1
|
Tanveer M, Ntakiyisumba E, Won G. Revealing antimicrobial resistance profile and associated factors of Vibrio vulnificus isolated from clinical, environmental, and seafood samples across asia: A systematic review and meta-analysis. Heliyon 2024; 10:e40334. [PMID: 39669157 PMCID: PMC11635644 DOI: 10.1016/j.heliyon.2024.e40334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
The escalating antimicrobial resistance (AMR) in highly virulent Vibrio vulnificus poses a significant public health concern in Asia. Profiling the antibiogram of this pathogen is crucial for revealing its complex AMR patterns and guiding the selection of appropriate medications. Although previous studies have provided valuable insights regarding V. vulnificus AMR, they are constrained by limited sample diversity, inconsistent methodologies, and insufficient regional data. Moreover, no systematic attempt has been made to synthesize V. vulnificus AMR data across various sources and regions in Asia. A systematic review and meta-analysis are thus conducted in this study to assess the current AMR status of V. vulnificus isolated from clinical, environmental, and seafood samples. By synthesizing data from 32 articles across 13 Asian countries, a broader antibiogram has been provided, covering 13 major antimicrobial groups against V. vulnificus. Subgroup and regression analyses were also performed using study-level and country-specific covariates to explore the associated risk factors. The findings revealed low AMR rates for tetracyclines (4.89 %), quinolones (1.85 %), nitrofurans (0.86 %), and phenicols (0.61 %), highlighting their potential as primary treatment options. Conversely, high AMR rates were detected for lincosamides (80.32 %), polypeptides (64.42 %), and glycopeptides (56.14 %), necessitating careful consideration for their clinical use. For study-level covariates, subgroup and meta-regression analyses revealed that variations in the type of antimicrobial (R 2 = 26.5 %, p < 0.0001), country (R 2 = 18.33 %, p < 0.0001), and pathogen source (R 2 = 10.46 %, p = 0.0007) significantly contributed to between-study heterogeneity in the detected AMR rates across studies. Moreover, the analyses of country-specific covariates indicated that antimicrobial consumption (AMC) in healthcare systems (R 2 = 29.3, p = 0.06) and the country's gross domestic product (GDP) (R 2 = 28.59, p = 0.06) affected the variations in AMR rates across countries to some extent. Consideration of study-level and country-specific covariates is thus recommended for future research to effectively mitigate the threat of V. vulnificus AMR across Asia and reduce its pervasive impact on public health.
Collapse
Affiliation(s)
- Maryum Tanveer
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan Campus, Gobong-ro 79, Iksan, 54596, South Korea
| | - Eurade Ntakiyisumba
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan Campus, Gobong-ro 79, Iksan, 54596, South Korea
| | - Gayeon Won
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan Campus, Gobong-ro 79, Iksan, 54596, South Korea
| |
Collapse
|
2
|
Gawande PS, Manigandan V, Ganesh R S, Kannan VR, Ramu K, Murthy MVR. Metagenomic analysis of pathogenic bacteria and virulence factor genes in coastal sediments from highly urbanized cities of India. Microb Pathog 2024; 196:106984. [PMID: 39341578 DOI: 10.1016/j.micpath.2024.106984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
A metagenomic approach was employed to investigate the diversity and distribution of Virulence Factors Genes (VFGs) and Pathogenic Bacteria (PB) in sediment samples collected from highly urbanized cities along the Indian coastline. Among the study locations, Mumbai, Veraval and Paradeep showed a higher abundance of PB, with Vibrio and Pseudomonas as dominant at the genus level, and Escherichia coli and Pseudomonas aeruginosa at the species level. In total, 295 VFGs were detected across all sediment samples, of which 40 VFGs showed a similarity of ≥90 % with the Virulence Database (VFDB) and were focused in this study. Among the virulent proteins, twitching motility protein and flagellar P-ring were found to be prevalent and significantly associated with Vibrio spp., and Pseudomonas spp., indicating potential bacterial pathogenicity. This investigation serves as the basis for future studies and provides insights into the comprehensive taxonomic profiles of PB, VFGs and their associated PB in the coastal sediments of India.
Collapse
Affiliation(s)
- Pradip Sahebrao Gawande
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Tamil Nadu, India; Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| | - Vajravelu Manigandan
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Tamil Nadu, India
| | - Sankar Ganesh R
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Tamil Nadu, India
| | - V Rajesh Kannan
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - K Ramu
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Tamil Nadu, India.
| | - M V Ramana Murthy
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Maloo A, Fulke AB, Sukumaran S. Toxigenic Escherichia coli with high antibiotic resistance index recovered from sands of recreational beaches of Mumbai, India. MARINE POLLUTION BULLETIN 2024; 198:115837. [PMID: 38007873 DOI: 10.1016/j.marpolbul.2023.115837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Mumbai, India's seven-island city, is known for its sandy beaches as a major tourist attraction, but urbanization and industrialization have weakened the environment. Unregulated sewage disposal and untreated effluents off the coast have made the beach environment vulnerable. Therefore, monitoring water and sand quality at beaches should be mandatory. This study was thus designed to determine the microbiological status of selected sandy beaches, viz. Versova, Juhu, and Girgaon. The study found fecal coliforms in the sand, with stx1 and stx2 genes specific for Shiga toxin-producing E. coli pathotypes in 5.5 % of isolates, whereas the presence of eaeA gene specific for enteropathogenic E. coli pathotype was detected in 12.2 % of isolates, and the presence of the LT and ST genes specific for enterotoxigenic E. coli pathotype was detected in 6.6 % of isolates. Multiple antibiotic-resistant indices indicated high-risk contamination sources. The study suggests routine monitoring of pollution levels at coastal cities' beaches.
Collapse
Affiliation(s)
- Aayushi Maloo
- Microbiology Division, CSIR-National Institute of Oceanography (CSIR-NIO), Regional Centre, Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai 400053, Maharashtra, India
| | - Abhay B Fulke
- Microbiology Division, CSIR-National Institute of Oceanography (CSIR-NIO), Regional Centre, Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai 400053, Maharashtra, India.
| | - Soniya Sukumaran
- Microbiology Division, CSIR-National Institute of Oceanography (CSIR-NIO), Regional Centre, Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai 400053, Maharashtra, India; Biological Oceanography Division, CSIR-National Institute of Oceanography (CSIR-NIO), Regional Centre, Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai 400053, Maharashtra, India
| |
Collapse
|
4
|
Sivan G, Sukumaran DP, Ezhuthanikkunnel AP, Ammanamveetil Abdulla MH. Prevalence of Extended-Spectrum Beta-Lactamase Resistance and CTX-M-Group 1 Gene in Escherichia coli from the Water and Sediment of Urbanized Mangrove Ecosystems of Kerala. Microb Drug Resist 2023; 29:582-588. [PMID: 37883192 DOI: 10.1089/mdr.2023.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
The study aimed to determine the prevalence of extended-spectrum β-lactamase resistance and CTX-M-group 1 gene in Escherichia coli from the water and sediment of three urbanized mangrove ecosystems of Kerala. A total of 119 E. coli isolates were screened for antibiotic susceptibility to 16 antibiotics. According to the phylogenetic analysis of E. coli isolates, nonpathogenic group A and pathogenic group D (29.4% and 23.5%) were the predominant phylotypes found in water samples. The most frequent phylotypes found in sediment samples were nonpathogenic groups A and B1 (27.9% and 26.4%). The highest incidence of antibiotic resistance in E. coli was against cefotaxime and colistin (100%). A significant difference in the prevalence of CTX-M-group 1 gene was observed among E. coli isolates in water samples (p < 0.05). The results indicate a high prevalence of β-lactamase harboring E. coli in the mangrove ecosystems that can hamper mangrove-dependent aquaculture practices and human health.
Collapse
Affiliation(s)
- Gopika Sivan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, India
| | - Divya P Sukumaran
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, India
| | - Akhil Prakash Ezhuthanikkunnel
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, India
| | - Mohamed Hatha Ammanamveetil Abdulla
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, India
| |
Collapse
|
5
|
Roy L, Roy S, Siddhanta U, Siddhanta A. Prevalence of antibiotic-resistant pathogenic bacteria from canal bank soils in and around Kolkata, India. INTERNATIONAL JOURNAL OF ENVIRONMENTAL STUDIES 2022; 79:852-866. [DOI: 10.1080/00207233.2021.1966249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Lopamudra Roy
- Department of Microbiology, Sarsuna College, Kolkata, India
| | - Souvik Roy
- Department of Biotechnology, St. Xavier’s College (Autonomous), Kolkata, India
| | - Uma Siddhanta
- Department of Biotechnology, St. Xavier’s College (Autonomous), Kolkata, India
| | | |
Collapse
|
6
|
Singh NS, Singhal N, Kumar M, Virdi JS. Public health implications of plasmid-mediated quinolone and aminoglycoside resistance genes in Escherichia coli inhabiting a major anthropogenic river of India. Epidemiol Infect 2022; 150:1-21. [PMID: 35343419 PMCID: PMC9044524 DOI: 10.1017/s095026882200053x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 12/03/2022] Open
Abstract
Presence of antimicrobial resistance (AMR) genes in Escherichia coli inhabiting anthropogenic rivers is an important public health concern because plasmid-mediated AMR genes can easily spread to other pathogens by horizontal gene transfer. Besides β -lactams, quinolones and aminoglycosides are the major antibiotics against E. coli. In the present study, we have investigated the presence of plasmid-mediated quinolone resistance (PMQR) and aminoglycoside resistance genes in E. coli isolated from a major river of northern India. Our results revealed that majority of the strains were phenotypically susceptible for fluoroquinolones and some aminoglycosides like amikacin, netilmicin, tobramycin and gentamicin. However, 16.39% of the strains were resistant for streptomycin, 8.19% for kanamycin and 3.30% for gentamicin. Of the various PMQR genes investigated, only qnrS1 was present in 24.59% of the strains along with ISEcl2 . Aminoglycoside-resistance genes like strA-strB were found to be present in 16.39%, aphA1 in 8.19% and aacC 2 in only 3.30% of the strains. Though, no co-relation was observed between phenotypic resistance for fluorquinolones and presence of PMQR genes, phenotypic resistance for streptomycin, kanamycin and gentamicin exactly co-related with the presence of the genes strA-strB , aphA1 and aacC2 , respectively. Moreover, all the AMR genes discerned in aquatic E. coli were found to be situated on conjugative plasmids and, thus easily transferrable. Our study accentuates the importance of routine surveillance of urban rivers to curtail the spread of AMR genes in aquatic pathogens.
Collapse
Affiliation(s)
- Nambram Somendro Singh
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Neelja Singhal
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|
7
|
Phylogenetic study, distribution of virulence genes and antibiotic resistance profiles of Escherichia coli isolated from Bushehr coastal water. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Toraskar AD, Manohar CS, Fernandes CL, Ray D, Gomes AD, Antony A. Seasonal variations in the water quality and antibiotic resistance of microbial pollution indicators in the Mandovi and Zuari estuaries, Goa, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:71. [PMID: 34994862 DOI: 10.1007/s10661-021-09679-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The two adjacent estuaries of the rivers Mandovi and Zuari, along the Goa coast in the central west coast of India, are a large complex aquatic system hosting diverse natural habitats. The water quality in these habitats is affected by various anthropogenic activities as they are extensively used for transportation, fisheries and various recreational activities. In the present study, changes in the water quality and levels of microbial pollution during the pre-monsoon, monsoon and post-monsoon seasons were determined. The water quality index was estimated based on the parameters: temperature, salinity, pH, dissolved oxygen, biochemical oxygen demand and nutrients. The seasonal changes in the microbial pollution load were also assessed based on the abundance of pollution indicator organisms and their resistivity towards multiple antibiotics. Results show that the water quality index status was 'poor' in the pre-monsoon and post-monsoon seasons and it was 'good' only in the monsoon period. Levels of pollution indicator organisms determined show that the counts were the highest in the pre-monsoon season, which reduced in the monsoon and further declined during the post-monsoon season. However, the estimated multiple antibiotic resistance (MAR) index suggests that bacterial isolates in monsoonal water and sediment samples have maximum resistance towards antibiotics. This shows that, though the basic water quality improved during the monsoon, possibly due to substantial dilution, the increased terrestrial inputs brought harmful pathogens into these estuarine waters, which may be of potential health risk. Understanding the ecological status of the estuarine habitats is important for successful environmental management and sustainable development.
Collapse
|
9
|
A One Health Review of Community-Acquired Antimicrobial-Resistant Escherichia coli in India. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212089. [PMID: 34831844 PMCID: PMC8625392 DOI: 10.3390/ijerph182212089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistance (AMR) threatens to undermine nearly a century of progress since the first use of antimicrobial compounds. There is an increasing recognition of the links between antimicrobial use and AMR in humans, animals, and the environment (i.e., One Health) and the spread of AMR between these domains and around the globe. This systematic review applies a One Health approach-including humans, animals, and the environment-to characterize AMR in Escherichia coli in India. E. coli is an ideal species because it is readily shared between humans and animals, its transmission can be tracked more easily than anaerobes, it can survive and grow outside of the host environment, and it can mobilize AMR genes more easily than other intestinal bacteria. This review synthesized evidence from 38 studies examining antimicrobial-resistant E. coli (AR-E) across India. Studies of AR-E came from 18 states, isolated from different sample sources: Humans (n = 7), animals (n = 7), the environment (n = 20), and combinations of these categories, defined as interdisciplinary (n = 4). Several studies measured the prevalence of AMR in relation to last-line antimicrobials, including carbapenems (n = 11), third-generation cephalosporins (n = 18), and colistin (n = 4). Most studies included only one dimension of the One Health framework, highlighting the need for more studies that aim to characterize the relationship of AMR across different reservoirs of E. coli.
Collapse
|
10
|
Bacterial isolates harboring antibiotics and heavy-metal resistance genes co-existing with mobile genetic elements in natural aquatic water bodies. Saudi J Biol Sci 2020; 27:2660-2668. [PMID: 32994725 PMCID: PMC7499102 DOI: 10.1016/j.sjbs.2020.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 11/26/2022] Open
Abstract
The rise in antibiotic-resistant bacteria and contamination of water bodies is a serious issue that demands immense attention of scientific acumen. Here, we examined the pervasiveness of ESBL producing bacteria in Dal Lake and Wular Lake of Kashmir valley, India. Isolates were screened for antibiotic, heavy metal resistant elements, and their coexistence with mobile genetic elements. Out of two hundred one isolates screened, thirty-eight were found positive for ESBL production. Antibiotic profiling of ESBL positive isolates with 16 different drugs representing β-lactam or -non-β-lactam, exhibited multidrug resistance phenotype among 55% isolates. Molecular characterization revealed the occurrence of drug resistance determinants blaTEM, AmpC, qnrS, and heavy metal resistance genes (MRGs) merB, merP, merT, silE, silP, silS, and arsC. Furthermore, mobile genetic elements IntI, SulI, ISecp1, TN3, TN21 were also detected. Conjugation assay confirmed the transfer of different ARGs, HMRGs, and mobile elements in recipient Escherichia coli J53 AZR strain. Plasmid incompatibility studies showed blaTEM to be associated with Inc groups B/O, HI1, HI2, I1, N, FIA, and FIB. Co-occurrence of blaTEM, HMRGs, and mobile elements from the aquatic milieu of Kashmir, India has not been reported so far. From this study, the detection of the blaTEM gene in the bacteria Bacillus simplex and Brevibacterium frigoritolerans are found for the first time. Considering all the facts it becomes crucial to conduct studies in natural aquatic environments that could help depict the epidemiological situations in which the resistance mechanism might have clinical relevance.
Collapse
|
11
|
Singh F, Hirpurkar SD, Rawat N, Shakya S, Kumar R, Kumar S, Meena RK, Rajput PK, Kumar J. Carbapenemase and ESBL genes with class 1 integron among fermenting and nonfermenting bacteria isolated from water sources from India. Lett Appl Microbiol 2019; 71:70-77. [PMID: 31587338 DOI: 10.1111/lam.13228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
The present study was aimed to detect the carbapenemase, extended-spectrum β-lactamase (ESBL), and intI1 gene of class 1 integron among fermenting (n = 61) and nonfermenting (n = 10) bacterial isolates recovered from water samples (n = 128). Isolates were identified by 16S rRNA sequencing. These isolates showed reduced-susceptibility to third-generation cephalosporins and carbapenems. The isolates varied in number and size of plasmids (2 kb to >20 kb). Plasmid DNA screening showed 5·6, 7, 11·2 and 26·7% prevalence of blaKPC , blaNDM , blaSHV and blaTEM genes respectively. Diverse blaNDM (blaNDM-1 and blaNDM-4 ) and blaSHV subtypes (blaSHV-2 and blaSHV-11 ) were recorded, unlike the single allelic blaKPC (blaKPC-2 ) and blaTEM (blaTEM-1 ) gene. Of the total 27 bla-gene-producing bacterial isolates, seven isolates co-harboured the carbapenemase genes (blaNDM or blaKPC or the both) along with the ESBL genes (blaSHV or blaTEM ). The intI1 gene of class 1 integron was detected among 12 (44·4%) of ESBL- and/or carbapenemase-harbouring isolates. Gene transferability was seen among four of the 10 Enterobacteriaceae donors. Carbapenemases and ESBLs with class 1 integron among aquatic environmental isolates raise the serious issue of the biosecurity and health of the ecosystem. SIGNIFICANCE AND IMPACT OF THE STUDY: Anthropologically affected and polluted environment harbours the resistance threats, where a diverse bacterial species maintain, develop and exchange genetic determinants that constitute a risk to human and ecological health. The antimicrobial resistance (AMR) in Enterobacteriaceae and non-Enterobacteriaceae bacteria caused the failure of the therapy of last resort (carbapenems) and thus lead to life-threatening infections affecting public health. Surveillance and monitoring of AMR could be important for epidemiological, diagnostic testing and control of pathogens. This is a point-prevalence study reporting the comparative occurrence and co-occurrence of carbapenemase and extended-spectrum β-lactamase genes among fermenting and nonfermenting bacteria isolated from the aquatic environment in India.
Collapse
Affiliation(s)
- F Singh
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Anjora, Durg, India.,Animal Health Division, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Tonk, India
| | - S D Hirpurkar
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Anjora, Durg, India
| | - N Rawat
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Anjora, Durg, India
| | - S Shakya
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Science and Animal Husbandry, Anjora, Durg, India
| | - R Kumar
- Animal Biotechnology Section, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Tonk, India
| | - S Kumar
- Animal Biotechnology Section, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Tonk, India
| | - R K Meena
- Animal Health Division, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Tonk, India
| | - P K Rajput
- Animal Biotechnology Section, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Tonk, India
| | - J Kumar
- Animal Health Division, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Tonk, India
| |
Collapse
|
12
|
Mondal AH, Siddiqui MT, Sultan I, Haq QMR. Prevalence and diversity of blaTEM, blaSHV and blaCTX-M variants among multidrug resistant Klebsiella spp. from an urban riverine environment in India. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2019; 29:117-129. [PMID: 30185065 DOI: 10.1080/09603123.2018.1515425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
In the present study, we have investigated prevalence and diversity of ESBL genes among Klebsiella isolates obtained from highly polluted stretch of river Yamuna, India. Phenotypic screenings of 116 Klebsiella isolates revealed ~30% were positive for ESBL production. Antibiotic profiling showed multidrug resistance phenotype among 90% isolates. Prevalence of blaTEM, blaSHV and blaCTX-M genes were found to be 57, 54 and 48% respectively. Furthermore, we identified eight variants of blaSHV (SHV-1, SHV-11, SHV-27, SHV-28, SHV-38, SHV-61, SHV-144, SHV-148), three each of blaTEM (TEM-1, TEM-116, TEM-206) and blaCTX-M (CTX-M-15, CTX-M-55, CTX-M-188) among Klebsiella spp. Co-occurrence of blaTEM, blaSHV and blaCTX-M (any two or all three) was observed among 45% Klebsiella isolates. Occurrence of blaCTX-M-188 and blaTEM-206 in environmental isolates of K. pneumoniae has not been reported earlier. Identification of blaTEM-206, blaSHV-27 and blaSHV-144 from Klebsiella spp. and blaTEM-116 from K. quasipneumoniae and K. variicola is the first report from India.
Collapse
Affiliation(s)
| | | | - Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | |
Collapse
|
13
|
Ebomah KE, Adefisoye MA, Okoh AI. Pathogenic Escherichia coli Strains Recovered from Selected Aquatic Resources in the Eastern Cape, South Africa, and Its Significance to Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071506. [PMID: 30018212 PMCID: PMC6069279 DOI: 10.3390/ijerph15071506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
The prevalence of pathogenic microorganisms, as well as the proliferation of antimicrobial resistance, pose a significant threat to public health. However, the magnitude of the impact of aquatic environs concerning the advent and propagation of resistance genes remains vague. Escherichia coli (E. coli) are widespread and encompass a variety of strains, ranging from non-pathogenic to highly pathogenic. This study reports on the incidence and antibiotic susceptibility profiles of E. coli isolates recovered from the Nahoon beach and its canal waters in South Africa. A total of 73 out of 107 (68.2%) Polymerase chain reaction confirmed E. coli isolates were found to be affirmative for at least one virulence factor. These comprised of enteropathogenic E. coli 11 (10.3%), enteroinvasive E. coli 14 (13.1%), and neonatal meningitis E. coli 48 (44.9%). The phenotypic antibiogram profiles of the confirmed isolates revealed that all 73 (100%) were resistant to ampicillin, whereas 67 (91.8%) of the pathotypes were resistant to amikacin, gentamicin, and ceftazidime. About 61 (83.6%) and 51 (69.9%) were resistant to tetracycline and ciprofloxacin, respectively, and about 21.9% (16) demonstrated multiple instances of antibiotic resistance, with 100% exhibiting resistance to eight antibiotics. The conclusion from our findings is that the Nahoon beach and its canal waters are reservoirs of potentially virulent and antibiotic-resistant E. coli strains, which thus constitute a potent public health risk.
Collapse
Affiliation(s)
- Kingsley Ehi Ebomah
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
| | - Martins Ajibade Adefisoye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
| |
Collapse
|
14
|
Naik OA, Shashidhar R, Rath D, Bandekar JR, Rath A. Characterization of multiple antibiotic resistance of culturable microorganisms and metagenomic analysis of total microbial diversity of marine fish sold in retail shops in Mumbai, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6228-6239. [PMID: 29243150 DOI: 10.1007/s11356-017-0945-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
Marine fish species were analyzed for culturable and total metagenomic microbial diversity, antibiotic resistance (AR) pattern, and horizontal gene transfer in culturable microorganisms. We observed a high AR microbial load of 3 to 4 log CFU g-1. Many fish pathogens like Providencia, Staphylococcus, Klebsiella pneumoniae, Enterobacter, Vagococcus, and Aeromonas veronii were isolated. Photobacterium and Vibrio were two major fish and human pathogens which were identified in the fish metagenome. Other pathogens that were identified were Shewanella, Acinetobacter, Psychrobacter, and Flavobacterium. Most of these pathogens were resistant to multiple antibiotics such as erythromycin, kanamycin, neomycin, streptomycin, penicillin, cefotaxime, bacitracin, rifampicin, trimethoprim, ciprofloxacin, and doxycycline with a high multiple antibiotic resistance index of 0.54-0.77. The fish microflora showed high prevalence of AR genes like bla TEM, Class I integron, tetA, aph(3')-IIIa, ermB, aadA, and sul1. Nineteen of 26 AR isolates harbored Class I integrons showing high co-resistance to trimethoprim, kanamycin, doxycycline, and cefotaxime. Mobile R-plasmids from 6 of the 12 AR pathogens were transferred to recipient E. coli after conjugation. The transconjugants harbored the same R-plasmid carrying bla CTX-M, dfr1, tetA, bla TEM, and cat genes. This study confirms that fish is a potential carrier of AR pathogens which can enter the human gut via food chain. To the best of our knowledge, this is the first study in the Indian subcontinent reporting a direct evidence of spread of AR pathogens to humans from specific marine fish consumption.
Collapse
Affiliation(s)
- Onkar A Naik
- Department of Biotechnology, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai, 400098, India
| | | | - Devashish Rath
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Jayant R Bandekar
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Archana Rath
- Department of Biotechnology, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai, 400098, India.
| |
Collapse
|
15
|
Mitra S, Ghosh S, Satpathy KK, Bhattacharya BD, Sarkar SK, Mishra P, Raja P. Water quality assessment of the ecologically stressed Hooghly River Estuary, India: A multivariate approach. MARINE POLLUTION BULLETIN 2018; 126:592-599. [PMID: 28974303 DOI: 10.1016/j.marpolbul.2017.09.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
Spatio-temporal and seasonal variation of the water quality characteristics of the Hooghly River Estuary, India were studied considering eight stations of diverse eco-hydrological characteristics. Wide variations in turbidity, total dissolved solids and fecal coliform exceeded the permissible BIS drinking water level limit. The estuary is observed to be relatively low-oxygenated, mesotropic and phosphate limiting. Spatial heterogeneity and impact of the southwest monsoon were remarkably pronounced in the distribution of the inorganic nutrients revealing the following values (expressed in μgatml-1): nitrate+nitrite (2.42-37.19), phosphate (0.41-1.52) and silicate (38.5-187.75). Water Quality Index (WQI) values confirmed the prevailing 'bad' condition, detrimental for sustenance of aquatic biota. Results of Principal Component Analysis identified the major factors liable for water quality deterioration while cluster analysis categorized the stations on the basis of similar water quality status. The authors recommend adopting preventive measures for water quality improvement linked to biodiversity conservation.
Collapse
Affiliation(s)
- Soumita Mitra
- Department of Marine Science, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700019, India
| | - Swayambhu Ghosh
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata 700 108, India
| | - Kamala Kanta Satpathy
- Environment and Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102, India
| | - Bhaskar Deb Bhattacharya
- Department of Marine Science, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700019, India
| | - Santosh Kumar Sarkar
- Department of Marine Science, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700019, India.
| | - Pravakar Mishra
- ICMAM-Project Directorate, NIOT campus, Pallikaranai, Chennai, Tamil Nadu 600100, India
| | - P Raja
- ICAR-Indian Institute of Soil and Water Conservation (IISWC), Research Centre, Udhagamandalam, Fern Hill, P.O., Tamil Nadu 643 004, India
| |
Collapse
|