1
|
Puhlmann N, Olsson O, Kümmerer K. How data on transformation products can support the redesign of sulfonamides towards better biodegradability in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171027. [PMID: 38378053 DOI: 10.1016/j.scitotenv.2024.171027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Sulfonamide antibiotics (SUAs) released into the environment can affect environmental und human health, e.g., by accelerating the development and selection of antimicrobial resistant bacteria. Benign by Design (BbD) of SUAs is an effective risk prevention approach. BbD principles aim for fast and complete mineralization or at least deactivation of the SUA after release into the aquatic environment. Main objective was to test if mixtures of transformation products (TPs) generated via photolysis of SUAs can be used as an efficient way to screen for similarly effective but better biodegradable SUA alternatives. Six SUAs were photolyzed (Hg ultraviolet (UV) light), and generated UV-mixtures analysed by high performance liquid chromatography coupled to an UV and tandem mass spectrometry detector. UV-mixtures were screened for antibiotic activity (luminescence bacteria test, LBT, on luminescence and growth inhibition of Aliivibrio Fischeri) and environmental biodegradability (manometric respirometry test, MRT, OECD 301F) using untreated parent SUAs in comparison. Additionally, ready environmental biodegradability of three commercially available hydroxylated sulfanilamide derivatives was investigated. SUA-TPs contributed to acute and chronic bacterial luminescence inhibition by UV-mixtures. LBT's third endpoint, growth inhibition, was not significant for UV-mixtures. However, it cannot be excluded for tested TPs as concentrations were lower than parents' concentrations and inhibition by most parental concentrations tested was also not significant. HPLC analysis of MRT samples revealed that one third of SUA-TPs was reduced during incubation. Three of these TPs, likely OH-SIX, OH-SMX and OH-STZ, were of interest for BbD because the sulfonamide moiety is still present. However, hydroxylated sulfanilamide derivatives, tested to investigate the effect of hydroxylation on biodegradability, were not readily biodegraded. Thus, improving mineralization through hydroxylation as a general rule couldn't be confirmed, and no BbD candidate could be identified. This study fills data gaps on bioactivity and environmental biodegradability of SUAs' TP-mixtures. Findings may support new redesign approaches.
Collapse
Affiliation(s)
- Neele Puhlmann
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| | - Oliver Olsson
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany.
| | - Klaus Kümmerer
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany; Research and Education Hub, International Sustainable Chemistry Collaborative Centre ISC(3), Germany.
| |
Collapse
|
2
|
Xu L, Li C, Wei G, Ji J, Lichtfouse E, García A, Zhang Y. Degradation of sulfamethoxazole by chlorination in water distribution systems: Kinetics, toxicity, and antibiotic resistance genes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10817. [PMID: 36524464 DOI: 10.1002/wer.10817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 10/20/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Sulfamethoxazole (SMX) is one of veterinary drugs and food additives, which has been frequently detected in surface waters in recent years and will cause damage to organisms. Therefore, SMX was selected as a target to be investigated, including the degradation kinetics, evolution of toxicity, and antibiotic resistance genes (ARGs) of SMX during chlorination in batch reactors and water distribution systems (WDS), to determine the optimal factors for removing SMX. In the range of investigated pH (6.3-9.0), the SMX degradation had the fastest rate at close to neutral pH. The chlorination of SMX was affected by the initial total free chlorine concentration, and the degradation of SMX was consistent with second-order kinetics. The rate constants in batch reactors are (2.23 ± 0.07) × 102 M-1 s-1 and (5.04 ± 0.30) × 10 M-1 s-1 for HClO and ClO-1 , respectively. Moreover, the rate constants in WDS are (1.76 ± 0.07) × 102 M-1 s-1 and (4.06 ± 0.62) × 10 M-1 s-1 , respectively. The degradation rate of SMX was also affected by pipe material, and the rate followed the following order: stainless-steel pipe (SS) > ductile iron pipe (DI) > polyethylene pipe (PE). The degradation rate of SMX in the DI increased with increasing flow rate, but the increase was limited. In addition, SMX could increase the toxicity of water initially, yet the toxicity reduced to the level of tap water after 2-h chlorination. And the relative abundance of ARGs (sul1 and sul2) of tap water samples was significantly increased under different chlorination conditions. PRACTITIONER POINTS: The degradation rate of SMX in batch reactor and WDS is different, and they could be described by first- or second-order kinetics. The degradation of SMX had the fastest rate at neutral pH. The degradation rate of SMX was also affected by pipe material and flow velocity. SMX increased the toxicity of water initially, yet the toxicity reduced after a 2-h chlorination. SMX increased the relative abundance of antibiotic resistance genes sul1 and sul2.
Collapse
Affiliation(s)
- Luo Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Guozijian Wei
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Jie Ji
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix en Provence, France
| | - Andreina García
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago, Chile
| | - Yunshu Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Hu J, Li X, Liu F, Fu W, Lin L, Li B. Comparison of chemical and biological degradation of sulfonamides: Solving the mystery of sulfonamide transformation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127661. [PMID: 34763922 DOI: 10.1016/j.jhazmat.2021.127661] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/13/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Sulfonamides (SAs) are widespread in aquatic environments and pose serious environmental risks. The removal efficiencies and degradation mechanisms of SAs in both chemical and biological degradation systems were comprehensively reviewed. Density functional theory (DFT) was utilized to decipher the reaction types and reactive sites of both degradation mechanisms at the electron level. In chemical degradation, the rate of the reactive oxidants to degrade SAs follows the order SO4•- ≈ •OH > O3 > 1O2 > ClO2 ≈ Fe(VI) ≈ HOCl > peroxymonosulfate. pH affects the oxidation-reduction potentials of oxidants, the reactivity of SAs, and the intermolecular force between oxidants and SAs, thereby affecting the chemical degradation efficiencies and mechanisms. In biological degradation, oxidoreductase produced by bacteria, fungi, algae, and plants can degrade SAs. The catalytic activity of the enzyme is affected by the enzyme system, reaction conditions, and type of SAs. Despite the different reaction modes and removal efficiencies of SAs in chemical degradation and biological degradation, the transformation pathways and products show commonalities. Modification of the amino (N1H2-) moiety and destruction of sulfonamide bridge (-SO2-N11H-) moiety are the main pathways for both chemical and biological degradation of SAs. Most oxidants or enzymes can react with the N1H2- moiety. Reactions of the -SO2-N11H- moiety are mainly initiated by the cleavage of S-N bonds for five-membered heterocyclic ring-substituted SAs, and by SO2 extrusion for six-membered heterocyclic ring-substituted SAs. Chlorine substitution and coupling on the N1H2- moiety, hydroxylation of the benzene moiety, oxidation of methyl, and isomerization of the R substituents are the transformation pathways unique to chemical degradation. Formylation/acetylation, glycosylation, pterin conjugation, and deamination of the N1H2- moiety are the transformation pathways unique to biological degradation. DFT studies revealed the same reaction types and the same reactive sites of SAs in chemical and biological degradation. Electrophiles are mostly prone to attack the N1 atom on the amino moiety of neutral SAs and the N11 atom on the sulfonamide bridge moiety of anionic SAs, leading to nitration or electrophilic substitution of the amino moiety and the cleavage of S-N bonds or SO2 extrusion of the sulfonamide bridge moiety. Reactions on the -SO2-N11H- moiety eliminate antibacterial activity in the SA degradation process. This review elucidated SA transformation by comparing the chemical and biological degradation of SAs. This could provide theoretical guidance for the development of more efficient and economical treatment technologies for SAs.
Collapse
Affiliation(s)
- Jiahui Hu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Feifei Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjie Fu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lin Lin
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
4
|
Li S, He B, Liang Y, Wang J, Jiao Q, Liu Y, Guo R, Wei M, Jin H. Sensitive electrochemical aptasensor for determination of sulfaquinoxaline based on AuPd NPs@UiO-66-NH 2/CoSe 2 and RecJf exonuclease-assisted signal amplification. Anal Chim Acta 2021; 1182:338948. [PMID: 34602189 DOI: 10.1016/j.aca.2021.338948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023]
Abstract
The authors designed a sensitive label-free electrochemical aptasensor for the detection of sulfaquinoxaline (SQX), including the AuPd NPs@UiO-66-NH2/CoSe2 nanocomposites and RecJf exonuclease-assisted target recycle signal amplification strategy. AuPd NPs@UiO-66-NH2/CoSe2 nanocomposite with excellent conductivity and numerous active sites was successfully synthesized to provide a favorable sensing platform and load more double-strand DNA (dsDNA) on the electrode surface. The negatively charged phosphate group of the oligonucleotide and [Fe (CN)6] 3-/4- repel each other electrostatically, resulting in very low electrical signals. In the presence of SQX, its corresponding aptamer will be released from the double-stranded structure and then digested by RecJf exonuclease, which resulted in the SQX being released to initiate the next recycling to help amplify the DPV signal. Under the optimal conditions, the peak current has a linear relationship with the logarithmic of SQX concentration in the range of 1 pg/mL∼100 ng/mL and the obtained detection limit was 0.547 pg/mL. Furthermore, the contrasted aptasensor possess reliable specificity, reproducibility and stability toward SQX, and has been applied to detect SQX in pork samples with a satisfied recovery varied from 94.40% to 95.98%.
Collapse
Affiliation(s)
- Shuying Li
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China.
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Qiang Jiao
- Henan Province Food Inspection Research Institute, Zhengzhou, Henan, 450003, PR China
| | - Yong Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, PR China
| | - Rui Guo
- Henan Institute of Product Quality Supervision and Inspection, Zhengzhou, Henan, 450047, PR China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| |
Collapse
|
5
|
Li J, Zhao L, Feng M, Huang CH, Sun P. Abiotic transformation and ecotoxicity change of sulfonamide antibiotics in environmental and water treatment processes: A critical review. WATER RESEARCH 2021; 202:117463. [PMID: 34358906 DOI: 10.1016/j.watres.2021.117463] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Sulfonamides (SAs) are among the most widely used antibiotics to treat bacterial infections for humans and animals. They are also used in livestock agriculture to improve growth and feed efficiency in many countries. Recent years, there is a growing concern about the environmental fate and treatment technologies of SAs, in order to eliminate their potential impact on the ecosystem and human health. Additionally, SAs are frequently used as model compounds to evaluate the performance of newly developed advanced water treatment processes. Hence, understanding the chemical reaction features of SAs can provide valuable information for further technological development. In this review, the reaction kinetics, abiotic transformations and corresponding ecotoxicity changes of SAs in natural environments and water treatment processes were comprehensively analyzed to draw critical suggestion and new insights. The •OH-based AOP is proposed as an effective method for the elimination of SAs toxicity, although it is susceptible to water constituent due to low selectivity. The application of biochar or metal-based oxidants in AOPs is becoming a future trend for SA treatment. Overall, this review would provide useful information for the development of advanced water treatment technologies and the control of ecological risks related to SAs.
Collapse
Affiliation(s)
- Jingchen Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
6
|
Sandikly N, Kassir M, El Jamal M, Takache H, Arnoux P, Mokh S, Al-Iskandarani M, Roques-Carmes T. Comparison of the toxicity of waters containing initially sulfaquinoxaline after photocatalytic treatment by TiO 2 and polyaniline/TiO 2. ENVIRONMENTAL TECHNOLOGY 2021; 42:419-428. [PMID: 31180807 DOI: 10.1080/09593330.2019.1630485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
This paper addresses the residual toxicity of waters after photocatalysis treatments. The initial waters contain 7 mg L-1 of sulfaquinoxaline (SQX) which is a sulfonamide antibiotic generally recorded inside the water. The contaminated waters are treated by photocatalytic degradation process with bare titania and titania covered with polyaniline (PANI) conducting polymer. The degradation of SQX is conducted at different pH in order to find the optimal condition to obtain SQX concentration relatively equal to zero in the shortest amount of time. This occurs for PANI/TiO2 at pH 12 and TiO2 at pH 4. Toxicity assays (concentration of biomass, pigmentation tests, and cells counting) are undertaken on the microalgae Chlorella vulgaris in order to evaluate the residual toxicity of the 2 treated waters. The toxicity results highlight that the water treated by PANI/TiO2 at pH 12 is the less toxic towards the algae cells. The water processed by bare titania at acidic pH displays unneglectable toxicity towards the algae cells which are larger than the toxicity of the original SQX solution.
Collapse
Affiliation(s)
- Nahid Sandikly
- Faculty of Public Health, Lebanese University, Beirut, Lebanon
| | - Mounir Kassir
- Platform for Research and Analysis in Environmental Sciences, Doctoral School of Science and Technology, Lebanese University, Beirut, Lebanon
| | | | - Hosni Takache
- Department of Food Sciences and Technology, Faculty of Agriculture, Lebanese University, Dekweneh, Beirut, Lebanon
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, Nancy Cedex, France
| | - Samia Mokh
- Faculty of Public Health, Lebanese University, Beirut, Lebanon
- Laboratory for Analysis of Organic Compound (LACO), Lebanese Atomic Energy Commission (LAEC), National Council for Scientific Research (CNRS), Beirut, Lebanon
| | | | - Thibault Roques-Carmes
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, Nancy Cedex, France
| |
Collapse
|
7
|
Zhang SX, Zhang QQ, Liu YS, Yan XT, Zhang B, Xing C, Zhao JL, Ying GG. Emission and fate of antibiotics in the Dongjiang River Basin, China: Implication for antibiotic resistance risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136518. [PMID: 32050380 DOI: 10.1016/j.scitotenv.2020.136518] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Antibiotics used for human and veterinary purposes are released into the environment, resulting in potential adverse effects, including the development and spread of antibiotic resistant bacteria. Here we investigated the dynamic fate of 36 antibiotics in a large river basin Dongjiang in South China, and discussed their potential antibiotic resistance selection risk. Based on the usage, excretion rate, wastewater treatment rate, human population and animal numbers the emissions of 36 frequently detected antibiotics were estimated for the Dongjiang River Basin. The total usage of the 36 antibiotics in the basin was 623.4 tons, which included 37% for human use and the rest for veterinary purposes. After being metabolized and partially treated, the amount of antibiotics excreted and released into the environment decreased to 267.6 tons. By allocating the high-precision antibiotic discharge inventory to 42 sewage plants and 17 livestock farms, an improved GREAT-ER (Geography referenced Regional Exposure Assessment Tool for European Rivers) model for the Dongjiang River Basin, with a well calibration river flow network based on the SWAT (Soil and Water Assessment Tool), was established to simulate the dynamic fate of 36 antibiotics. The simulation results showed that antibiotics contaminated >50% of the river sections. The modelled concentrations in water were almost within an order of magnitude of the measured concentrations. Antibiotic contamination in the dry season was obviously higher than that in the wet season. The concentrations of the antibiotics were always higher at the discharge zones and lower reaches of the river basin than the other reaches. The antibiotic resistance risk assessment showed that 23 out of the 36 antibiotics (nearly 65%) could pose high risks in the river basin. For those river reaches with high risks, the risk levels could mostly be reduced to low risk levels with a certain distance (15 km) from the pollution source. Therefore, more attention should be paid to those impact zones in term of antibiotic resistance.
Collapse
Affiliation(s)
- Shao-Xuan Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Ting Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Bing Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Cheng Xing
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
8
|
Lu J, Lei Y, Ma J, Liu X, Zhu M, Zhu C. Photochemical reaction kinetics and mechanistic investigations of nitrous acid with sulfamethazine in tropospheric water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26134-26145. [PMID: 31280443 DOI: 10.1007/s11356-019-05875-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
Nitrous acid (HONO) is an important atmospheric pollutant that can strongly absorb ultraviolet irradiation in the region of 300-400 nm, as previously reported. Since the solar irradiance that reaches the surface of the earth has wavelengths greater than 290 nm, the photodissociation of HONO is considered the major method of hydroxyl radical formation in the troposphere. Thus, the photoinduced chemical reactivity of HONO is important. The present work investigated the reaction mechanism and kinetic parameters of HONO and sulfamethazine by using a laser flash photolysis technique and liquid chromatography-mass spectrometry. The results indicated that the sulfamethazine degradation rate was influenced by the HONO concentration and the initial concentration of sulfamethazine. Hydroxyl radicals derived from the photolysis of HONO attacked the aromatic ring of sulfamethazine to form sulfamethazine-OH adducts with a second-order rate constant of (3.8 ± 0.3) × 109 L mol-1 s-1. This intermediate would then react with HO· and oxygen molecules. The reaction rate constants of sulfamethazine-OH adducts with oxygen are (1.3 ± 0.1) × 107 L mol-1 s-1. The generation of sulfanilic acid and pyrimidine implies that the breaking down of S-N bonds of sulfamethazine and its HO adducts probably occur at the same time.
Collapse
Affiliation(s)
- Jun Lu
- Center of Analysis & Measurement, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Yu Lei
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Jianzhong Ma
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Xiaowei Liu
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Mengyu Zhu
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Chengzhu Zhu
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei, 230009, People's Republic of China.
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| |
Collapse
|
9
|
Molé RA, Good CJ, Stebel EK, Higgins JF, Pitell SA, Welch AR, Minarik TA, Schoenfuss HL, Edmiston PL. Correlating effluent concentrations and bench-scale experiments to assess the transformation of endocrine active compounds in wastewater by UV or chlorination disinfection. CHEMOSPHERE 2019; 226:565-575. [PMID: 30953901 DOI: 10.1016/j.chemosphere.2019.03.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Transformation of endocrine active compounds (EACs) by either chlorination (Cl-D) or UV disinfection (UV-D) was studied by field sampling and bench-scale validation studies. Field testing assessed concentration of 13 EACs in effluent at two Chicago area 250 MGD wastewater reclamation plants (WRP) over two years. One WRP uses chlorination/dechlorination while the other employs UV disinfection. Target compounds included bupropion, carbamazepine, citalopram, duloxetine, estradiol, estrone, fluoxetine, nonylphenol, norfluoxetine, norsertraline, paroxetine, sertraline, and venlafaxine. Concentrations of 9/13 target compounds were partially reduced after disinfection (5-65% reduction). None of the target compounds were fully transformed by either chlorination or UV treatment at the WRP scale. In bench-scale experiments each compound was spiked into deionized water or effluent and treated in a process mimicking plant-scale disinfection to validate transformations. Correlation was observed between compounds that were transformed in bench-testing and those that decreased in concentration in post-disinfection WRP effluent (10/13 compounds). A survey of potential reaction products was made. Chlorination of some amine containing compounds produced chloramine by-products that reverted to the initial form after dechlorination. Transformation products produced upon simulated UV disinfection were more diverse. Laboratory UV-induced transformation was generally more effective under stirred conditions, suggesting that indirect photo-induced reactions may predominate over direct photolysis.
Collapse
Affiliation(s)
- Rachel A Molé
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA
| | - Christopher J Good
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA
| | - Eva K Stebel
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA
| | - Julia F Higgins
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA
| | - Sarah A Pitell
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA
| | - Arielle R Welch
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA
| | - Thomas A Minarik
- Metropolitan Water Reclamation District of Greater Chicago, Cicero, IL, 60804, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, 56301, USA
| | - Paul L Edmiston
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA.
| |
Collapse
|
10
|
Achouri F, BenSaid M, Bousselmi L, Corbel S, Schneider R, Ghrabi A. Comparative study of Gram-negative bacteria response to solar photocatalytic inactivation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18961-18970. [PMID: 29862482 DOI: 10.1007/s11356-018-2435-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
Solar photocatalytic inactivation of Gram-negative bacteria with immobilized TiO2-P25 in a fixed-bed reactor was modeled with simplified kinetic equations. The kinetic parameters are the following: the photocatalytic inactivation coefficient (kd,QUV), the initial bacterial reduction rate (A) in the contact with the disinfecting agent, and the threshold level of damage (n) were determined to report the effect of QUV/TiO2-P25 on bacterial cultivability and viability and to compare the response of bacterial strains to photocatalytic treatment. In addition, the integration of the reactivation coefficient (Cr) in the photocatalytic inactivation equation allowed evaluating the ability of bacterial reactivation after photocatalytic stress. Results showed different responses of the bacteria strains to photocatalytic stress and the ability of certain bacterial strains such as Escherichia coli ATCC25922 and Pseudomonas aeruginosa ATCC4114 to resuscitate after photocatalytic treatment.
Collapse
Affiliation(s)
- Faouzi Achouri
- Centre de Recherches et des Technologies des Eaux (CERTE), Laboratoire Eaux Usees et environnement, P.O. Box 273, 8020, Soliman, Tunis, Tunisia.
- Université de Lorraine, Laboratoire Reactions et Genie des Procedes (LRGP), UMR7274, CNRS, 18 rue Grandville, BP20451, 54001, Nancy Cedex, France.
- Faculté des Sciences de Bizerte, Université de Carthage, Jarzouna, 7021, Bizerte, Tunisia.
| | - Myriam BenSaid
- Centre de Recherches et des Technologies des Eaux (CERTE), Laboratoire Eaux Usees et environnement, P.O. Box 273, 8020, Soliman, Tunis, Tunisia
| | - Latifa Bousselmi
- Centre de Recherches et des Technologies des Eaux (CERTE), Laboratoire Eaux Usees et environnement, P.O. Box 273, 8020, Soliman, Tunis, Tunisia
| | - Serge Corbel
- Université de Lorraine, Laboratoire Reactions et Genie des Procedes (LRGP), UMR7274, CNRS, 18 rue Grandville, BP20451, 54001, Nancy Cedex, France
| | - Raphaël Schneider
- Université de Lorraine, Laboratoire Reactions et Genie des Procedes (LRGP), UMR7274, CNRS, 18 rue Grandville, BP20451, 54001, Nancy Cedex, France
| | - Ahmed Ghrabi
- Centre de Recherches et des Technologies des Eaux (CERTE), Laboratoire Eaux Usees et environnement, P.O. Box 273, 8020, Soliman, Tunis, Tunisia
| |
Collapse
|