1
|
Manzini J, Hoshika Y, Danti R, Moura BB, Paoletti E, Rocca GD. Ozone risk assessment of common cypress (Cupressus sempervirens L.) clones and effects of Seiridium cardinale infection. J Environ Sci (China) 2025; 151:441-453. [PMID: 39481951 DOI: 10.1016/j.jes.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 11/03/2024]
Abstract
Cupressus sempervirens is a relevant species in the Mediterranean for its cultural, economic and landscape value. This species is threatened by Seiridium cardinale, the causal agent of the cypress canker disease (CCD). The effects of biotic stressors on O3 risk assessment are unknown and a comprehensive O3 risk assessment in C. sempervirens is missing. To fill these gaps, two clones of C. sempervirens, one resistant (Clone R) and one susceptible to CCD (Clone S), were subjected to three levels of O3 (Ambient Air - AA; 1.5 × AA; 2.0 × AA) for two consecutive years in an O3-free-air controlled exposure facility and artificially inoculated with S. cardinale. Both the exposure- (AOT40) and flux-based (PODy) indices were tested. We found that PODy performed better than AOT40 to assess O3 effects on biomass and the critical level for a 4% biomass loss was 2.51 mmol/m2 POD2. However, significant O3 dose-response relationships were not found for the inoculated cypresses because the combination of middle level O3 (1.5 × AA) and inoculation stimulated a biomass growth in Clone S as hormetic response. Moreover, we found a different inter-clonal response to both stressors with a statistically significant reduction of total and belowground biomass following O3, and lower root biomass in Clone S than in Clone R following pathogen infection. In summary, Clone R was more resistant to O3, and inoculation altered O3 risk via an hormetic effect on biomass. These results warrant further studies on how biotic stressors affect O3 responses and risk assessment.
Collapse
Affiliation(s)
- Jacopo Manzini
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto Fiorentino 50019, Italy; Department of agricultural, food, environmental and forestry science and technology (DAGRI), University of Florence, Piazzale delle Cascine, 18, Firenze 50144, Italy
| | - Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto Fiorentino 50019, Italy.
| | - Roberto Danti
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto Fiorentino 50019, Italy
| | - Barbara Baesso Moura
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto Fiorentino 50019, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto Fiorentino 50019, Italy
| | - Gianni Della Rocca
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto Fiorentino 50019, Italy
| |
Collapse
|
2
|
Joffe R, Tosens T, Berthe A, Jolivet Y, Niinemets Ü, Gandin A. Reduced mesophyll conductance under chronic O 3 exposure in poplar reflects thicker cell walls and increased subcellular diffusion pathway lengths according to the anatomical model. PLANT, CELL & ENVIRONMENT 2024; 47:4815-4832. [PMID: 39101376 DOI: 10.1111/pce.15049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 06/23/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Ozone (O3) is one of the most harmful and widespread air pollutants, affecting crop yield and plant health worldwide. There is evidence that O3 reduces the major limiting factor of photosynthesis, namely CO2 mesophyll conductance (gm), but there is little quantitative information of O3-caused changes in key leaf anatomical traits and their impact on gm. We exposed two O3-responsive clones of the economically important tree species Populus × canadensis Moench to 120 ppb O3 for 21 days. An anatomical diffusion model within the leaf was used to analyse the entire CO2 diffusion pathway from substomatal cavities to carboxylation sites and determine the importance of each structural and subcellular component as a limiting factor. gm decreased substantially under O3 and was found to be the most important limitation of photosynthesis. This decrease was mostly driven by an increased cell wall thickness and length of subcellular diffusion pathway caused by altered interchloroplast spacing and chloroplast positioning. By contrast, the prominent leaf integrative trait leaf dry mass per area was neither affected nor related to gm under O3. The observed relationship between gm and anatomy, however, was clone-dependent, suggesting that mechanisms regulating gm may differ considerably between closely related plant lines. Our results confirm the need for further studies on factors constraining gm under stress conditions.
Collapse
Affiliation(s)
- Ricardo Joffe
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Tiina Tosens
- Department of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Audrey Berthe
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Yves Jolivet
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Ülo Niinemets
- Department of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Anthony Gandin
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| |
Collapse
|
3
|
Hoshika Y, Pollastrini M, Marzuoli R, Gerosa G, Marra E, Moura BB, Agathokleous E, Calatayud V, Feng Z, Sicard P, Paoletti E. Unraveling the difference of sensitivity to ozone between non-hybrid native poplar and hybrid poplar clones: A flux-based dose-response analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124524. [PMID: 38986760 DOI: 10.1016/j.envpol.2024.124524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
Poplars are economically important tree crops and biologically important model plants, which are known to be sensitive to ozone (O3). Although surface O3 is considered as a significant global environmental issue because of its phytotoxicity and greenhouse effect, the knowledge of the dose-response (DR) relationships in poplars for the assessment of O3 risk is still limited. Hence, this study aimed at collecting data of studies with manipulative O3 exposures of poplars within FACE (Free Air Concentration Enhancement) and OTC (Open-Top Chamber) facilities. The datasets contain studies on hybrid poplar clones and a non-hybrid native poplar (Populus nigra L.) reporting both AOT40 (Accumulated exposure Over a Threshold of 40 ppb) and POD1 (Phytotoxic Ozone Dose above a threshold of 1 nmol m-2 Projected Leaf Area [PLA] s-1) to compare exposure- and flux-based indices. As a result, linear regression analysis showed that the flux-based POD1 was better than the exposure-based AOT40 to explain the biomass response of poplars to O3. From the DR relationships, a critical level (CL) of 5.7 mmol m-2 POD1 has been derived corresponding to 4% biomass growth reduction for hybrid poplar clones, which can be considered very sensitive to O3, while the non-hybrid native poplar was less sensitive to O3 (CL: 10.3 mmol m-2 POD1), although the potential risk of O3 for this taxon is still high due to very high stomatal conductance. Moreover, the different experimental settings (OTC vs. FACE) have affected the AOT40-based DR relationships but not the POD1-based DR relationships, suggesting that poplar responses to O3 were principally explained by stomatal O3 uptake regardless of the different experimental settings and exposure patterns. These results highlight the importance of the flux-based approach, especially when scaling up from experimental datasets to the O3 risk assessment for poplars at the regional or global scale.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Sede secondaria di Firenze, Via Madonna del Piano, 50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy.
| | - Martina Pollastrini
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Piazzale delle Cascine 28, Viale delle idee 30, 50019 Sesto Fiorentino, 50144, Florence, Italy
| | - Riccardo Marzuoli
- Department of Mathematics and Physics, Catholic University of the Sacred Heart, Via Garzetta 48, Brescia, Italy
| | - Giacomo Gerosa
- Department of Mathematics and Physics, Catholic University of the Sacred Heart, Via Garzetta 48, Brescia, Italy
| | - Elena Marra
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Sede secondaria di Firenze, Via Madonna del Piano, 50019, Sesto Fiorentino, Italy
| | - Barbara Baesso Moura
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Sede secondaria di Firenze, Via Madonna del Piano, 50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Evgenios Agathokleous
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science & Technology, Nanjing, China
| | - Vicent Calatayud
- Fundación CEAM, c/ Charles R. Darwin 14, Parque Tecnológico, 46980, Paterna, Valencia, Spain
| | - Zhaozhong Feng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science & Technology, Nanjing, China
| | - Pierre Sicard
- ARGANS, Sophia-Antipolis, France; Institutul Naţional de Cercetare-Dezvoltare în Silvicultură"Marin Drăcea,", Voluntari, Romania
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Sede secondaria di Firenze, Via Madonna del Piano, 50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
4
|
Hoshika Y, Agathokleous E, Moura BB, Paoletti E. Ozone risk assessment with free-air controlled exposure (FACE) experiments: A critical revisit. ENVIRONMENTAL RESEARCH 2024; 255:119215. [PMID: 38782333 DOI: 10.1016/j.envres.2024.119215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Since risk assessments of tropospheric ozone (O3) are crucial for agricultural and forestry sectors, there is a growing body for realistic assessments by a stomatal flux-based approach in Free-Air Controlled Exposure (FACE) facilities. Ozone risks are normally described as relative risks (RRs), which are calculated by assuming the biomass or yield at zero O3 dose as "reference". However, the estimation of the reference biomass or yield is challenging due to a lack of O3-clean-air treatment at the FACEs and the extrapolation without data in a low O3 range increases the bias for estimating the reference values. Here, we reviewed a current methodology for the risk assessment at FACEs and presented a simple and effective way ("modified Paoletti's approach") of defining RRs just using biomass or yield data with a range of expected impacts under the FACE conditions hypothesizing three possible scenarios based on prediction limits using 95% credible intervals (CI) (1. Best fit using the intercept as reference, 2. Optimistic scenario using a lower CI and 3. Worst scenario using an upper CI). As a result, O3-sensitive species show a relatively narrow effect range (optimistic vs. worst scenario) whereas a wide range of response may be possibly taken in resistant species. Showing a possible effect range allows for a comprehensive understanding of the potential risks and its uncertainties related to a species sensitivity to O3. As a supporting approach, we also recommend to use scientifically relevant tools (i.e., ethylenediurea treatments; mechanistic plant models) for strengthening the obtained results for the RRs against O3. Interestingly, the moderately sensitive or resistant species showed non-linear rather than linear dose-response relationships, suggesting a need for the flexible functional form for the risk assessment to properly describe the complex plant response such as hormesis, which depends on their plasticity to O3 stress.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu, 210044, China
| | - Barbara Baesso Moura
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
5
|
Moura BB, Manzini J, Paoletti E, Hoshika Y. A three-year free-air experimental assessment of ozone risk on the perennial Vitis vinifera crop species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122626. [PMID: 37778493 DOI: 10.1016/j.envpol.2023.122626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Tropospheric ozone (O3) is an oxidative air pollutant that promotes damage to several crops, including grapevine, which is considered moderately resistant to O3 stress. To study the O3 effect on this perennial crop species under realistic environmental conditions, a three-year experiment was performed using an innovative O3-FACE facility located in the Mediterranean climate region, where the target species, Vitis vinifera cv. "Cabernet sauvignon", was exposed to three O3 levels: ambient (AA), 1.5 × ambient (×1.5), and 2 × ambient (×2.0). A stomatal conductance model parameterization was conducted, and O3-exposure (AOT40) and flux-based indices (PODy) were estimated. An assessment of O3-induced visible foliar injury (O3_VFI) was conducted by estimating VFI_Incidence (percentage of symptomatic leaves per branch) and VFI_Severity (average percentage of O3_VFI surface in symptomatic leaves). Biomass parameters were used to assess the cumulative O3 effect and calculate the most appropriate critical levels (CL) for a 5% yield loss and for the induction of 5, 10, and 15% of O3_VFI. We confirmed that the O3 effect on this grapevine variety VFI was cumulative and that POD0 values accumulated over the two or three years preceding the assessment were better related to the response variables than single-year values, with the response increasing with increasing O3 level. The estimated CL for 5% yield loss based on the O3-exposure index was 25 ppm h AOT40 and 21 or 23 ppm h for a 10% of VFI_Incidence or VFI_Severity, respectively. The suggested flux-based index value for 5% yield loss was 5.2 POD3 mmol m-2, and for 10% of VFI_Incidence or VFI_Severity, the values were 7.7 or 8.6 POD3 mmol m-2, respectively. The results presented in this study demonstrate that O3 risk assessment for this grapevine varietyproduces consistent and comparable results when using either yield or O3_VFI as response parameter.
Collapse
Affiliation(s)
- Bárbara Baesso Moura
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Jacopo Manzini
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; Italian Integrated Environmental Research Infrastructures System (ITINERIS), Tito Scalo 85050 (Potenza), Italy
| | - Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; Italian Integrated Environmental Research Infrastructures System (ITINERIS), Tito Scalo 85050 (Potenza), Italy
| |
Collapse
|
6
|
Moura BB, Paoletti E, Badea O, Ferrini F, Hoshika Y. Visible Foliar Injury and Ecophysiological Responses to Ozone and Drought in Oak Seedlings. PLANTS 2022; 11:plants11141836. [PMID: 35890470 PMCID: PMC9317710 DOI: 10.3390/plants11141836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
To verify the responses of visible foliar injury (VFI), we exposed seedlings of three oak species for 4.5 months in an open air facility, using differing ozone (O3) and drought treatments: O3 (three levels from ambient to ×1.4 ambient), and drought (three levels of irrigation from 40% to 100% field capacity). We related the accumulated phytotoxic O3 dose (POD1) and cumulative drought index (CDI) to the O3 and drought VFI and assessed growth increment (height, diameter, leaf number), biomass (of all organs), and physiological parameters: net photosynthesis per plant (Pn), photosynthetic nitrogen (PNUE) and phosphorus use efficiency (PPUE)). The results indicated that an increase in POD1 promoted O3 VFI in Quercus robur and Quercus pubescens, while Quercus ilex was asymptomatic. The POD1-based critical level at the onset of O3 VFI was lower for Q. robur than for Q. pubescens (12.2 vs. 15.6 mmol m−2 POD1). Interestingly, drought reduced O3 VFI in Q. robur but increased it in Q. pubescens. Both O3 and drought were detrimental to the plant biomass. However, Q. robur and Q. pubescens invested more in shoots than in roots, while Q. ilex invested more in roots, which might be related to a hormetic mechanism. Pn, PNUE and PPUE decreased in all species under drought, and only in the sensitive Q. robur (PPUE) and Q. pubescens (PNUE) under O3. This study confirms that POD1 is a good indicator to explain the development of O3 VFI and helps a differential diagnosis of co-occurring drought and O3 VFI in oak forests.
Collapse
Affiliation(s)
- Barbara Baesso Moura
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (B.B.M.); (Y.H.)
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (B.B.M.); (Y.H.)
- Correspondence:
| | - Ovidiu Badea
- “Marin Drăcea“ National Institute for Research and Development in Forestry, 128 Eroilor Blvd., 077190 Voluntari, Romania;
- Faculty of Silviculture and Forest Engineering, “Transilvania” University of Brasov, 1, Ludwig van Beethoven Str., 500123 Braşov, Romania
| | - Francesco Ferrini
- Department of Agriculture, Food, Environmental and Forestry Sciences, Section Woody Plants, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (B.B.M.); (Y.H.)
| |
Collapse
|
7
|
Hoshika Y, Paoletti E, Centritto M, Gomes MTG, Puértolas J, Haworth M. Species-specific variation of photosynthesis and mesophyll conductance to ozone and drought in three Mediterranean oaks. PHYSIOLOGIA PLANTARUM 2022; 174:e13639. [PMID: 35092611 PMCID: PMC9303399 DOI: 10.1111/ppl.13639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Mesophyll conductance (gmCO2 ) is one of the most important components in plant photosynthesis. Tropospheric ozone (O3 ) and drought impair physiological processes, causing damage to photosynthetic systems. However, the combined effects of O3 and drought on gmCO2 are still largely unclear. We investigated leaf gas exchange during mid-summer in three Mediterranean oaks exposed to O3 (ambient [35.2 nmol mol-1 as daily mean]; 1.4 × ambient) and water treatments (WW [well-watered] and WD [water-deficit]). We also examined if leaf traits (leaf mass per area [LMA], foliar abscisic acid concentration [ABA]) could influence the diffusion of CO2 inside a leaf. The combination of O3 and WD significantly decreased net photosynthetic rate (PN ) regardless of the species. The reduction of photosynthesis was associated with a decrease in gmCO2 and stomatal conductance (gsCO2 ) in evergreen Quercus ilex, while the two deciduous oaks (Q. pubescens, Q. robur) also showed a reduction of the maximum rate of carboxylation (Vcmax ) and maximum electron transport rate (Jmax ) with decreased diffusive conductance parameters. The reduction of gmCO2 was correlated with increased [ABA] in the three oaks, whereas there was a negative correlation between gmCO2 with LMA in Q. pubescens. Interestingly, two deciduous oaks showed a weak or no significant correlation between gsCO2 and ABA under high O3 and WD due to impaired stomatal physiological behaviour, indicating that the reduction of PN was related to gmCO2 rather than gsCO2 . The results suggest that gmCO2 plays an important role in plant carbon gain under concurrent increases in the severity of drought and O3 pollution.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET)National Research Council of Italy (CNR)Sesto Fiorentino
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET)National Research Council of Italy (CNR)Sesto Fiorentino
| | - Mauro Centritto
- Institute of Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
| | - Marcos Thiago Gaudio Gomes
- Institute of Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
- Present address:
Department of Biological Sciences, Center for Human and Natural SciencesFederal University of Espírito SantoGoiabeiras, CEP 29075‐910, Vitória, Espírito SantoBrazil
| | - Jaime Puértolas
- Lancaster Environment CentreLancaster UniversityLancasterUK
- Present address:
Department of Botany and Plant Ecology and PhysiologyUniversity of La LagunaSan Cristóbal de La LagunaSpain
| | - Matthew Haworth
- Institute of Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
| |
Collapse
|
8
|
Montes CM, Demler HJ, Li S, Martin DG, Ainsworth EA. Approaches to investigate crop responses to ozone pollution: from O 3 -FACE to satellite-enabled modeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:432-446. [PMID: 34555243 PMCID: PMC9293421 DOI: 10.1111/tpj.15501] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 05/05/2023]
Abstract
Ozone (O3 ) is a damaging air pollutant to crops. As one of the most reactive oxidants known, O3 rapidly forms other reactive oxygen species (ROS) once it enters leaves through stomata. Those ROS in turn can cause oxidative stress, reduce photosynthesis, accelerate senescence, and decrease crop yield. To improve and adapt our feed, fuel, and food supply to rising O3 pollution, a number of Free Air Concentration Enrichment (O3 -FACE) facilities have been developed around the world and have studied key staple crops. In this review, we provide an overview of the FACE facilities and highlight some of the lessons learned from the last two decades of research. We discuss the differences between C3 and C4 crop responses to elevated O3 , the possible trade-off between productivity and protection, genetic variation in O3 response within and across species, and how we might leverage this observed variation for crop improvement. We also highlight the need to improve understanding of the interaction between rising O3 pollution and other aspects of climate change, notably drought. Finally, we propose the use of globally modeled O3 data that are available at increasing spatial and temporal resolutions to expand upon the research conducted at the limited number of global O3 -FACE facilities.
Collapse
Affiliation(s)
- Christopher M. Montes
- USDA ARS Global Change and Photosynthesis Research Unit1201 W. Gregory DriveUrbanaIL61801USA
| | - Hannah J. Demler
- DOE Center for Advanced Bioenergy and Bioproducts Innovation and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Shuai Li
- DOE Center for Advanced Bioenergy and Bioproducts Innovation and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Duncan G. Martin
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Elizabeth A. Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit1201 W. Gregory DriveUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
9
|
Yuan X, Feng Z, Hu C, Zhang K, Qu L, Paoletti E. Effects of elevated ozone on the emission of volatile isoprenoids from flowers and leaves of rose (Rosa sp.) varieties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118141. [PMID: 34517180 DOI: 10.1016/j.envpol.2021.118141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Tropospheric ozone (O3) affects isoprenoid emissions, and floral emissions in particular, which may result in potential impacts on the interactions of plants with other organisms. The effects of ozone (O3) on isoprenoid emissions have been investigated for many years, while knowledge on O3 effects on floral emissions is still scarce and the relevant mechanism has not been clarified so far. We investigated the effects of O3 on floral and foliar isoprenoid emissions (mainly isoprene, monoterpenes and sesquiterpenes) and their synthase substrates from three rose varieties (CH, Rosa chinensis Jacq. var. chinensis; SA, R. hybrida 'Saiun'; MO, R. hybrida 'Monica Bellucci') at different exposure durations. Results indicated that the O3-induced stimulation after short-term exposure (35 days after the beginning of O3 exposure) was significant only for sesquiterpene emissions from flowers, while long-term O3 exposure (90 days after the beginning of O3 exposure) significantly decreased both foliar and floral monoterpene and sesquiterpene emissions. In addition, the observed decline of emissions under long-term O3 exposure resulted from the limitation of synthase substrates, and the responses of emissions and substrates varied among varieties, with the greatest variation in the O3-sensitive variety. These findings provide important insights on plant isoprenoid emissions and species selection for landscaping, especially in areas with high O3 concentration.
Collapse
Affiliation(s)
- Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
| | - Zhaozhong Feng
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Chunfang Hu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Kun Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; Department of Environmental Science and Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Laiye Qu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China.
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; Institute of Research on Terrestrial Ecosystems, National Research Council, via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Moura BB, Brunetti C, Engela MRGDS, Hoshika Y, Paoletti E, Ferrini F. Experimental assessment of ozone risk on ecotypes of the tropical tree Moringa oleifera. ENVIRONMENTAL RESEARCH 2021; 201:111475. [PMID: 34166663 DOI: 10.1016/j.envres.2021.111475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Ozone (O3) is an oxidative air pollutant that affects plant growth. Moringa oleifera is a tree species distributed in the tropical and subtropical regions. This species presents high morphological plasticity, which increases its ability to tolerate stressful conditions, but with no O3 risk assessment calculated so far. The present study assessed the O3 risk to different M. oleifera ecotypes using exposure-based index (AOT40) or flux-based index (PODy - where y is a threshold of O3 uptake). PODy considers the O3 uptake through the stomata and the consequence of environmental climate conditions on stomatal conductance (gsto); thus, it is efficient in assessing O3 risk. Five M. oleifera ecotypes were subjected to ambient (Amb.); middle (Mid. X1.5), and High (x2.0) O3 concentrations for 77 days in a free-air controlled exposure facility (FACE). Leaf biomass (LB) was evaluated, and the biomass loss was projected assuming a clean atmosphere (10 ppb as 24 h O3 average). The gsto parameterization was calculated using the Jarvis-type multiplicative algorithm considering several climate factors, i.e., light intensity, air temperature, air vapor pressure deficit, and AOT40. Ozone exposure harmed the LB of all ecotypes. The high gsto (~559 mmol H2O m-2 s-1) can be considered the reason for the species' O3 sensitivity. M. oleifera is adapted to hot climate conditions, and gsto was restricted with air temperature (Tmin) below ~ 9 °C. As expected, the PODy index performed better than the AOT40 for estimating the O3 effect on biomass losses. We recommend a y threshold of 4 nmol m-2 s-1 to incorporate O3 effects on M. oleifera LB. To not exceed a 4% reduction of LB for any M. oleifera genotype, we recommend the critical levels of 1.1 mmol m-2 POD4.
Collapse
Affiliation(s)
- Bárbara Baêsso Moura
- Department of Agriculture, Environment, Food, and Forestry, University of Florence, Viale Delle Idee, 30, 50019, Sesto Fiorentino, Italy; Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna Del Piano 10, 50019, Sesto Fiorentino, Italy.
| | - Cecilia Brunetti
- Department of Agriculture, Environment, Food, and Forestry, University of Florence, Viale Delle Idee, 30, 50019, Sesto Fiorentino, Italy; Institute for Sustainable Plant Protection (IPSP), National Research Council (CNR), Via Madonna Del Piano 10, 50019, Sesto Fiorentino, Italy
| | | | - Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna Del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna Del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Francesco Ferrini
- Department of Agriculture, Environment, Food, and Forestry, University of Florence, Viale Delle Idee, 30, 50019, Sesto Fiorentino, Italy; Institute for Sustainable Plant Protection (IPSP), National Research Council (CNR), Via Madonna Del Piano 10, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Pellegrini E, Cotrozzi L, Neri L, Baraldi R, Carrari E, Nali C, Lorenzini G, Paoletti E, Hoshika Y. Stress markers and physiochemical responses of the Mediterranean shrub Phillyrea angustifolia under current and future drought and ozone scenarios. ENVIRONMENTAL RESEARCH 2021; 201:111615. [PMID: 34216612 DOI: 10.1016/j.envres.2021.111615] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Mediterranean plants are particularly threatened by the exacerbation of prolonged periods of summer drought and increasing concentrations of ground-level ozone (O3). The aims of the present study were to (i) test if selected markers (i.e., reactive oxygen species, ROS; malondialdehyde, MDA; photosynthetic pigments) are able to discriminate the oxidative pressure due to single and combined stress conditions, and (ii) elucidate the physiochemical adjustments adopted by Phillyrea angustifolia (evergreen woody species representative of the maquis, also known as narrow-leaved mock privet) to perceive and counter to drought and/or O3. Plants were grown from May to October under the combination of two levels of water irrigation [i.e., well-watered (WW) and water-stressed (WS)] and three levels of O3 [i.e., 1.0, 1.5 and 2.0 times the ambient air concentrations, i.e. AA (current O3 scenario), 1.5 × AA and 2.0 × AA (future O3 scenarios), respectively], using a new-generation O3 Free Air Controlled Exposure (FACE) system. Overall, this species appeared relatively sensitive to drought (e.g., net CO2 assimilation rate and stomatal conductance significantly decreased, as well as total chlorophyll and carotenoid contents), and tolerant to O3 (e.g., as confirmed by the absence of visible foliar injury, the unchanged values of total carotenoids, and the detrimental effects on stomatal conductance, total chlorophylls and terpene emission only under elevated O3 concentrations). The combination of both stressors led to harsher oxidative stress. Only when evaluated together (i.e., combining the information provided by the analysis of each stress marker), ROS, MDA and photosynthetic pigments, were suitable stress markers to discriminate the differential oxidative stress induced by drought and increasing O3 concentrations applied singly or in combination: (i) all these stress markers were affected under drought per se; (ii) hydrogen peroxide (H2O2) and MDA increased under O3per se, following the gradient of O3 concentrations (H2O2: about 2- and 4-fold higher; MDA: +22 and + 91%; in 1.5 × AA_WW and 2.0 × AA_WW, respectively); (iii) joining together the ROS it was possible to report harsher effects under 2.0 × AA_WS and 1.5 × AA_WS (both anion superoxide and H2O2 increased) than under 2.0 × AA_WW (only H2O2 increased); and (iv) MDA showed harsher effects under 2.0 × AA_WS than under 1.5 × AA_WS (increased by 49 and 18%, respectively). Plants activated physiological and biochemical adjustments in order to partially avoid (e.g., stomatal closure) and tolerate (e.g., increased terpene emission) the effects of drought when combined with increasing O3 concentrations, suggesting that the water use strategy (isohydric) and the sclerophyllous habit can further increase the plant tolerance to environmental constraints in the Mediterranean area.
Collapse
Affiliation(s)
- Elisa Pellegrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Lorenzo Cotrozzi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Luisa Neri
- Institute of BioEconomy, IBE-CNR, Via Piero Gobetti, 101, 40129, Bologna, Italy
| | - Rita Baraldi
- Institute of BioEconomy, IBE-CNR, Via Piero Gobetti, 101, 40129, Bologna, Italy
| | - Elisa Carrari
- Institute of Research on Terrestrial Ecosystems, IRET-CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| | - Cristina Nali
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Giacomo Lorenzini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems, IRET-CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| | - Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems, IRET-CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
12
|
Wu R, Agathokleous E, Feng Z. Novel ozone flux metrics incorporating the detoxification process in the apoplast: An application to Chinese winter wheat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144588. [PMID: 33429267 DOI: 10.1016/j.scitotenv.2020.144588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
A modified Ball-Berry-Leuning model of stomatal conductance was applied to data from fully open-air ozone (O3)-enrichment experiments with winter wheat (Triticum aestivum L.). The O3 fluxes reaching both surface of cell wall (Fcw) and plasmalemma (Fpl) were estimated considering apoplastic ascorbate, a major scavenger of O3. The difference (D) between Fcw and Fpl was defined as detoxification capacity of O3 by reaction with ascorbate in the leaf apoplast (ASCapo). The accumulated stomatal O3 flux above D nmol O3 m-2 s-1 (AFstD) and the accumulated Fpl (AFpl) were calculated over the optimal integration period covering the whole reproductive development of wheat, and used to derive O3AFstD yield-response relationships in comparison with PODY (phytotoxic O3 dose above a threshold of Y nmol m-2 s-1) and AOT40 (accumulated O3 dose over a threshold of 40 ppb). There was a good agreement between the observed and modeled values of ASCapo and stomatal conductance. AFstD and AFpl performed better than PODY and AOT40 in terms of R2 and intercept. However, the AFstD metric was more suitable for assessing grain yield loss due to lower sensitivity of the regression slope to variations in the input parameters, compared with AFpl. The average critical level (CL) of four cultivars for 5% grain-yield reduction was 1.53 mmol m-2 using POD6 and 2.81 mmol m-2 using AFstD, with the latter being well above the POD6-derived value for European cultivars (1.3 mmol m-2). The minimum hourly averaged O3 concentration contributed to CLs was below 20 ppb according to AFstD, a value that is lower than that suggested by POD6 (≈27 ppb). O3 flux-response relationships and CLs on the basis of quantified detoxification capacity shall facilitate the understanding of the different degrees of susceptibility to O3 among species or cultivars, and improve the assessments of O3 impacts on plants.
Collapse
Affiliation(s)
- Rongjun Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China.
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China.
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China.
| |
Collapse
|
13
|
Economic impacts of ambient ozone pollution on wood production in Italy. Sci Rep 2021; 11:154. [PMID: 33420285 PMCID: PMC7794517 DOI: 10.1038/s41598-020-80516-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/20/2020] [Indexed: 11/09/2022] Open
Abstract
Worldwide, tropospheric ozone (O3) is a potential threat to wood production, but our understanding of O3 economic impacts on forests is still limited. To overcome this issue, we developed an approach for integrating O3 risk modelling and economic estimates, by using the Italian forests as a case study. Results suggested a significant impact of O3 expressed in terms of stomatal flux with an hourly threshold of uptake (Y = 1 nmol O3 m−2 leaf area s−1 to represent the detoxification capacity of trees), i.e. POD1. In 2005, the annual POD1 averaged over Italy was 20.4 mmol m−2 and the consequent potential damage ranged from 790.90 M€ to 2.85 B€ of capital value (i.e. 255–869 € ha−1, on average) depending on the interest rate. The annual damage ranged from 31.6 to 57.1 M€ (i.e. 10–17 € ha−1 per year, on average). There was also a 1.1% reduction in the profitable forest areas, i.e. with a positive Forest Expectation Value (FEV), with significant declines of the annual national wood production of firewood (− 7.5%), timber pole (− 7.4%), roundwood (− 5.0%) and paper mill (− 4.8%). Results were significantly different in the different Italian regions. We recommend our combined approach for further studies under different economic and phytoclimatic conditions.
Collapse
|
14
|
Isotopic and Water Relation Responses to Ozone and Water Stress in Seedlings of Three Oak Species with Different Adaptation Strategies. FORESTS 2020. [DOI: 10.3390/f11080864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The impact of global changes on forest ecosystem processes is based on the species-specific responses of trees to the combined effect of multiple stressors and the capacity of each species to acclimate and cope with the environment modification. Combined environmental constraints can severely affect plant and ecological processes involved in plant functionality. This study provides novel insights into the impact of a simultaneous pairing of abiotic stresses (i.e., water and ozone (O3) stress) on the responses of oak species. Water stress (using 40 and 100% of soil water content at field capacity—WS and WW treatments, respectively) and O3 exposure (1.0, 1.2, and 1.4 times the ambient concentration—AA, 1.2AA, and 1.4AA, respectively) were carried out on Quercus robur L., Quercus ilex L., and Quercus pubescens Willd. seedlings, to study physiological traits (1. isotope signature [δ13C, δ18O and δ15N], 2. water relation [leaf water potential, leaf water content], 3. leaf gas exchange [light-saturated net photosynthesis, Asat, and stomatal conductance, gs]) for adaptation strategies in a Free-Air Controlled Exposure (FACE) experiment. Ozone decreased Asat in Q. robur and Q. pubescens while water stress decreased it in all three oak species. Ozone did not affect δ13C, whereas δ18O was influenced by O3 especially in Q. robur. This may reflect a reduction of gs with the concomitant reduction in photosynthetic capacity. However, the effect of elevated O3 on leaf gas exchange as indicated by the combined analysis of stable isotopes was much lower than that of water stress. Water stress was detectable by δ13C and by δ18O in all three oak species, while δ15N did not define plant response to stress conditions in any species. The δ13C signal was correlated to leaf water content (LWC) in Q. robur and Q. ilex, showing isohydric and anisohydric strategy, respectively, at increasing stress intensity (low value of LWC). No interactive effect of water stress and O3 exposure on the isotopic responses was found, suggesting no cross-protection on seasonal carbon assimilation independently on the species adaptation strategy.
Collapse
|
15
|
Ozone Amplifies Water Loss from Mature Trees in the Short Term But Decreases It in the Long Term. FORESTS 2019. [DOI: 10.3390/f11010046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We measured whole-tree transpiration of mature Fagus sylvatica and Picea abies trees exposed to ambient and twice-ambient O3 regimes (1xO3 and 2xO3 free-air fumigation). After eight years, mean daily total transpiration did not vary with the O3 regime over the 31 days of our study, even though individual daily values increased with increasing daily O3 peaks in both species. Although the environmental parameters were similar at 1xO3 and 2xO3, the main factors affecting daily transpiration were vapour pressure deficit in 2xO3 spruce and O3 peaks in beech. For a mechanistic explanation, we measured O3-induced sluggish stomatal responses to variable light (sunflecks) by means of leaf-level gas exchange measurements only in the species where O3 was a significant factor for transpiration, i.e., beech. Stomata were always slower in closing than in opening. The 2xO3 stomata were slower in opening and mostly in closing than 1xO3 stomata, so that O3 uptake and water loss were amplified before a steady state was reached. Such delay in the stomatal reaction suggests caution when assessing stomatal conductance under O3 pollution, because recording gas exchange at the time photosynthesis reached an equilibrium resulted in a significant overestimation of stomatal conductance when stomata were closing (ab. 90% at 1xO3 and 250% at 2xO3). Sun and shade leaves showed similar sluggish responses, thus suggesting that sluggishness may occur within the entire crown. The fact that total transpiration was similar at 1xO3 and 2xO3, however, suggests that the higher water loss due to stomatal sluggishness was offset by lower steady-state stomatal conductance at 2xO3. In conclusion, O3 exposure amplified short-term water loss from mature beech trees by slowing stomatal dynamics, while decreased long-term water loss because of lower steady-state stomatal conductance. Over the short term of this experiment, the two responses offset each other and no effect on total transpiration was observed.
Collapse
|
16
|
Paoletti E, Alivernini A, Anav A, Badea O, Carrari E, Chivulescu S, Conte A, Ciriani ML, Dalstein-Richier L, De Marco A, Fares S, Fasano G, Giovannelli A, Lazzara M, Leca S, Materassi A, Moretti V, Pitar D, Popa I, Sabatini F, Salvati L, Sicard P, Sorgi T, Hoshika Y. Toward stomatal-flux based forest protection against ozone: The MOTTLES approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:516-527. [PMID: 31325852 DOI: 10.1016/j.scitotenv.2019.06.525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
European standards for the protection of forests from ozone (O3) are based on atmospheric exposure (AOT40) that is not always representative of O3 effects since it is not a proxy of gas uptake through stomata (stomatal flux). MOTTLES "MOnitoring ozone injury for seTTing new critical LEvelS" is a LIFE project aimed at establishing a permanent network of forest sites based on active O3 monitoring at remote areas at high and medium risk of O3 injury, in order to define new standards based on stomatal flux, i.e. PODY (Phytotoxic Ozone Dose above a threshold Y of uptake). Based on the first year of data collected at MOTTLES sites, we describe the MOTTLES monitoring station, together with protocols and metric calculation methods. AOT40 and PODY, computed with different methods, are then compared and correlated with forest-health indicators (radial growth, crown defoliation, visible foliar O3 injury). For the year 2017, the average AOT40 calculated according to the European Directive was even 5 times (on average 1.7 times) the European legislative standard for the protection of forests. When the metrics were calculated according to the European protocols (EU Directive 2008/50/EC or Modelling and Mapping Manual LTRAP Convention), the values were well correlated to those obtained on the basis of the real duration of the growing season (i.e. MOTTLES method) and were thus representative of the actual exposure/flux. AOT40 showed opposite direction relative to PODY. Visible foliar O3 injury appeared as the best forest-health indicator for O3 under field conditions and was more frequently detected at forest edge than inside the forest. The present work may help the set-up of further long-term forest monitoring sites dedicated to O3 assessment in forests, especially because flux-based assessments are recommended as part of monitoring air pollution impacts on ecosystems in the revised EU National Emissions Ceilings Directive.
Collapse
Affiliation(s)
- E Paoletti
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - A Alivernini
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy
| | - A Anav
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; ENEA, SSPT-PVS, Via Anguillarese 301, 00123 Santa Maria di Galeria (Rome), Italy
| | - O Badea
- INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania
| | - E Carrari
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
| | - S Chivulescu
- INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania
| | - A Conte
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy
| | - M L Ciriani
- GIEFS, 69 avenue des Hespérides, 06300 Nice, France
| | | | - A De Marco
- ENEA, SSPT-PVS, Via Anguillarese 301, 00123 Santa Maria di Galeria (Rome), Italy
| | - S Fares
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy
| | - G Fasano
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - A Giovannelli
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - M Lazzara
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - S Leca
- INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania
| | - A Materassi
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - V Moretti
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy
| | - D Pitar
- INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania
| | - I Popa
- INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania
| | - F Sabatini
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - L Salvati
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy
| | - P Sicard
- ARGANS, 260 route du Pin Montard, 06410 Biot, France
| | - T Sorgi
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy
| | - Y Hoshika
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
17
|
Effect of Long-Term vs. Short-Term Ambient Ozone Exposure on Radial Stem Growth, Sap Flux and Xylem Morphology of O3-Sensitive Poplar Trees. FORESTS 2019. [DOI: 10.3390/f10050396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High ozone (O3) pollution impairs the carbon and water balance of trees, which is of special interest in planted forests. However, the effect of long-term O3 exposure on tree growth and water use, little remains known. In this study, we analysed the relationships of intra-annual stem growth pattern, seasonal sap flow dynamics and xylem morphology to assess the effect of long term O3 exposure of mature O3-sensitive hybrid poplars (‘Oxford’ clone). Rooted cuttings were planted in autumn 2007 and drip irrigated with 2 liters of water as ambient O3 treatment, or 450 ppm ethylenediurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N0-phenylurea, abbreviated as EDU) solution as O3 protection treatment over all growing seasons. During 2013, point dendrometers and heat pulses were installed to monitor radial growth, stem water relations and sap flow. Ambient O3 did not affect growth rates, even if the seasonal culmination point was 20 days earlier on average than that recorded in the O3 protected trees. Under ambient O3, trees showed reduced seasonal sap flow, however, the lower water use was due to a decrease of Huber value (decrease of leaf area for sapwood unit) rather than to a change in xylem morphology or due to a direct effect of sluggish stomatal responses on transpiration. Under high evaporative demand and ambient O3 concentrations, trees showed a high use of internal stem water resources modulated by stomatal sluggishness, thus predisposing them to be more sensitive water deficit during summer. The results of this study help untangle the compensatory mechanisms involved in the acclimation processes of forest species to long-term O3 exposure in a context of global change.
Collapse
|
18
|
Araminienė V, Sicard P, Anav A, Agathokleous E, Stakėnas V, De Marco A, Varnagirytė-Kabašinskienė I, Paoletti E, Girgždienė R. Trends and inter-relationships of ground-level ozone metrics and forest health in Lithuania. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:1265-1277. [PMID: 30677989 DOI: 10.1016/j.scitotenv.2018.12.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 05/16/2023]
Abstract
Lithuania is representative of maritime to continental climate, no water limitation, and moderate ground-level ozone (O3) pollution. We investigated the trends of meteorological variables and O3 and how these environmental conditions associate with tree health from 2001 onward. Ozone metrics for forest protection, based on Accumulated O3 exposure Over a Threshold of X ppb (AOTX) or on Phytotoxic O3 Dose over a Y threshold (PODY), were modeled at nine ICP-Forests plots over the time period 2001-2014. Tree-response indicators, i.e. crown defoliation and visible foliar O3 injury, were assessed during annual field surveys carried out at each ICP-Forests plot over the time period 2007-2017. Mann-Kendall and Sen statistical tests were applied to estimate changes over time of meteorological variables, response indicators and O3 metrics. Finally, the O3 metrics were correlated (Spearman test) to the response indicators over the common period 2007-2014. Over this time period, trend analyses revealed an increasingly hotter (+0.27 °C decade-1, on average) and drier climate (rainfall, -48 mm decade-1). A reduction was found for O3 annual mean (-0.28 ppb decade-1, on average) and AOT40 (-2540 ppb·h decade-1, on average) whereas an increase was found for POD0 (+0.40 mmol m-2 decade-1, on average). Visible foliar O3 injury increased (+0.17% decade-1), while an improvement of the crown conditions (-5.0% decade-1) was observed. AOT40 was significantly associated with crown defoliation while PODY and soil water content were correlated with visible foliar O3 injury. As visible foliar O3 injury was negligible in all the studied species, the results suggest that moderate O3 pollution (approximately 30 ppb as annual average) does not induce biologically significant effects on this forest vegetation under the current conditions, however the overall O3 risk (POD0) is expected to increase in the future under a hotter and drier climate.
Collapse
Affiliation(s)
- Valda Araminienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Girionys, Kaunas District, Lithuania.
| | | | | | - Evgenios Agathokleous
- Hokkaido Research Centre, Forestry and Forest Products Research Institute, Sapporo, Japan; Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
| | - Vidas Stakėnas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Girionys, Kaunas District, Lithuania.
| | | | | | | | - Rasa Girgždienė
- Center for Physical Sciences and Technology, Vilnius, Lithuania.
| |
Collapse
|
19
|
Calzone A, Podda A, Lorenzini G, Maserti BE, Carrari E, Deleanu E, Hoshika Y, Haworth M, Nali C, Badea O, Pellegrini E, Fares S, Paoletti E. Cross-talk between physiological and biochemical adjustments by Punica granatum cv. Dente di cavallo mitigates the effects of salinity and ozone stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:589-597. [PMID: 30529963 DOI: 10.1016/j.scitotenv.2018.11.402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Plants are exposed to a broad range of environmental stresses, such as salinity and ozone (O3), and survive due to their ability to adjust their metabolism. The aim of this study was to evaluate the physiological and biochemical adjustments adopted by pomegranate (Punica granatum L. cv. Dente di cavallo) under realistic field conditions. One-year-old saplings were exposed to O3 [two levels denoted as ambient (AO) and elevated (EO) O3 concentrations] and salinity [S (salt, 50 mM NaCl)] for three consecutive months. No salt (NS) plants received distilled water. Despite the accumulation of Na+ and Cl- in the aboveground biomass, no evidence of visible injury due to salt (e.g. tip yellow-brown lesions) was found. The maintenance of leaf water status (i.e. unchanged values of electrolytic leakage and relative water content), the significant increase of abscisic acid, proline and starch content (+98, +65 and +59% compared to AO_NS) and stomatal closure (-24%) are suggested to act as adaptive mechanisms against salt stress in AO_S plants. By contrast, EO_NS plants were unable to protect cells against the negative impact of O3, as confirmed by the reduction of the CO2 assimilation rate (-21%), accumulation of reactive oxygen species (+10 and +225% of superoxide anion and hydrogen peroxide) and malondialdehyde by-product (about 2-fold higher than AO_NS). Plants tried to preserve themselves from further oxidative damage by adopting some biochemical adjustments [i.e. increase in proline content (+41%) and induction of catalase activity (8-fold higher than in AO_NS)]. The interaction of the two stressors induced responses considerably different to those observed when each stressor was applied independently. An analysis of the antioxidant pool revealed that the biochemical adjustments adopted by P. granatum under EO_S conditions (e.g. reduction of total ascorbate; increased activities of superoxide dismutase and catalase) were not sufficient to ameliorate the O3-induced oxidative stress.
Collapse
Affiliation(s)
- Antonella Calzone
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Alessandra Podda
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy; National Research Council, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Bianca Elena Maserti
- National Research Council, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy
| | - Elisa Carrari
- National Research Council, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy
| | - Elena Deleanu
- National Institute for Research and Development in Forestry "Marin Dracea", B-dul Eroilor 128, Voluntari, Ilfov 077190, Romania
| | - Yasutomo Hoshika
- National Research Council, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy
| | - Matthew Haworth
- National Research Council, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Ovidiu Badea
- National Institute for Research and Development in Forestry "Marin Dracea", B-dul Eroilor 128, Voluntari, Ilfov 077190, Romania; Transilvania University of Brasov, B-dul Eroilor 29, Brasov 500036, Romania
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy.
| | - Silvano Fares
- Research Centre for Forestry and Wood, Council for Agricultural Research and Economics, Arezzo, Italy
| | - Elena Paoletti
- National Research Council, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
20
|
Fernandes FF, Esposito MP, da Silva Engela MRG, Cardoso-Gustavson P, Furlan CM, Hoshika Y, Carrari E, Magni G, Domingos M, Paoletti E. The passion fruit liana (Passiflora edulis Sims, Passifloraceae) is tolerant to ozone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1091-1101. [PMID: 30625641 DOI: 10.1016/j.scitotenv.2018.11.425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Passiflora edulis Sims is a liana species of high economic interest and is an interesting model plant for understanding ozone action on disturbed vegetation. In this work we hypothesized that P. edulis has adaptive responses to oxidative stress that enable it to tolerate ozone damage based on its capacity to grow under a diversity of environmental conditions and to dominate disturbed areas. We exposed seedlings to three levels of ozone in a Free-Air Controlled Exposure (FACE) system (22, 41 and 58 ppb h AOT40 and 13.52, 17.24 and 20.62 mmol m-2 POD0, over 97 days) for identifying its tolerance mechanisms. Anatomical (leaf blade structure and fluorescence emission of chloroplast metabolites), physiological (leaf gas exchange, growth rate and biomass production) and biochemical (pigments, total sugars, starch, enzymatic and non-enzymatic antioxidant metabolites, reactive oxygen species and lipid peroxidation derivatives) responses were assessed. Ozone caused decreased total number of leaves, hyperplasia and hypertrophy of the mesophyll cells, and accelerated leaf senescence. However, O3 did not affect carbohydrates content, net photosynthetic rate, or total biomass production, indicating that the carboxylation efficiency and associated physiological processes were not affected. In addition, P. edulis showed higher leaf contents of ascorbic acid, glutathione (as well high ratio between their reduced and total forms), carotenoids, and flavonoids located in the chloroplast outer envelope membrane. Our results indicate that P. edulis is an O3-tolerant species due to morphological acclimation responses and an effective antioxidant defense system represented by non-enzymatic antioxidants, which maintained the cellular redox balance under ozone.
Collapse
Affiliation(s)
- Francine Faia Fernandes
- Instituto de Botânica, Núcleo de Pesquisa em Ecologia, Miguel Stéfano Ave. 3687, 04045-972 SP, Brazil.
| | - Marisia Pannia Esposito
- Instituto de Botânica, Núcleo de Pesquisa em Ecologia, Miguel Stéfano Ave. 3687, 04045-972 SP, Brazil
| | | | - Poliana Cardoso-Gustavson
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Arcturus St. 03, 09606-070 SBC, Brazil
| | - Claudia Maria Furlan
- Universidade de São Paulo, Instituto de Biociências, Matão St. 257, 05508-090 SP, Brazil
| | - Yasutomo Hoshika
- National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Elisa Carrari
- National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Giada Magni
- National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Marisa Domingos
- Instituto de Botânica, Núcleo de Pesquisa em Ecologia, Miguel Stéfano Ave. 3687, 04045-972 SP, Brazil
| | - Elena Paoletti
- National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
21
|
Mrak T, Štraus I, Grebenc T, Gričar J, Hoshika Y, Carriero G, Paoletti E, Kraigher H. Different belowground responses to elevated ozone and soil water deficit in three European oak species (Quercus ilex, Q. pubescens and Q. robur). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1310-1320. [PMID: 30360263 DOI: 10.1016/j.scitotenv.2018.09.246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Effects on roots due to ozone and/or soil water deficit often occur through diminished belowground allocation of carbon. Responses of root biomass, morphology, anatomy and ectomycorrhizal communities were investigated in seedlings of three oak species: Quercus ilex L., Q. pubescens Willd. and Q. robur L., exposed to combined effects of elevated ozone (ambient air and 1.4 × ambient air) and water deficit (100% and 10% irrigation relative to field capacity) for one growing season at a free-air ozone exposure facility. Effects on root biomass were observed as general reduction in coarse root biomass by -26.8% and in fine root biomass by -13.1% due to water deficit. Effect on coarse root biomass was the most prominent in Q. robur (-36.3%). Root morphological changes manifested as changes in proportions of fine root (<2 mm) diameter classes due to ozone and water deficit in Q. pubescens and due to water deficit in Q. robur. In addition, reduced fine root diameter (-8.49%) in Q. robur was observed under water deficit. Changes in root anatomy were observed as increased vessel density (+18.5%) due to ozone in all three species, as reduced vessel tangential diameter (-46.7%) in Q. ilex due to interaction of ozone and water, and as generally increased bark to secondary xylem ratio (+47.0%) due to interaction of ozone and water. Water deficit influenced occurrence of distinct growth ring boundaries in roots of Q. ilex and Q. robur. It shifted the ectomycorrhizal community towards dominance of stress-resistant species, with reduced relative abundance of Tomentella sp. 2 and increased relative abundances of Sphaerosporella brunnea and Thelephora sp. Our results provide evidence that expression of stress effects varies between root traits; therefore the combined analysis of root traits is necessary to obtain a complete picture of belowground responses.
Collapse
Affiliation(s)
- Tanja Mrak
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia.
| | - Ines Štraus
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| | - Tine Grebenc
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| | - Jožica Gričar
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| | - Yasutomo Hoshika
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Giulia Carriero
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Elena Paoletti
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Hojka Kraigher
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
22
|
Pellegrini E, Hoshika Y, Dusart N, Cotrozzi L, Gérard J, Nali C, Vaultier MN, Jolivet Y, Lorenzini G, Paoletti E. Antioxidative responses of three oak species under ozone and water stress conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:390-399. [PMID: 30086491 DOI: 10.1016/j.scitotenv.2018.07.413] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/26/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
Plants are frequently exposed to adverse environmental conditions such as drought and ozone (O3). Under these conditions, plants can survive due to their ability to adjust their metabolism. The aim of the present study was to compare the detoxification mechanisms of three oak species showing different O3 sensitivity and water use strategy. Two-year-old seedlings of Quercus ilex, Q. pubescens and Q. robur were grown under the combination of three levels of O3 (1.0, 1.2 and 1.4 times the ambient O3 concentration) and three levels of water availability (on average 100, 80 and 42% of field capacity i.e. well-watered, moderate drought and severe drought, respectively) in an O3 Free Air Controlled Exposure facility. Ozone and drought induced the accumulation of reactive oxygen species (ROS) and this phenomenon was species-specific. Sometimes, ROS accumulation was not associated with membrane injury suggesting that several antioxidative defence mechanisms inhibited or alleviated the oxidative damage. Both O3 and drought increased total carotenoids that were able to prevent the peroxidation action by free radicals in Q. ilex, as confirmed by unchanged malondialdehyde by-product values. The concomitant decrease of total flavonoids may be related to the consumption of these compounds by the cell to inhibit the accumulation of hydrogen peroxide. Unchanged total phenols confirmed that Q. ilex has a superior ability to counteract oxidative conditions. Similar responses were found in Q. pubescens, although the negative impact of both factors was less efficiently faced than in the sympatric Q. ilex. In Q. robur, high O3 concentrations and severe drought induced a partial rearrangement of the phenylpropanoid pathways. These antioxidative mechanisms were not able to protect the cell structure (as confirmed by ROS accumulation) suggesting that Q. robur showed a lower degree of tolerance than the other two species.
Collapse
Affiliation(s)
- Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Yasutomo Hoshika
- Institute for Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy
| | - Nicolas Dusart
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France
| | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Joëlle Gérard
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy.
| | | | - Yves Jolivet
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Elena Paoletti
- Institute for Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
23
|
Zhang L, Hoshika Y, Carrari E, Badea O, Paoletti E. Ozone risk assessment is affected by nutrient availability: Evidence from a simulation experiment under free air controlled exposure (FACE). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:812-822. [PMID: 29627751 DOI: 10.1016/j.envpol.2018.03.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Assessing ozone (O3) risk to vegetation is crucial for informing policy making. Soil nitrogen (N) and phosphorus (P) availability could change stomatal conductance which is the main driver of O3 uptake into a leaf. In addition, the availability of N and P could influence photosynthesis and growth. We thus postulated that the sensitivity of plants to O3 may be changed by the levels of N and P in the soil. In this study, a sensitive poplar clone (Oxford) was subject to two N levels (N0, 0 kg N ha-1; N80, 80 kg N ha-1), three P levels (P0, 0 kg P ha-1; P40, 40 kg P ha-1; P80, 80 kg P ha-1) and three levels of O3 exposure (ambient concentration, AA; 1.5 × AA; 2.0 × AA) for a whole growing season in an O3 free air controlled exposure (FACE) facility. Flux-based (POD0 to 6) and exposure-based (W126 and AOT40) dose-response relationships were fitted and critical levels (CLs) were estimated for a 5% decrease of total annual biomass. It was found that N and P availability modified the dose-response relationships of biomass responses to O3. Overall, the N supply decreased the O3 CLs i.e. increased the sensitivity of poplar to O3. Phosphorus alleviated the O3-caused biomass loss and increased the CL. However, such mitigation effects of P were found only in low N and not in high N conditions. In each nutritional treatment, similar performance was found between flux-based and exposure-based indices. However, the flux-based approach was superior, as compared to exposure indices, to explain the biomass reduction when all nutritional treatments were pooled together. The best O3 metric for risk assessments was POD4, with 4.6 mmol m-2 POD4 as a suitable CL for Oxford poplars grown under various soil N and P conditions.
Collapse
Affiliation(s)
- Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road 600, 150030, Harbin, China; Institute of Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Florence, Italy
| | - Yasutomo Hoshika
- Institute of Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Florence, Italy.
| | - Elisa Carrari
- Institute of Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Florence, Italy
| | - Ovidiu Badea
- INCDS, 13 Septembrie, sector 5, 050711, Bucarest, Romania
| | - Elena Paoletti
- Institute of Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Florence, Italy
| |
Collapse
|
24
|
Lorenzini G, Nali C. Editorial-ozone and plant life: the Italian state-of-the-art. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8069-8073. [PMID: 29470749 DOI: 10.1007/s11356-018-1387-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|