1
|
Xu F, Su M, Tang S, Li S. Regional BDE-209 emission, environmental fate and risks: Methods establishment, data filling and feature analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176817. [PMID: 39396795 DOI: 10.1016/j.scitotenv.2024.176817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
BDE-209 is an emerging environmental contaminant that poses a significant threat to human health. Despite its inclusion in the Stockholm Convention, the current regional emission levels, environmental fate, and corresponding risks remain unclear, especially with the ongoing release of BDE-209 during the disposal of waste electrical and electronic equipment. The significant gaps in BDE-209 emission data highlight the need for a regional approach to better understand these issues. Therefore, we established a method to identify regional BDE-209 emissions, environmental fate, and risks in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) using a substance flow analysis framework, fugacity model, and risk model. Our results showed: (1) Despite the increasing pressure of electronic waste, emissions have decreased with gradual strengthening of restrictions. The stage with the highest contribution to emissions is flame-retardant plastic production, which accounts for 41 % of emissions, followed by informal treatment (36 %). (2) The largest BDE-209 emissions are into air and soil, at 7.23 t and 4.56 t, respectively, and the highest reserves are in soil and sediment. (3) Infants and young children have the highest levels of exposure and cancer risk. This research helps fill the multi-regional data gap for BDE-209 and clarify the complex regional emission situation in the GBA.
Collapse
Affiliation(s)
- Fangping Xu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Meirong Su
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shiting Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Wang R, Cheng H, Bian Z. Global occurrence and environmental behavior of novel brominated flame retardants in soils: Current knowledge and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136298. [PMID: 39476697 DOI: 10.1016/j.jhazmat.2024.136298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 12/01/2024]
Abstract
Since polybrominated diphenyl ethers (PBDEs) are on the list of regulated chemicals, novel brominated flame retardants (NBFRs) have been produced as alternatives and extensively used since the end of the 19th century. A comprehensive assessment of the environmental burden of NBFRs, which are emerging contaminants with bio-toxic and carcinogenic properties, is urgently needed. Given that soil is a major sink for organic pollutants, this study systematically reviewed global data on NBFRs in soil for the period of 1990-2024 via a bibliometric analysis of 70 publications from the Web of Science Core Collection, reaching the following achievements. (1) NBFRs in soils have been reported in 17 countries or regions worldwide, ranging from not detected to 8.46 × 104 ng/g dw, showing an increasing trend over time, with severe contamination in Asia and Australia. (2) NBFR concentrations varied significantly across land use types: manufacturing land > electronic waste disposal areas > urban soil > farmland > forest > remote areas. (3) NBFRs with log KOA > 10 tend to settle from the air into the soil, where they may be absorbed by plant roots and bioaccumulate in the food chain. (4) Organism dietary habits and metabolism, along with the hydrophobicity and molecular weight of NBFRs, contribute to bioaccumulation differences. (5) Successive reductive debromination is the primary degradation pathway for NBFRs, and microorganisms such as the white-rot fungus P. ostreatus show potential for remediating NBFR-contaminated soil. This review clarifies the pollution status of soil NBFRs and provides a solid reference to develop management policies. Future research should focus on studying the transport mechanisms of NBFRs between soil and other media, and assessing the cumulative effects of high trophic level organisms on NBFRs.
Collapse
Affiliation(s)
- Rui Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Hongguang Cheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Olaniyan OO, Adeniji AO, Okoh AI, Okoh OO. Occurrence and risk assessment of polybrominated diphenyl ethers in surficial water and sediment from Buffalo River estuary, South Africa. MARINE POLLUTION BULLETIN 2024; 209:117176. [PMID: 39476637 DOI: 10.1016/j.marpolbul.2024.117176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
This study assessed PBDE congeners in surface water and sediment from the Buffalo River estuary, East London, South Africa. Samples were collected across three seasons in 2020 and analyzed using GC-MS and GC-μECD to respectively identify and quantify analytes. The concentration of ∑6PBDEs in the surface water and sediment ranged from n.d. to 0.947 μg/L and from 1.87 to 2554 ng/g (dw), respectively. We found the relative abundance of the congeners in water and sediment to be in this order: BDE-66 (36 %) > BDE-100 (25 %) > BDE-17 (21 %) > BDE-183 (9 %) > BDE-153 (6 %) > BDE-47 (3 %) and BDE-66 (26 %) > BDE-100 (23 %) > BDE-17 (18 %) > BDE-47 (15 %) > BDE-153 (10 %) > BDE-183 (9 %) respectively. The ecological risk assessment reveals that the risk quotient, RQs, of BDE-100 (85.1), BDE-47 (2.1) and BDE-183 (1.1) for surface water and BDE-47 (229606), BDE-153 (1192) and BDE-100 (141) for surface sediment were all significantly higher than one, indicating high ecological hazards for both water and sediment-dwelling organisms. The point sources of PBDE pollution were the First and the Second Creek, which regularly carry residential and industrial effluents into the estuary. Sediment under the Pontoon Bridge is the most polluted due to non-point sources. Regular dredging of the estuary is highly recommended to reduce the levels of PBDEs in the sediment.
Collapse
Affiliation(s)
- O O Olaniyan
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa.; Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, The University of Fort Hare, Alice 5700, South Africa.; Department of Physical Sciences, School of Natural and Applied Sciences (SONAS), Kampala International University, Kampala, Uganda..
| | - A O Adeniji
- Department of Chemistry and Chemical Technology, National University of Lesotho, P.O. 180, Roma, Lesotho
| | - A I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, The University of Fort Hare, Alice 5700, South Africa
| | - O O Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa.; Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, The University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
4
|
Lesch V, Pieters R, Bouwman H. Dioxins, PFOS, and 20 other Persistent Organic Pollutants in Eggs of Nine Wild Bird Species from the Vaal River, South Africa. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:287-310. [PMID: 39297965 PMCID: PMC11525409 DOI: 10.1007/s00244-024-01088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/28/2024] [Indexed: 11/01/2024]
Abstract
The Vaal River catchment drains the largest and most populated industrial and mining region in Southern Africa. Heron, ibis, cormorant, egrets, and darter eggs, representing three habitats and four feeding guilds, were collected at four locations in 2009/10 to identify hotspots and hazards associated with persistent organic pollutants (POPs). The POPs included 21 organochlorine pesticides, five polybrominated diphenyl ether (PBDE) classes, 18 polychlorinated biphenyls (PCBs including six non-dioxin-like PCBs; NDL-PCB), and 12 dioxin-like PCBs (DL-PCBs), 17 polychlorinated dibenzo-p-dioxins and dibenzo-p-furans (PCDD/Fs), and perfluorooctane sulfonate (PFOS). Aquatic predators had higher PFOS and PCDD/F concentrations, while PCBs dominated in terrestrial eggs. Organochlorine pesticides, PBDEs, and PCBs were strongly associated with eggs from the industrial regions, while PCDD/F concentrations were evenly distributed. PCDD/F and PCB toxic equivalency quotient concentrations were low with no adverse effects expected. PFOS peaked at Bloemhof Dam with a maximum of 2300 ng/g wm in an African Darter egg, indicating an unexpected PFOS hotspot, the source of which is unknown. Despite order of differences in compound class concentrations, there was no association with egg size. To the best of our knowledge, this is the only study that analysed all 2010 POPs in bird eggs on a large geographic scale. This study highlighted the importance of multi-species studies sampling from multiple locations to assess the risk that POPs pose to avian populations as hotspots and species at risk may be missed by studies looking at one or few species.
Collapse
Affiliation(s)
- Velesia Lesch
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | - Rialet Pieters
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Hindrik Bouwman
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
Okeke ES, Nwankwo CE, Ezeorba TPC, Iloh VC, Enochoghene AE. Occurrence and ecotoxicological impacts of polybrominated diphenyl ethers (PBDEs) in electronic waste (e-waste) in Africa: Options for sustainable and eco-friendly management strategies. Toxicology 2024; 506:153848. [PMID: 38825032 DOI: 10.1016/j.tox.2024.153848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent contaminants used as flame retardants in electronic products. PBDEs are contaminants of concern due to leaching and recalcitrance conferred by the stable and hydrophobic bromide residues. The near absence of legislatures and conscious initiatives to tackle the challenges of PBDEs in Africa has allowed for the indiscriminate use and consequent environmental degradation. Presently, the incidence, ecotoxicity, and remediation of PBDEs in Africa are poorly elucidated. Here, we present a position on the level of contamination, ecotoxicity, and management strategies for PBDEs with regard to Africa. Our review shows that Africa is inundated with PBDEs from the proliferation of e-waste due to factors like the increasing growth in the IT sector worsened by the procurement of second-hand gadgets. An evaluation of the fate of PBDEs in the African environment reveals that the environment is adequately contaminated, although reported in only a few countries like Nigeria and Ghana. Ultrasound-assisted extraction, microwave-assisted extraction, and Soxhlet extraction coupled with specific chromatographic techniques are used in the detection and quantification of PBDEs. Enormous exposure pathways in humans were highlighted with health implications. In terms of the removal of PBDEs, we found a gap in efforts in this direction, as not much success has been reported in Africa. However, we outline eco-friendly methods used elsewhere, including microbial degradation, zerovalent iron, supercritical fluid, and reduce, reuse, recycle, and recovery methods. The need for Africa to make and implement legislatures against PBDEs holds the key to reduced effect on the continent.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China; Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; College of Medicine and Veterinary Medicine, Deanery of Molecular, Genetic and Population Health Sciences, University of Edinburgh, United Kingdom.
| | - Chidiebele Emmanuel Nwankwo
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Microbiology, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Veronica Chisom Iloh
- School of Pharmacy and Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | | |
Collapse
|
6
|
Wang Y, Li X, Qu T, Huang F, Xu J, Gao H, Zhang S. Defective ferritinophagy and imbalanced iron metabolism in PBDE-47-triggered neuronal ferroptosis and salvage by Canolol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173118. [PMID: 38750757 DOI: 10.1016/j.scitotenv.2024.173118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
The brominated flame retardant 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) is a ubiquitous environmental pollutant that causes neurotoxicity. However, incomplete understanding of the underlying mechanisms has hampered the development of effective intervention strategies. Oxidative stress and related cell death are the modes of action for PBDE-47 neurotoxicity, which are also the characteristics of ferroptosis. Nonetheless, the role of ferroptosis in PBDE-47-induced neurotoxicity remains unclear. In the present study, we found that PBDE-47 triggered ferroptosis in neuron-like PC12 cells, as evidenced by intracellular iron overload, lipid peroxidation, and mitochondrial damage. This was confirmed by ferroptosis inhibitors including the lipid reactive oxygen species scavenger ferrostatin-1 and iron chelator deferoxamine mesylate. Mechanistically, PBDE-47 impaired ferritinophagy by disrupting nuclear receptor coactivator 4-mediated lysosomal degradation of the iron storage protein ferritin. Moreover, PBDE-47 disturbed iron metabolism by increasing cellular iron import via upregulation of transferrin receptor 1 and decreasing cellular iron export via downregulation of ferroportin 1 (FPN1). Intriguingly, rescuing lysosomal function by overexpressing cathepsin B (CatB) mitigated PBDE-47-induced ferroptosis by partially restoring dysfunctional ferritinophagy and enhancing iron excretion via the upregulation of FPN1. However, FPN1 knockdown reversed the beneficial effects of CatB overexpression on the PBDE-47-induced iron overload. Finally, network pharmacology integrated with experimental validation revealed that Canolol, the main phenolic compound in canola oil, protected against PBDE-47-evoked iron overload, resulting in ferroptosis by restoring defective ferritinophagy and improving abnormal iron metabolism via lowering iron uptake and facilitating iron excretion. Overall, these data suggest that ferroptosis is a novel mechanism of PBDE-47-induced neuronal death and that manipulation of ferritinophagy and iron metabolism via Canolol represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Xiaoning Li
- Department of preventive medicine services, Wuhan Center for Disease Control and Prevention, 288 Machang Road, Wuhan, Hubei, China
| | - Tengjiao Qu
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Fenghong Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Jiqu Xu
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China.
| | - Hui Gao
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China.
| | - Shun Zhang
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Yu Y, Wang Z, Yao B, Zhou Y. Occurrence, bioaccumulation, fate, and risk assessment of emerging pollutants in aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171388. [PMID: 38432380 DOI: 10.1016/j.scitotenv.2024.171388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Significant concerns on a global scale have been raised in response to the potential adverse impacts of emerging pollutants (EPs) on aquatic creatures. We have carefully reviewed relevant research over the past 10 years. The study focuses on five typical EPs: pharmaceuticals and personal care products (PPCPs), per- and polyfluoroalkyl substances (PFASs), drinking water disinfection byproducts (DBPs), brominated flame retardants (BFRs), and microplastics (MPs). The presence of EPs in the global aquatic environment is source-dependent, with wastewater treatment plants being the main source of EPs. Multiple studies have consistently shown that the final destination of most EPs in the water environment is sludge and sediment. Simultaneously, a number of EPs, such as PFASs, MPs, and BFRs, have long-term environmental transport potential. Some EPs exhibit notable tendencies towards bioaccumulation and biomagnification, while others pose challenges in terms of their degradation within both biological and abiotic treatment processes. The results showed that, in most cases, the ecological risk of EPs in aquatic environments was low, possibly due to potential dilution and degradation. Future research topics should include adding EPs detection items for the aquatic environment, combining pollution, and updating prediction models.
Collapse
Affiliation(s)
- Yuange Yu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhu Wang
- Institute of Environmental Research at Greater Bay/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bin Yao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
8
|
Iwegbue CMA, Oshenyen EV, Peretiemo-Clarke BO, Olisah C, Nwajei GE, Martincigh BS. Polybrominated diphenyl ether contamination in sediments from rivers in the western Niger Delta of Nigeria. MARINE POLLUTION BULLETIN 2024; 202:116040. [PMID: 38569301 DOI: 10.1016/j.marpolbul.2024.116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 04/05/2024]
Abstract
This study investigated the concentrations of 39 polybrominated diphenyl ether (PBDE) congeners in sediments from three rivers in the western Niger Delta of Nigeria that have been affected by pollution from urbanization and industrial activities. The Σ39 PBDE concentrations in sediments from these rivers ranged from 0.29 to 95.5, 5.15 to 121, and 0.73 to 66.1 ng g-1 for the Afiesere (AR), Edor (ER), and Okpare Rivers (OR), respectively. The homologue distribution patterns indicated the prominence of tetra- and penta-BDE congeners in sediments from these rivers. The ecological risk assessment results showed that the penta-BDEs were the primary source of risk to sediment-dwelling organisms in these rivers. However, the human health risk assessment indicated negligible risks for exposure of both adults and children to PBDEs in these sediments. The source apportionment suggests that the PBDE contamination in these river sediments was derived from long-distance migration, debromination of highly brominated congeners, and commercial penta-BDEs. These results reflect the use of penta-BDE formulations in this region rather than octa- and deca-BDE formulations.
Collapse
Affiliation(s)
| | | | | | - Chijioke Olisah
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic
| | - Godwin E Nwajei
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Bice S Martincigh
- School of Chemistry & Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
9
|
Wang R, Cheng H, Gong Y, Huang T. New brominated flame retardant decabromodiphenyl ethane (DBDPE) in water sediments: A review of contamination characteristics, exposure pathways, ecotoxicological effects and health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122121. [PMID: 37385359 DOI: 10.1016/j.envpol.2023.122121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
As an alternative to polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE) has become one of the most important new brominated flame retardants (NBFRs). However, little is known about whether this emerging contaminant may has an environmental fate similar to PBDEs. Sediments are the main sink for DBDPE in the aqueous phase. Worldwide concentration data, since it was first found in sediments to date, have been collated, and the following conclusions have been drawn. (1) DBDPE concentrations in sediments have increased rapidly, often with a higher risk of contamination in source discharge areas. Compared with other countries, DBDPE contamination in China is more severe, especially in Guangdong Province, which is closely related to its being an e-waste dismantling area. (2) The amount of DBDPE in surface sediments has exceeded that of legacy brominated flame retardants (BFRs), and data recorded in sediment cores also corroborate that DBDPE is replacing decabromodiphenyl ether (BDE-209) as one of the most dominant NBFRs in the environment. (3) The exposure pathways of DBDPE include dietary intake, air or indoor dust intake, cutaneous absorption and endogenous exposure. For sediments, dietary exposure and endogenous exposure pathways need to be considered. Sediment DBDPE can enter the human body through bioenrichment such as contaminated seafood and the food chain. (4) DBDPE can exhibit neurotoxicity, thyrotoxicity, reproductive and developmental toxicity, hepatotoxicity and oxidative stress in organisms. Long-term DBDPE exposure may increase hyperthyroidism risk and inhibit normal cells activity. This review focuses on the distribution characteristics and exposure risks of DBDPE in global water sediments, providing a strong reference for environmental management and related legal policy formulation. The next steps are to focus on continuous source monitoring, process control and sediment clean-up of DBDPE. The development of sustainable water management options for waste microplastics (MPs) and e-waste spiked with DBDPE is a priority.
Collapse
Affiliation(s)
- Rui Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hongguang Cheng
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yiwei Gong
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Tao Huang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
10
|
Yu X, Liu B, Yu Y, Li H, Li Q, Cui Y, Ma Y. Polybrominated diphenyl ethers (PBDEs) in household dust: A systematic review on spatio-temporal distribution, sources, and health risk assessment. CHEMOSPHERE 2023; 314:137641. [PMID: 36584828 DOI: 10.1016/j.chemosphere.2022.137641] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Much attention has been paid on polybrominated diphenyl ethers (PBDEs) in household dust due to their ubiquitous occurrences in the environment. Based on the data from 59 articles sampled from 2005 to 2020, we investigated the spatio-temporal distribution, sources, and health risk of 8 PBDE homologues in household dusts worldwide. BDE-209 is the predominant PBDE in household dusts, followed by BDE-99 and BDE-47. The total concentrations of PBDEs (∑8PBDEs) are found to be high in household dusts sampled from 2005 to 2008 and show a significant decline trend from 2009 to 2016 (p < 0.05) and a little upward tendency from 2017 to 2020. The concentrations of PBDEs in household dusts vary greatly in different countries of the world. The use of penta-BDE is the main source of three to five bromo-biphenyl ether monomers contributing 17.4% of ∑8PBDEs, while BDE-209 and BDE-183 are derived from the use of household appliances contributing 82.6% of ∑8PBDEs. Ingestion is the main exposure route for adults and toddlers, followed by dermal contact. The values of hazard index (HI) exposed to PBDEs in household dusts are all less than 1 for both adults and toddlers, indicating a low non-cancer risk. The incremental lifetime cancer risks (ILCRs) of BDE-209 are less than 10-6 for both adults and toddlers, suggesting a negligible risk. However, the total carcinogenic risk of toddlers is higher than that of adults, indicating that much attention should be paid to toddlers exposed to BDE-209 in household dust.
Collapse
Affiliation(s)
- Xin Yu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - He Li
- Jilin Chunguang Environmental Protection Technology Co., LTD, Changchun, 130032, China
| | - Qiuyan Li
- Jilin Chunguang Environmental Protection Technology Co., LTD, Changchun, 130032, China
| | - Yuan Cui
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Yuqin Ma
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| |
Collapse
|
11
|
Li B, Shi J, Zhang J, Tao H, Ge H, Zhang M, Xu Z, Xiao R. Occurrence and ecological risk assessment of 2,2',4,4'-tetrabromodiphenyl ether and decabromodiphenyl ether in surface waters across China. CHEMOSPHERE 2023; 312:137215. [PMID: 36375608 DOI: 10.1016/j.chemosphere.2022.137215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are efficient brominated flame retardants and are released into various environmental media via usage, recycling and disposal. This study investigated the concentrations and ecological risks of two typical PBDEs, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and decabromodiphenyl ether (BDE-209), in surface waters across China from 2011 to 2018. The results showed that the concentration of BDE-209 (8.25 ng L-1) was higher than that of BDE-47 (1.02 ng L-1), and the concentrations of BDE-47 and BDE-209 in the lakes (2.56 ng L-1 and 22.19 ng L-1, respectively) were higher than those in the rivers (0.58 ng L-1 and 7.05 ng L-1, respectively). In addition, the concentration of BDE-209 in the wet season (2.61 ng L-1) was lower than that in the dry season (10.83 ng L-1), whereas the concentration of BDE-47 in the wet season (0.24 ng L-1) was a little lower than that in the dry season (0.99 ng L-1). BDE-47 and BDE-209 concentrations showed a gradual decrease in surface waters across China during the eight-year period. Based on the species sensitivity distribution (SSD) models, the 5% hazardous concentration (HC5) and predicted no-effect concentration (PNEC) values were derived using the acute and chronic toxicity data of BDE-47 and BDE-209. Results showed that the PNEC values based on the acute and chronic toxicity data were 2.08 μg L-1 and 0.52 μg L-1 for BDE-47, respectively and 370 μg L-1 and 0.34 μg L-1 for BDE-209, respectively. The risk quotient (RQ) values of BDE-47 in surface waters across China were far smaller than 0.1 (low ecological risk). Similarly, the RQ values of BDE-209 were also smaller than 0.1, except for those at Baiyangdian Lake and Chaohu Lake, where the probability of 0.1 ≤ RQ < 1.0 (medium ecological risk) was approximately 10% based on 10,000 Monte Carlo simulations.
Collapse
Affiliation(s)
- Bin Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianghong Shi
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jiawei Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Civil Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
| | - Huanyu Tao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Civil Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
| | - Hui Ge
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mengtao Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zonglin Xu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruijie Xiao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
12
|
Hu Y, Li Z, Xiong J, Zhang Z, Yuan J, Tang Y, Jin T, Li H, Wu S. Occurrence and ecological risks of brominated flame retardants and dechlorane plus in sediments from the Pearl River Estuary and Daya Bay, South China. MARINE POLLUTION BULLETIN 2022; 185:114182. [PMID: 36257243 DOI: 10.1016/j.marpolbul.2022.114182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Considering the phasing-out of polybrominated diphenyl ethers (PBDEs), environmental concerns of PBDE alternatives and dechlorane plus (DP) are rising. Accordingly, this study investigates occurrence and ecological risks of PBDEs, PBDE alternatives and DPs in sediments of two littoral regions, the Pearl River Estuary (PRE) and Daya Bay (DYB), in southern China. Total PBDEs concentrations in surface sediments of the PRE and DYB were in the range (mean) of 0.30-28.7 (8.71) and 0.29-43.4 (6.05) ng/g dw, respectively. DP levels in surface sediments of the PRE (0.004-0.27 ng/g dw) were significantly higher than those in the DYB (0.005-0.24 ng/g dw) (p < 0.05). BDE 209 was the predominant component, followed by DBDPE, exhibiting regional variations in BFRs usage. Vertical profiles of BFRs and DP in the PRE and DYB sediment cores exhibited clear anthropogenic influences. Risk quotients suggest critical ecological risks of tetra-, penta- and deca-BDE congeners in all the surface sediments.
Collapse
Affiliation(s)
- Yongxia Hu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; West Center, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Chongqing 400714, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jingjing Xiong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zaiwang Zhang
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological & Environmental Engineering, Binzhou University, Binzhou 256600, China
| | - Jiaxin Yuan
- Tianjin Research Institute for Water Transport Engineering, Ministry of Transport, Tianjin 300456, China
| | - Yi Tang
- West Center, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Chongqing 400714, China
| | - Tao Jin
- West Center, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Chongqing 400714, China
| | - Huawei Li
- Tianjin Research Institute for Water Transport Engineering, Ministry of Transport, Tianjin 300456, China.
| | - Shengjun Wu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
13
|
Ohoro CR, Adeniji AO, Okoh AI, Okoh OO. Spatial monitoring and health risk assessment of polybrominated diphenyl ethers in environmental matrices from an industrialized impacted canal in South Africa. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3409-3424. [PMID: 34609624 DOI: 10.1007/s10653-021-01114-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
This study investigates the pollution of Markman stormwater runoff, which is a tributary to Swartkops River Estuary. Solid-phase and ultrasonic extraction methods were utilized in the extraction of water and sediment samples, respectively. The pH of the sampling sites was above the EU guideline. The ranges of concentration of [Formula: see text]PBDE obtained in water and sediment samples for all the seasons were 58.47-1357 ng/L and 175-408 ng/g, respectively. Results also showed that BDE-66 was the dominant congener, specifically in the industrial zone, where its concentrations ranged from 2 to 407 ng/g in sediment. Consequently, the high concentration of BDE- 66 in the sediment of stormwater calls for concern. Penta-BDE suggests potential moderate eco-toxicological risk, as evident in the calculated risk assessment. The result showed possible photodegradation along the contaminant's travel time, as only 7% of the PBDE was detected at the point of entry into the Swartkops River Estuary. Markman stormwater may be contributing heavily to the pollution load of Swartkops River, as evident in the alarming concentrations of PBDEs obtained. The industries at this zone should eliminate the contaminants before discharging their effluents into the canal.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa.
| | - Abiodun Olagoke Adeniji
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa
- Department of Chemistry and Chemical Technology, National University of Lesotho, P.O. Roma, 180, Lesotho
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Omobola Oluranti Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
14
|
Spindola Vilela CL, Damasceno TL, Thomas T, Peixoto RS. Global qualitative and quantitative distribution of micropollutants in the deep sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119414. [PMID: 35598814 DOI: 10.1016/j.envpol.2022.119414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Micropollutants (MPs) include a wide range of biological disruptors that can be toxic to wildlife and humans at very low concentrations (<1 μg/L). These mainly anthropogenic pollutants have been widely detected in different areas of the planet, including the deep sea, and have impacts on marine life. Because of this potential toxicity, the global distribution, quantity, incidence, and potential impacts of deep-sea MPs were investigated in a systematic review of the literature. The results showed that MPs have reached different zones of the ocean and are more frequently reported in the Northern Hemisphere, where higher concentrations are found. MPs are also concentrated in depths up to 3000 m, where they are also more frequently studied, but also extend deeper than 10,000 m. Potentially toxic metals (PTMs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDTs), organotins, and polycyclic aromatic hydrocarbons (PAHs) were identified as the most prevalent and widely distributed MPs at ≥200 m depth. PTMs are widely distributed in the deep sea in high concentrations; aluminum is the most prevalent up to 3000 m depth, followed by zinc and copper. PCBs, organotins, hexachlorocyclohexanes (HCHs), PAHs, and phenols were detected accumulated in both organisms and environmental samples above legislated thresholds or known toxicity levels. Our assessment indicated that the deep sea can be considered a sink for MPs.
Collapse
Affiliation(s)
- Caren Leite Spindola Vilela
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taissa Lopes Damasceno
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Raquel Silva Peixoto
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
15
|
Ling S, Zhou S, Tan J, Lu C, Fu M, Peng C, Zhang W, Hu S, Lin K, Zhou B. Brominated flame retardants (BFRs) in sediment from a typical e-waste dismantling region in Southern China: Occurrence, spatial distribution, composition profiles, and ecological risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153813. [PMID: 35182620 DOI: 10.1016/j.scitotenv.2022.153813] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Our study evaluated the current occurrence, composition, and spatial distribution of eight congeners of polybrominated diphenyl ethers (PBDEs) and seven novel brominated flame retardants (NBFRs) in sediment from Guiyu, a typical e-waste dismantling region in China. PBDEs levels ranged from 0.345 to 401,000 ng/g dw and NBFRs levels ranged from 0.581 to 73,100 ng/g dw. Almost all sediment samples contained high levels of BDE-209 and DBDPE, and the ratio of DBDPE/BDE-209 in sediments ranged from 0.0814 to 2.80 (mean: 0.879). The concentration and composition profiles for BFRs in sediments from both mainstream and tributaries of two major rivers in Guiyu reach (and adjacent downstream locations) differed significantly from those far from Guiyu town. Whereas the high presence of BFRs in Guiyu reflected the historical crude e-waste dismantling activities in the region; the locations far from Guiyu town were likely to receive BFRs from atmospheric deposition, not originated from the region, as BFRs in water-sediment are known to be able to migrate a limited distance along the river. Ecological risk assessment revealed that the low brominated congeners of PBDEs and BDE-209 posed an unacceptable risk to the sedimentary life at multiple locations. Our results updated our knowledge of BFRs contamination in Guiyu, suggesting the necessity of continuous source monitoring, control procedures, and sediment cleanup for BFRs.
Collapse
Affiliation(s)
- Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Cong Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
16
|
Chokwe TB, Krȕger E, Magubane MN, Abafe OA, Mporetji SM, Okonkwo JO, Sibali LL, Hariram R. Legacy and novel brominated flame-retardants in different fish types from inland freshwaters of South Africa: levels, distribution and implications for human health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:321-331. [PMID: 32338060 DOI: 10.1080/09603123.2020.1757042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
This study report the presence of polybrominated biphenyls (PBBs), polybrominated diphenyl ethers (PBDEs) and novel brominated flame-retardants (NBFRs) in muscle tissues of Labeo capensis (mudfish), Labeo umbratus (moggel), Cyprinus carpio (carp) and Clarias gariepinus (catfish) from Vaal River, South Africa. The concentrations (in ng g-1 wet weight (ww)) of these contaminants ranged from LOQ to 12.8 ng g-1 ww in catfish, with lowest concentrations found for mudfish ranging from <LOQ to 3.4 ng g-1 ww. This variation was attributed to species-specific ecological status such as feeding habit and trophic level with BDE209 and BB209 as a major congeners among PBDEs and PBBs, respectively, and decabromodiphenyl ethane (DBDPE) as a major flame retardants among the NBFRs. The hazard quotients of these contaminants were very low indicating that these contaminants do not pose health risk to South Africans via fish consumption.
Collapse
Affiliation(s)
- Tlou B Chokwe
- Scientific Services, Rand Water, Vereeniging, RSA
- Scientific Services Unit, Capricorn District Municipality, Polokwane, RSA
| | | | | | | | | | - Jonathan O Okonkwo
- Department of Water Environmental and Earth Sciences, Tshwane University of Technology, Pretoria, RSA
| | - Linda L Sibali
- Department of Environmental Sciences, University of South Africa, Florida, RSA
| | | |
Collapse
|
17
|
Ohoro CR, Adeniji AO, Semerjian L, Okoh AI, Okoh OO. Occurrence and Risk Assessment of Polybrominated Diphenyl Ethers in Surface Water and Sediment of Nahoon River Estuary, South Africa. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030832. [PMID: 35164097 PMCID: PMC8839697 DOI: 10.3390/molecules27030832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
Abstract
The concentrations, potential sources, and compositional profile of PBDEs in the surface water and sediment of Nahoon Estuary, East London, South Africa, were investigated with solid-phase extraction and ultra-sonication, respectively, followed by gas-chromatography-electron capture detection. The seasonal range of the contaminants’ concentrations in water and sediment samples in spring season were ∑PBDE 329 ± 48.3 ng/L (25.32–785 ng/L) and ∑PBDE 4.19 ± 0.35 ng/g dw (1.91–6.57 ng/g), but ∑PBDE 62.1 ± 1.50 ng/L (30.1–110 ng/L) and ∑PBDE 65.4 ± 15.9 ng/g dw (1.98–235 ng/g) in summer, respectively. NH1 (first sampling point) was the most contaminated site with PBDE in the Estuary. The potential source of pollution is attributed to the stormwater runoff from a creek emptying directly into the Estuary. This study’s dominant PBDE congener is BDE-17, ranging from below detection limit to 247 ng/L and 0.14–32.1 ng/g in water and sediment samples, respectively. Most detected at all the sites were BDE-17, 47, 66, and 100. Most BDE-153 and 183 are found in sediment in agreement with the fact that higher brominated congeners of PBDE adsorb to solid materials. There was no correlation between the congeners and organic carbon and organic matter. However, the human health risk assessment conducted revealed that the PBDE concentration detected in the estuary poses a low eco-toxicological risk. Nevertheless, constant monitoring should be ensured to see that the river remains safe for the users, as it serves as a form of recreation to the public and a catchment to some neighbourhoods.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (A.O.A.); (A.I.O.); (O.O.O.)
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa
- Correspondence:
| | - Abiodun Olagoke Adeniji
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (A.O.A.); (A.I.O.); (O.O.O.)
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa
- Department of Chemistry and Chemical Technology, National University of Lesotho, Roma P.O. Box 180, Lesotho
| | - Lucy Semerjian
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (A.O.A.); (A.I.O.); (O.O.O.)
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Omobola Oluranti Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (A.O.A.); (A.I.O.); (O.O.O.)
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
18
|
Analysis of brominated flame retardants in the aquatic environment: a review. Arh Hig Rada Toksikol 2021; 72:254-267. [PMID: 34985845 PMCID: PMC8785114 DOI: 10.2478/aiht-2021-72-3576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022] Open
Abstract
The most common and consequently analysed brominated flame retardants (BFRs) are polybrominated biphenyls (PBBs), polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol A (TBBPA), tetrabromobisphenol S (TBBPS), and hexabromocyclododecane (HBCD). As these persistent organic pollutants are widespread in the environment and have a number of harmful effects on human health, the production and use of most has been banned for several years. The aquatic environment is polluted by these compounds through their deposition from the atmosphere, sewage sludge, wastewater treatment plants, and landfills, and higher levels are found in areas with developed industry and agriculture and near landfills. Each compound also seems to show preference for specific compartments of the aquatic environment, i.e. water, sediment, or aquatic organisms, according to their physicochemical properties. The aim of this review was to take a closer look at the analysis of BFRs, as without reliable analysis we would not be able to determine their levels and distribution across the aquatic compartments and assess human exposure and health risks. Particularly worrying are the health risks associated with PBDEs in fish, whose levels generally exceed the permitted values.
Collapse
|
19
|
Hoang AQ, Takahashi S, Da Le N, Duong TT, Huong Pham TM, Mai Pham TN, Huong Nguyen TA, Tran TM, Tu MB, Quynh Le TP. Comprehensive determination of polychlorinated biphenyls and brominated flame retardants in surface sediment samples from Hanoi urban area, Vietnam: Contamination status, accumulation profiles, and potential ecological risks. ENVIRONMENTAL RESEARCH 2021; 197:111158. [PMID: 33887272 DOI: 10.1016/j.envres.2021.111158] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Comprehensive and updated information about polychlorinated biphenyls (PCBs) and brominated flame retardants (BFRs) in surface sediments from Hanoi, the capital city of Vietnam, is rather scarce. In this study, concentrations and profiles of 209 PCBs, 41 polybrominated diphenyl ethers (PBDEs), 2,2',4,4',5,5'-hexabromobiphenyl (BB-153), hexabromocyclododecane (HBCD), pentabromoethylbenzene (PBEB), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), and decabromodiphenyl ethane (DBDPE) were determined in sediment samples collected from the Red River and some inner-city rivers of Hanoi. Concentrations (ng/g dry weight, median and range) of pollutants decreased in the order: DBDPE (28; not detected ND - 59) ≈ PCBs (27; 1.7-50) > PBDEs (23; 0.20-61) > HBCD (1.2; ND - 5.2) > BTBPE (0.46; ND - 3.6) > BB-153 (0.004; ND - 0.014) > PBEB (ND). Pollutant levels in the inner-city river sediments were about one to two orders of magnitude higher than those measured in the Red River main stream sediments. Tri-to hexa-CBs are major homologs but detailed profiles vary between individual samples, reflecting source and/or seasonal variations. CB-11 and CB-209 were found at higher proportions in sediments than in technical PCB mixtures, suggesting their novel sources from pigments. Deca-BDE and DBDPE are the most predominant BFRs with an increasing trend predicted for DBDPE. A preliminary ecological risk assessment was conducted for these pollutants in sediments. Total PCBs and deca-BDE in a few inner-city river sediments may exhibit adverse effects on benthic organisms, but no serious risk was estimated in general.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan; Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Viet Nam.
| | - Shin Takahashi
- Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Nhu Da Le
- Laboratory of Environmental Chemistry, Institute of Natural Product Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Thi Thuy Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | | | - Thi Ngoc Mai Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Viet Nam
| | - Thi Anh Huong Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Viet Nam
| | - Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Viet Nam
| | - Minh Binh Tu
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Viet Nam
| | - Thi Phuong Quynh Le
- Laboratory of Environmental Chemistry, Institute of Natural Product Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam.
| |
Collapse
|
20
|
Liu J, Liang C, Peng B, Zhang YY, Liu LY, Zeng EY. Legacy and alternative flame retardants in typical freshwater cultured fish ponds of South China: Implications for evolving industry and pollution control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143016. [PMID: 33139011 DOI: 10.1016/j.scitotenv.2020.143016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The production and usage of polybrominated diphenyl ethers (PBDEs) has been gradually phased out and the application of alternative halogenated flame retardants (AHFRs) has been continuously increased. It is essential to understand how the evolving flame retardants industry has affected the occurrence and flux of legacy and alternative flame retardants so that better pollution control measures can be made accordingly. Air, rainwater, inflowing river water, pond water, pond sediment, fish feed, and fish collected from freshwater cultured fish ponds (FWCFPs) within the Pearl River Delta, South China were analyzed for PBDEs and AHFRs. Concentrations of AHFRs in air (range; median: 7.8-870; 210 pg m-3), rainwater (0.88-65; 4.8 ng L-1), and sediment (19-120; 54 ng g-1 dry weight (d.w.)) were one order of magnitude higher than those of PBDEs in air (12-98; 21 pg m-3), rainwater (0.18-15; 0.70 ng L-1), and sediment (1.5-9.6, 2.9 ng g-1 d.w.) (t-test; p < 0.05). Decabromodiphenyl ether and decabromodiphenylethane were the predominant BDE and AHFR components, respectively, agreeing well with the production and usage patterns of flame retardants in China. The average input fluxes of AHFRs to the FWCFPs via dry deposition, wet deposition, net air-water exchange, and feeding (38.6, 20.6, and 2.14, μg m-2 yr-1) were one order of magnitude higher than those of PBDEs (3.44, 5.17, and -10.1, μg m-2 yr-1). Elevated occurrence and input fluxes of AHFRs suggested that aquaculture production is potentially facing a new challenge from alternative flame retardants. Atmospheric dry and wet deposition are important input sources of AHFRs to the FWCFPs. Feeding is an important input pathway for both PBDEs and AHFRs. Pollution control measures should be modified to accommodate the evolving flame retardants industry.
Collapse
Affiliation(s)
- Jing Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Chan Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Bo Peng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yu-Yu Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Research Center of Low Carbon Economy for Guangzhou Region, Jinan University, Guangzhou 510632, China
| |
Collapse
|
21
|
Hoang AQ, Aono D, Watanabe I, Kuwae M, Kunisue T, Takahashi S. Contamination levels and temporal trends of legacy and current-use brominated flame retardants in a dated sediment core from Beppu Bay, southwestern Japan. CHEMOSPHERE 2021; 266:129180. [PMID: 33307412 DOI: 10.1016/j.chemosphere.2020.129180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Contamination levels and temporal trends of polybrominated diphenyl ethers (PBDEs) and some alternative brominated flame retardants (BFRs) were examined in a dated sediment core from the deepest part of the Beppu Bay, southwestern Japan. PBDEs were found in the upper layers of 0-15 cm depth at concentrations ranging from 5200 to 32,600 pg g-1 with the peak estimated at 1995. Decabromodiphenyl ether (BDE-209) was the most abundant congener, accounting for 96% in average of total PBDEs. The vertical profile of BDE-209 observed in our sediment core generally agreed with the historical pattern of domestic demand of commercial deca-BDE mixtures in Japan, and perfectly matched with maximum stock of these products (i.e., 42,000 tons in 1995). Among alternative BFRs, only decabromodiphenyl ethane (DBDPE), a replacement of deca-BDE, was found at significant levels with concentrations of 69-850 pg g-1 in sediment layers dated between 1991 and 2011. Ratios of DBDPE to BDE-209 gradually increased during this period, implying opposite trends of these two compounds and the role of DBDPE as a deca-BDE's alternative. The occurrence of deca-BDE components in sediments may pose medium risk to benthic aquatic life, while the ecological risk of other PBDE homologs and DBDPE was negligible.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan; Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Viet Nam
| | - Daichi Aono
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Isao Watanabe
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Michinobu Kuwae
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan.
| |
Collapse
|
22
|
Quinn LP, Roos C, Pieters R, Polder A, Bouwman H. Brominated flame retardants in wild bird eggs from the industrialised heartland of South Africa. AFRICAN ZOOLOGY 2020. [DOI: 10.1080/15627020.2019.1671895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- LP Quinn
- National Metrology Institute of South Africa, Lynnwood, South Africa
| | - C Roos
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - R Pieters
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - A Polder
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Norway
| | - H Bouwman
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
23
|
Sun R, Pan C, Peng F, Wu Y, Chen X, Mai B. Alternative halogenated flame retardants (AHFRs) in green mussels from the south China sea. ENVIRONMENTAL RESEARCH 2020; 182:109082. [PMID: 31891828 DOI: 10.1016/j.envres.2019.109082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/22/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Restrictions of legacy brominated flame retardants, such as polybrominated diphenyl ether (PBDE) and polybrominated biphenyl (PBB), have resulted in increased usage of alternative halogenated flame retardants (AHFRs). Consequently, AHFRs contamination has caused a major concern in the scientific community. However, there is limited information on their presence in marine mussels. In this study, we investigated the occurrence and distribution of polybrominated biphenyls (PBBs), AHFRs and dehalogenated products in green mussels collected from 22 locations in the northern South China Sea (SCS). Our results revealed that ∑AHFRs were ubiquitous in green mussels with concentrations in the range of 1.08-7.71 ng/g lipid weight (lw). Among target AHFRs, hexabromobenzene (HBB), decabromodiphenyl (DBDPE) and dechlorane plus (DP) were predominant with their mean values of 1.19, 1.00 and 0.82 ng/g lw, respectively. There were negligible stereoisomer enrichments of DP in green mussels based on fanti values, indicating a limited bioaccumulation and metabolism of DP in green mussels. In comparison with other locations, concentrations of the AHFRs in green mussels determined here were at moderate levels. Additionally, there were significant linear relationships between some AHFRs (e.g., HBB and PBEB), suggesting their similar commercial applications and sources in the environment. The estimated daily intakes of AHFRs through consumption of green mussels by the local population in South China were 0.05-0.14 ng/kg body weight/day and 0.17-0.44 ng/kg body weight/day based on the mean and 95th concentrations, respectively. To the best of our knowledge, the present study is the first to report AHFRs and dehalogenated products in green mussels.
Collapse
Affiliation(s)
- Runxia Sun
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Changgui Pan
- School of Marine Sciences, Guangxi University, Nanning, 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China.
| | - Fengjiao Peng
- Department of Population Health, Luxembourg Institute of Health, 1A-B, Rue Thomas Edison, L-1445, Strassen, Luxembourg
| | - Youting Wu
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xuejing Chen
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
24
|
Iloms E, Ololade OO, Ogola HJO, Selvarajan R. Investigating Industrial Effluent Impact on Municipal Wastewater Treatment Plant in Vaal, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031096. [PMID: 32050467 PMCID: PMC7037120 DOI: 10.3390/ijerph17031096] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022]
Abstract
Industrial effluents with high concentrations of toxic heavy metals are of great concern because of their persistence and non-degradability. However, poor operation and maintenance of wastewater treatment infrastructure is a great concern in South Africa. In this study, physico-chemical parameters and heavy metals (HMs) concentration of wastewater from five different industries, Leeuwkuil wastewater treatment plant (WWTP) inflow and effluent, and Vaal River water samples were monitored between January and September 2017, to investigate the correlation between heavy metal pollution and the location of industries and ascertain the effectiveness of the municipal WWTP. Physico-chemical variables such as pH, biological oxygen demand (BOD), dissolved oxygen (DO), chemical oxygen demand (COD), total dissolved solids (TDS) and electrical conductivity (EC) exhibited both temporal and spatial variations with the values significantly higher in the industrial samples. Inductively coupled plasma optical emission spectrometry (ICP-OES) results also showed that aluminium (Al), copper (Cu), lead (Pb) and zinc (Zn) were significantly higher in industrial effluents (p < 0.05), with only Zn and Al exhibiting significant seasonal variability. Statistical correlation analysis revealed a poor correlation between physicochemical parameters and the HMs compositional quality of wastewater. However, toxic HMs (Zn, Cu and Pb) concentrations in treated wastewater from WWTP were above the permissible limits. Although the WWTP was effective in maintaining most of the wastewater parameters within South African Green drop Standards, the higher Cu, Zn, Pb and COD in its final effluent is a concern in terms of Vaal river health and biological diversity. Therefore, we recommend continuous monitoring and maintenance of the WWTPs infrastructure in the study area.
Collapse
Affiliation(s)
- Eunice Iloms
- Department of Environmental Science, University of South Africa—Florida Campus, Roodepoort 1709, South Africa; (E.I.); (H.J.O.O.)
| | - Olusola O. Ololade
- Centre for Environmental Management, University of the Free State, Bloemfontein 9301, South Africa;
| | - Henry J. O. Ogola
- Department of Environmental Science, University of South Africa—Florida Campus, Roodepoort 1709, South Africa; (E.I.); (H.J.O.O.)
- School of Agricultural and Food Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 210-40601, Bondo, Kenya
| | - Ramganesh Selvarajan
- Department of Environmental Science, University of South Africa—Florida Campus, Roodepoort 1709, South Africa; (E.I.); (H.J.O.O.)
- Correspondence:
| |
Collapse
|
25
|
Wu Z, Han W, Yang X, Li Y, Wang Y. The occurrence of polybrominated diphenyl ether (PBDE) contamination in soil, water/sediment, and air. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23219-23241. [PMID: 31270770 DOI: 10.1007/s11356-019-05768-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
As a kind of brominated flame retardants (BFRs), polybrominated diphenyl ethers (PBDEs) are extensively used in different types of electronic equipment, furniture, plastics, and textiles. PBDEs are ubiquitous environmental contaminants that may impact human health and ecosystems. Here we highlight recent findings on the occurrence, contamination status, and transport of PBDEs in soil, water/sediment, and air. Four aspects are discussed in detail: (1) sources of PBDEs to the environment; (2) occurrence and transport of PBDEs in soil; (3) PBDEs in aquatic ecosystems (water/sediment) and their water-sediment partitioning; and (4) the occurrence of PBDEs in the atmosphere and their gas-particle partitioning. Future prospects for the investigation on PBDEs occurrence are also discussed based on current scientific and practical needs.
Collapse
Affiliation(s)
- Zhineng Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Wei Han
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xin Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yao Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
26
|
Variation of Microbial Communities in Aquatic Sediments under Long-Term Exposure to Decabromodiphenyl Ether and UVA Irradiation. SUSTAINABILITY 2019. [DOI: 10.3390/su11143773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abiotic components create different types of environmental stress on bacterial communities in aquatic ecosystems. In this study, the long-term exposure to various abiotic factors, namely a high-dose of the toxic chemical decabromodiphenyl ether (BDE-209), continuous UVA irradiation, and different types of sediment, were evaluated in order to assess their influence on the bacterial community. The dominant bacterial community in a single stress situation, i.e., exposure to BDE-209 include members of Comamonadaceae, members of Xanthomonadaceae, a Pseudomonas sp. and a Hydrogenophaga sp. Such bacteria are capable of biodegrading polybrominated diphenyl ethers (PBDEs). When multiple environmental stresses were present, Acidobacteria bacterium and a Terrimonas sp. were predominant, which equipped the population with multiple physiological characteristics that made it capable of both PBDE biodegradation and resistance to UVA irradiation. Methloversatilis sp. and Flavisolibacter sp. were identified as representative genera in this population that were radioresistant. In addition to the above, sediment heterogeneity is also able to alter bacterial community diversity. In total, seventeen species of bacteria were identified in the microcosms containing more clay particles and higher levels of soil organic matter (SOM). This means that these communities are more diverse than in microcosms that contained more sand particles and a lower SOM, which were found to have only twelve identifiable bacterial species. This is the first report to evaluate how changes in bacterial communities in aquatic sediment are affected by the presence of multiple variable environmental factors at the same time.
Collapse
|