated. Results showed that the sperm motility, mitochondrial activity, and membrane and acrosome integrity were significantly higher with 4.0 mg/mL LBP and 1.0 mg/mL LJP supplementations than in the control (P < 0.05), respectively. Higher SOD, CAT, and GSH-Px levels were observed in 4.0 mg/mL LBP and 1.0 mg/mL LJP groups than control group (P < 0.05). Sperm characteristics with 2.0 + 1.0 mg/mL LBP + LJP supplementation significantly improved compared to that with other treatments (P < 0.05). Compared to the control treatment, the non-return rate (NRR) were higher in the LBP + LJP (2.0 + 1.0 mg/mL) group (P < 0.05). These results suggest that LBP and LJP enhance cryo-protective effects on goat spermatozoa, and that 2.0 + 1.0 mg/mL LBP + LJP addition to the extender during cryopreservation is beneficial to the Cashmere goat breeding industry.
Collapse
Affiliation(s)
- Fa Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Qian Fang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Tianyu Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yu Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yanhua Wang
- Center of Lhasa Animal Disease Prevention and Control, Lhasa, Tibet, 850000, China.
| | - Haijing Zhu
- Center of Northern Shaanxi White Cashmere Goats Engineering Research, Yulin University, Yulin, Shaanxi, 719000, China.
| | - Jianhong Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
34
|
Li Q, Zhang Z, Li H, Pan X, Chen S, Cui Z, Ma J, Zhou Z, Xing B. Lycium barbarum polysaccharides protects H9c2 cells from hypoxia-induced injury by down-regulation of miR-122. Biomed Pharmacother 2019; 110:20-28. [DOI: 10.1016/j.biopha.2018.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023] Open
|
35
|
Zhang L, Yao Z, Ji G. Herbal Extracts and Natural Products in Alleviating Non-alcoholic Fatty Liver Disease via Activating Autophagy. Front Pharmacol 2018; 9:1459. [PMID: 30618753 PMCID: PMC6297257 DOI: 10.3389/fphar.2018.01459] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease world-wide, and currently therapeutic options for NAFLD are limited. Herbal medicine (HM) may offer an attractive alternative for the treatment of NAFLD. Recent years have witnessed a growing interest in the autophagy-inducing agents, and autophagy activation has been recognized as an efficient strategy in managing NAFLD and related complications. Pharmacological studies have demonstrated certain potential of HM extracts and natural products in inducing autophagy, which might contribute to the efficacy of HM in preventing and treating NAFLD. This review aims to summarize current understanding of mechanisms of HM extracts and natural products in preventing and treating NAFLD. Specially, we focused on mechanisms by which autophagy can target the main pathogenesis events associated with NAFLD, including hepatic steatosis, inflammation, oxidative stress, and apoptosis. It is hoped that this brief review can provide a general understanding of HM extracts and natural products in treating NAFLD, and raise awareness of potential clinical application of HM in general.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Guang Ji
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
36
|
Zhang H, Zheng L, Yuan Z. Lycium barbarum
polysaccharides promoted proliferation and differentiation in osteoblasts. J Cell Biochem 2018; 120:5018-5023. [PMID: 30417412 DOI: 10.1002/jcb.27777] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Huiying Zhang
- School of Health Science, Wuhan University Wuhan China
| | - Lei Zheng
- Department of Cardiovascular Medicine, Shanxi Dayi Hospital Taiyuan China
| | - Zhanpeng Yuan
- School of Health Science, Wuhan University Wuhan China
| |
Collapse
|
37
|
Zhang R, Xu Y, Niu H, Tao T, Ban T, Zheng L, Ai J. Lycium barbarum polysaccharides restore adverse structural remodelling and cardiac contractile dysfunction induced by overexpression of microRNA-1. J Cell Mol Med 2018; 22:4830-4839. [PMID: 30117672 PMCID: PMC6156239 DOI: 10.1111/jcmm.13740] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/20/2018] [Indexed: 12/14/2022] Open
Abstract
MicroRNA‐1 (miR‐1) stands out as the most prominent microRNA (miRNA) in regulating cardiac function and has been perceived as a new potential therapeutic target. Lycium barbarum polysaccharides (LBPs) are major active constituents of the traditional Chinese medicine based on L. barbarum. The purpose of this study was to exploit the cardioprotective effect and molecular mechanism of LBPs underlying heart failure. We found that LBPs significantly reduced the expression of myocardial miR‐1. LBPs improved the abnormal ECG and indexes of cardiac functions in P‐V loop detection in transgenic (Tg) mice with miR‐1 overexpression. LBPs recovered morphological changes in sarcomeric assembly, intercalated disc and gap junction. LBPs reversed the reductions of CaM and cMLCK, the proteins targeted by miR‐1. Similar trends were also obtained in their downstream effectors including the phosphorylation of MLC2v and both total level and phosphorylation of CaMKII and cMyBP‐C. Collectively, LBPs restored adverse structural remodelling and improved cardiac contractile dysfunction induced by overexpression of miR‐1. One of the plausible mechanisms was that LBPs down‐regulated miR‐1 expression and consequently reversed miR‐1‐induced repression of target proteins relevant to myocardial contractibility. LBPs could serve as a new, at least a very useful adjunctive, candidate for prevention and therapy of heart failure.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yi Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Huifang Niu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ting Tao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tao Ban
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Linyao Zheng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jing Ai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
38
|
Li J, Ding Z, Yang Y, Mao B, Wang Y, Xu X. Lycium barbarum polysaccharides protect human trophoblast HTR8/SVneo cells from hydrogen peroxide‑induced oxidative stress and apoptosis. Mol Med Rep 2018; 18:2581-2588. [PMID: 30015960 PMCID: PMC6102627 DOI: 10.3892/mmr.2018.9274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/13/2018] [Indexed: 02/03/2023] Open
Abstract
Pregnancy complications are associated with abnormal cytotrophoblast differentiation and invasion. Hydrogen peroxide (H2O2) is an important mediator of oxidative ischemia/reperfusion stress in the placenta. Lycium barbarum polysaccharides (LBP) have been demonstrated to counteract oxidative free radicals. The effects of LBP in trophoblast HTR8/SVneo cells injured with H2O2 were examined. A cell counting kit-8 assay was performed to detect the effect of LBP at different concentrations on the proliferative ability of H2O2 injured trophoblast cells. Flow cytometry was used to determine the levels of reactive oxygen species (ROS), mitochondria membrane potential (MMP) disruption and apoptosis. Superoxide dismutase (SOD) activity and lactate dehydrogenase (LDH) leakage into the supernatant was detected by ultraviolet spectrophotometry. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to detect the expression of apoptosis-associated factors, including survivin, hypoxia inducible factor 1-α (HIF1-α), Bcl-2 apoptosis regulator (Bcl-2), Bcl-2 associated X apoptosis regulator (Bax). The results revealed that LBP protected the proliferative ability of trophoblast cells injured with H2O2 in a dose-dependent manner. LBP inhibited the oxidative stress induced by H2O2, by reducing ROS and LDH levels and increasing SOD activity. Additionally, LBP decreased MMP disruption and cell apoptosis induced by H2O2, by increasing the mRNA and protein expression of survivin, HIF1-α and Bcl-2 and decreasing Bax expression. Therefore, it was concluded that LBP protected human trophoblast cells from H2O2-induced oxidative stress and cell apoptosis via regulation of apoptosis-associated factor expression. It will provide a novel strategy for the treatment of pregnancy complications.
Collapse
Affiliation(s)
- Jing Li
- Department of Women and Children's Medical Center, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Zhongjun Ding
- Reproduction Medicine Center, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Yue Yang
- Discipline of Physiology, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Baohong Mao
- Department of Women and Children's Medical Center, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Yanxia Wang
- Department of Women and Children's Medical Center, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Xiaoying Xu
- Perinatal Center, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
39
|
Xia H, Tang H, Wang F, Yang X, Wang Z, Liu H, Pan D, Wang S, Sun G. Metabolic effects of dietary supplementation of Lycium barbarum polysaccharides on serum and urine metabolomics in a young healthy male population. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
40
|
Wang F, Tipoe GL, Yang C, Nanji AA, Hao X, So KF, Xiao J. Lycium barbarum Polysaccharide Supplementation Improves Alcoholic Liver Injury in Female Mice by Inhibiting Stearoyl-CoA Desaturase 1. Mol Nutr Food Res 2018; 62:e1800144. [PMID: 29797417 DOI: 10.1002/mnfr.201800144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/04/2018] [Indexed: 01/21/2023]
Abstract
SCOPE Lycium barbarum polysaccharide (LBP) is a water fraction of wolfberry, which has been demonstrated to possess a hepatoprotective effect in several liver disease models. However, the anti-alcoholic liver disease (anti-ALD) mechanism of LBP has not been investigated thoroughly. Its protective effects on both male and femal mice are investigated in the current study. METHODS AND RESULTS A chronic ethanol-fed ALD in vivo model is applied to study the effect of LBP in both male and female mice. It is observed that ethanol causes more severe liver injury in female than male mice, and the ameliorative effects of LBP are also more significant in female mice, which are impaired after complete bilateral oophorectomy. The hepatic SCD1 expression is found to be positively correlated with the severity of the liver damage and the main mediator of LBP inducer of protection. The AMPK-CPT pathway is also activated by LBP to rebalance the dysregulated lipid metabolism during ALD development. By using concurrent sodium palmitate and an ethanol-induced in vitro cell damage model in AML-12 cell line, it is characterized that LBP directly interacts with ERα instead of ERβ to activate the SCD1-AMPK-CPT pathway. CONCLUSIONS LBP is an effective and safe hepatoprotective agent against ALD primarily through the SCD1-AMPK-CPT pathway after ERα agonist.
Collapse
Affiliation(s)
- Fei Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China
| | - George L Tipoe
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, 999077, Hong Kong
| | - Changqing Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China
| | - Amin A Nanji
- School of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H1V, Canada
| | - Xiangfeng Hao
- Yinchuan Bairuiyuan Biotechnology, Yinchuan, 750200, China
| | - Kwok-Fai So
- GMH Institute of CNS Regeneration, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, 510632, China
| | - Jia Xiao
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China.,School of Biomedical Sciences, The University of Hong Kong, Pokfulam, 999077, Hong Kong.,GMH Institute of CNS Regeneration, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
41
|
Chen L, Li W, Qi D, Wang D. Lycium barbarum polysaccharide protects against LPS-induced ARDS by inhibiting apoptosis, oxidative stress, and inflammation in pulmonary endothelial cells. Free Radic Res 2018; 52:480-490. [PMID: 29502482 DOI: 10.1080/10715762.2018.1447105] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lan Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Qi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
42
|
Huo J, Dong A, Niu X, Dong A, Lee S, Ma C, Wang L. Effects of cadmium on oxidative stress activities in plasma of freshwater turtle Chinemys reevesii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8027-8034. [PMID: 29305804 DOI: 10.1007/s11356-017-1139-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/26/2017] [Indexed: 05/24/2023]
Abstract
Cadmium (Cd) has been recently found in high concentrations in the aquatic environment. This study was designed to examine the effects of Cd on the oxidative stress activities in plasma of freshwater turtle Chinemys reevesii. Experimental turtles were exposed to Cd at the concentration of 15 mg/kg by intraperitoneal injection, and redox status was investigated. Compared to the controls, superoxide dismutase (SOD) and catalase activities in plasma of the treated animals significantly decreased in week 1, week 2, and week 4. However, SOD activities gradually increased from week 4 to week 8. The treated animals had higher content of MDA and lower content of GSH in plasma over the observation period. In conclusion, our results showed that Cd decreased the antioxidant capacity and increased the level of oxidative damage product in plasma, which suggest that Cd causes oxidative stress and damage in the animal under the experimental conditions.
Collapse
Affiliation(s)
- Junfeng Huo
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Aiguo Dong
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China.
| | - Xiaojun Niu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Ailing Dong
- QianAn agriculture Animal Husbandry and Fishery Bureau, Tangshan, Hebei Province, China
| | - Shaochin Lee
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China.
| | - Cungen Ma
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China.
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China.
| |
Collapse
|
43
|
Jiang Y, Zi W, Pei Z, Liu S. Characterization of polysaccharides and their antioxidant properties from Plumula nelumbinis. Saudi Pharm J 2018; 26:656-664. [PMID: 29989035 PMCID: PMC6035323 DOI: 10.1016/j.jsps.2018.02.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/13/2018] [Indexed: 01/15/2023] Open
Abstract
Two novel polysaccharides, Plumula nelumbinis (P. nelumbinis) polysaccharide I (LNP I) and P. nelumbinis polysaccharide II (LNP II), were extracted and purified from P. nelumbinis, and a sulfated polysaccharide, P. nelumbinis polysaccharide III (LNP III), with a substitution degree of 0.62 was prepared from LNPI. The structures of the LNPs were preliminarily characterized using high performance size exclusion chromatography (HPSEC), gas chromatography-mass spectrometry (GC–MS), Fourier transformed infrared spectrometry (FT-IR), and nuclear magnetic resonance (NMR) spectrometry. In addition, evaluation of the antioxidant activity of the LNPs showed that they could significantly increase the proliferation of RAW264.7 macrophages (P < 0.05) and improve the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) based on cell model of H2O2-induced oxidative damage. This suggested that these LNPs may be used as potential antioxidants.
Collapse
Affiliation(s)
- Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| | - Wen Zi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| | - Zhifang Pei
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| |
Collapse
|
44
|
Kamenova K, Gluhcheva Y, Vladov I, Stoykova S, Ivanova J. Ameliorative effect of the anticancer agent salinomycin on cadmium-induced hepatotoxicity and renal dysfunction in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3616-3627. [PMID: 29164462 DOI: 10.1007/s11356-017-0755-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
This study presents experimental data on the effects of the tetraethylammonium salt of salinomycinic acid (Sal) on Cd-induced hepatotoxicity and renal dysfunction in Cd-treated mice compared to those of meso-2,3-dimercaptosuccinic acid (DMSA). Forty 60-day-old male ICR mice were randomized into five groups: control group (untreated mice), Cd group (Cd(II) acetate 20 mg/kg body weight provided orally once per day for 14 days), Cd + DMSA group (exposed to Cd(II) acetate as the Cd-exposed group followed by DMSA 20 mg/kg body weight provided orally once per day for 14 days), and Cd + Sal group (exposed to Cd(II) acetate as the Cd-exposed group followed by Sal 20 mg/kg body weight once per day for 14 days). Cd intoxication of mice induced significant liver and kidney injury and a significant elevation of the concentration of Cd in both organs. Treatment of Cd-exposed mice with DMSA or Sal restored the levels of the renal and hepatic functional markers and significantly decreased the concentration of the toxic metal ion in both organs. Administration of Sal improved Cd-induced alterations of the endogenous levels of the essential metal ions. Histological studies revealed that the antibiotic more effectively ameliorated the Cd effect on the liver morphology compared to DMSA. Taken together, the results confirm that the anticancer agent salinomycin is a promising antidote to Cd poisoning.
Collapse
Affiliation(s)
- Kalina Kamenova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 J. Bourchier Ave, 1164, Sofia, Bulgaria
| | - Yordanka Gluhcheva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, 1113, Sofia, Bulgaria
| | - Ivelin Vladov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, 1113, Sofia, Bulgaria
| | - Silviya Stoykova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 J. Bourchier Ave, 1164, Sofia, Bulgaria
| | - Juliana Ivanova
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", Kozjak Str., 1, 1407, Sofia, Bulgaria.
| |
Collapse
|
45
|
Yu Y, Wu X, Pu J, Luo P, Ma W, Wang J, Wei J, Wang Y, Fei Z. Lycium barbarum polysaccharide protects against oxygen glucose deprivation/reoxygenation-induced apoptosis and autophagic cell death via the PI3K/Akt/mTOR signaling pathway in primary cultured hippocampal neurons. Biochem Biophys Res Commun 2018; 495:1187-1194. [DOI: 10.1016/j.bbrc.2017.11.165] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 11/24/2017] [Indexed: 01/25/2023]
|
46
|
Mechanism of Lycium barbarum polysaccharides on primary cultured rat hippocampal neurons. Cell Tissue Res 2017; 369:455-465. [DOI: 10.1007/s00441-017-2648-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/25/2017] [Indexed: 01/27/2023]
|