1
|
Begum A, Rabbane MG, Moniruzzaman M, Hasan MR, Chang X. Cadmium Pollution Deteriorates the Muscle Quality of Labeo rohita by Altering Its Nutrients and Intestinal Microbiota Diversity. Biol Trace Elem Res 2025:10.1007/s12011-025-04524-1. [PMID: 39881065 DOI: 10.1007/s12011-025-04524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/02/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
The detrimental effects of cadmium (Cd), a hazardous heavy metal, on fish have triggered global concerns. While the ecotoxicity of Cd on fish has been investigated, the impact of Cd on muscle quality and its correlation with the gut microbiota in fish remains scarce. To comprehensively uncover Cd effects based on preliminary muscle Cd deposition, relevant studies, and ecological Cd pollution data, we exposed Labeo rohita to Cd under concentrations of 0.00 (control), 0.05, and 0.40 mg/L for 30 days and assessed fish health, muscle quality, and intestinal bacterial diversity. We observed significant Cd bioaccumulation in the fish muscle and intestine at 0.40 mg/L treatment, adversely impacting fish health with lower growth indices, higher mortality, behavioral aberrations, and clinical anomalies. More interestingly, Cd exposure decreased muscle quality by reducing nutrient levels, including fat, protein, iron, zinc, mono and polyunsaturated fatty acids, and increasing free amino acids and saturated fatty acids. Elevated oxidative stress markers, including total superoxide dismutase (T-SOD), catalase (CAT), and hydrogen peroxide (H2O2), were detected in the muscles, indicating degraded quality as a result of damage to cellular structures including proteins, lipids, and DNA. Simultaneously, we found Cd exposure altered fish intestinal microbial diversity, impairing muscle nutrient assimilation, thereby influencing muscle quality. Functional predictions suggested a decrease in pathways related to fermentation and chemoheterotrophy in the exposed groups. Overall, this study highlights how Cd toxicity jeopardizes fish health and deteriorates muscle quality which needs to be addressed for human benefit.
Collapse
Affiliation(s)
- Ayesha Begum
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, People's Republic of China
- Department of Applied Food Science and Nutrition, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Md Golam Rabbane
- Department of Fisheries, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Moniruzzaman
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Rakibul Hasan
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
2
|
Banaee M, Zeidi A, Mikušková N, Faggio C. Assessing Metal Toxicity on Crustaceans in Aquatic Ecosystems: A Comprehensive Review. Biol Trace Elem Res 2024; 202:5743-5761. [PMID: 38472509 DOI: 10.1007/s12011-024-04122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/10/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Residual concentrations of some trace elements and lightweight metals, including cadmium, copper, lead, mercury, silver, zinc, nickel, chromium, arsenic, gallium, indium, gold, cobalt, polonium, and thallium, are widely detected in aquatic ecosystems globally. Although their origin may be natural, human activities significantly elevate their environmental concentrations. Metals, renowned pollutants, threaten various organisms, particularly crustaceans. Due to their feeding habits and habitat, crustaceans are highly exposed to contaminants and are considered a crucial link in xenobiotic transfer through the food chain. Moreover, crustaceans absorb metals via their gills, crucial pathways for metal uptake in water. This review summarises the adverse effects of well-studied metals (Cd, Cu, Pb, Hg, Zn, Ni, Cr, As, Co) and synthesizes knowledge on the toxicity of less-studied metals (Ag, Ga, In, Au, Pl, Tl), their presence in waters, and impact on crustaceans. Bibliometric analysis underscores the significance of this topic. In general, the toxic effects of the examined metals can decrease survival rates by inducing oxidative stress, disrupting biochemical balance, causing histological damage, interfering with endocrine gland function, and inducing cytotoxicity. Metal exposure can also result in genotoxicity, reduced reproduction, and mortality. Despite current toxicity knowledge, there remains a research gap in this field, particularly concerning the toxicity of rare earth metals, presenting a potential future challenge.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Amir Zeidi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Nikola Mikušková
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno, d'Alcontres 31, 98166, Messina, Italy
- Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
3
|
Yuan Z, Lei Y, Wan B, Yang M, Jiang Y, Tian C, Wang Z, Wang W. Cadmium exposure elicited dynamic RNA m 6A modification and epi-transcriptomic regulation in the Pacific whiteleg shrimp Litopenaeus vannamei. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101307. [PMID: 39126882 DOI: 10.1016/j.cbd.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent post-transcriptional RNA modification in eukaryotic organisms, but its roles in the regulation of physiological resistance of marine crustaceans to heavy metal pollutants are poorly understood. In this study, the transcriptome-wide m6A RNA methylation profiles and dynamic m6A changes induced by acute Cd2+ exposure in the the pacific whiteleg shrimp Litopenaeus vannamei were comprehensively analyzed. Cd2+ toxicity caused a significant reduction in global RNA m6A methylation level, with major m6A regulators including the m6A methyltransferase METTL3 and the m6A binding protein YTHDF2 showing declined expression. Totally, 11,467 m6A methylation peaks from 6415 genes and 17,291 peaks within 7855 genes were identified from the Cd2+ exposure group and the control group, respectively. These m6A peaks were predominantly enriched in the 3' untranslated region (UTR) and around the start codon region of the transcripts. 7132 differentially expressed genes (DEGs) and 7382 differentially m6A-methylated genes (DMGs) were identified. 3186 genes showed significant changes in both gene expression and m6A methylation levels upon cadmium exposure, and they were related to a variety of biological processes and gene pathways. Notably, an array of genes associated with antioxidation homeostasis, transmembrane transporter activity and intracellular detoxification processes were significantly enriched, demonstrating that m6A modification may mediate the physiological responses of shrimp to cadmium toxicity via regulating ROS balance, Cd2+ transport and toxicity mitigation. The study would contribute to a deeper understanding of the evolutionary and functional significance of m6A methylation to the physiological resilience of decapod crustaceans to heavy metal toxicants.
Collapse
Affiliation(s)
- Zhixiang Yuan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yiguo Lei
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Boquan Wan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Miao Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yue Jiang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Changxu Tian
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongduo Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Wei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China.
| |
Collapse
|
4
|
Qian Z, Hou D, Gao S, Wang X, Yu J, Dong J, Sun C. Toxic effects and mechanisms of chronic cadmium exposure on Litopenaeus vannamei growth performance based on combined microbiome and metabolome analysis. CHEMOSPHERE 2024; 361:142578. [PMID: 38857631 DOI: 10.1016/j.chemosphere.2024.142578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/20/2024] [Revised: 05/28/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
Cadmium (Cd) pollution seriously affects marine organisms' health and poses a threat to food safety. Although Cd pollution has attracted widespread attention in aquaculture, little is known about the toxic mechanisms of chronic Cd exposure on shrimp growth performance. The study investigated the combined effects of chronic exposure to Cd of different concentrations including 0, 75, 150, and 300 μg/L for 30 days on the growth performance, tissue bioaccumulation, intestinal microbiology, and metabolic responses of Litopenaeus vannamei. The results revealed that the growth was significantly inhibited under exposure to 150 and 300 μg/L Cd2+. The bioaccumulation in gills and intestines respectively showed an increasing and inverted "U" shaped trend with increasing Cd2+ concentration. Chronic Cd altered the intestinal microflora with a significant decrease in microbial richness and increasing trends in the abundances of the potentially pathogenic bacteria Vibrio and Maribacter at exposure to 75 and 150 μg/L Cd2+, and Maribacter at 300 μg/L. In addition, chronic Cd interfered with intestinal metabolic processes. The expressions of certain metabolites associated with growth promotion and enhanced antioxidant power, including N-methyl-D-aspartic acid, L-malic acid, guanidoacetic acid, betaine, and gluconic acid were significantly down-regulated, especially at exposure to 150 and 300 μg/L Cd2+, and were negatively correlated with Vibrio and Maribacter abundance levels. In summary, chronic Cd exposure resulted in severe growth inhibition and increased Cd accumulation in shrimp tissues. Increased levels of intestinal pathogenic bacteria and decreased levels of growth-promoting metabolites may be the key causes of growth inhibition. Harmful bacteria Vibrio and Maribacter may be associated with the inhibition of growth-promoting metabolite expression and may be involved in disrupting intestinal metabolic functions, ultimately impairing shrimp growth potential. This study sheds light on the potential toxicological mechanisms of chronic Cd inhibition on shrimp growth performance, offering new insights into Cd toxicity studies in aquaculture.
Collapse
Affiliation(s)
- Zhaoying Qian
- School of Economics, Guizhou University of Finance and Economics, Guiyang, 550025, Guizhou, China
| | - Danqing Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Shan Gao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Xuejie Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Jianbo Yu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Jiaxin Dong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China.
| |
Collapse
|
5
|
da Costa JR, Capparelli MV, Padilha PM, Borges E, Ramaglia AC, Dos Santos MR, Augusto A. Chronic Cadmium Exposure can Alter Energy Allocation to Physiological Functions in the Shrimp Penaeus vannamei. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:58-68. [PMID: 38922419 DOI: 10.1007/s00244-024-01074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/08/2023] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
Environmental stressors in aquatic organisms can be assessed using a bioenergetic approach based on the evaluation of changes in their physiological parameters. We evaluated the chronic effects of cadmium (Cd2+) on the energy balance as well as the survival, growth, metabolism, nitrogen excretion, hepatosomatic index, oxidized energy substrate, and osmoregulation of the shrimp Penaeus vannamei with the hypothesis that the high energy demand related to the homeostatic regulation of Cd2+could disrupt the energy balance and as a consequence, their physiological functions. The shrimp exposed to Cd2+ had higher mortality (30%), directed more energy into growth (33% of energy intake), ingested 10% more energy, and defecated less than control animals. Cd2+ exposure caused a tendency to decrease metabolism and ammonia excretion but did not alter the hepatosomatic index, type of energy substrate oxidized, and the hyperosmorregulatory pattern of the species. The Cd+2 exposure may have induced a trade-off response because there was a growth rate increase accompanied by increased mortality.
Collapse
Affiliation(s)
- Juliana Rodrigues da Costa
- Aquaculture Center of UNESP (CAUNESP), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Carretera Carmen-Puerto Real Km 9.5, 24157, Ciudad del Carmen, Campeche, Mexico
| | - Pedro Magalhães Padilha
- Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, 14884-900, Brazil
| | - Emanuelle Borges
- Aquaculture Center of UNESP (CAUNESP), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Andressa C Ramaglia
- Aquaculture Center of UNESP (CAUNESP), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Michelle Roberta Dos Santos
- Aquaculture Center of UNESP (CAUNESP), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Alessandra Augusto
- Aquaculture Center of UNESP (CAUNESP), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil.
- Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, 14884-900, Brazil.
- Department of Zoology, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil.
- Laboratory of Sustainable Aquaculture, São Paulo State University (UNESP), São Vicente, SP, 11380-972, Brazil.
| |
Collapse
|
6
|
Guan T, Wang L, Hu M, Zhu Q, Cai L, Wang Y, Xie P, Feng J, Wang H, Li J. Effects of chronic abamectin stress on growth performance, digestive capacity, and defense systems in red swamp crayfish (Procambarus clarkii). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106861. [PMID: 38340542 DOI: 10.1016/j.aquatox.2024.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/08/2023] [Revised: 01/14/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Abamectin is a globally used pesticide, which is one of 16-member macrocyclic lactones compound. As an environmental contaminant, pesticide residues pose a great threat to the health and survival of aquatic animals. Procambarus clarkii is one of the most important economic aquatic animals in China. It is necessary to explore the toxic mechanism of abamectin to P. clarkii. In this study, the toxic mechanism of abamectin to P. clarkii was investigated by 0, 3 and 6 μg/L abamectin stress for 28 days. The digestive-, antioxidant- and immune- related enzymes activities, genes expression levels, and histological observations were analytical indicators of growth performance, digestive capacity, and defense systems. The results in this study showed that with abamectin concentration increasing, the growth of P. clarkii was stunted significantly, and the mortality rate increased significantly. With exposure time and abamectin concentration increasing, the expression levels of related genes, the activities of digestive-, antioxidant-, and immune- related enzymes decreased ultimately. Moreover, through histological observation, it was found that with abamectin concentration increasing, the hepatopancreas, muscle, and intestine were damaged. As elucidated by the results, once abamectin exists in the environment for a long time, even low doses will threaten to healthy growth and survival of P. clarkii. This study explored the potential toxicity and the toxic mechanism of abamectin to P. clarkii, and provides a theoretical basis for further study on the toxicity of pesticides to aquatic animals.
Collapse
Affiliation(s)
- Tianyu Guan
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Long Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Meng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Qianqian Zhu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Lin Cai
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Yurui Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Peng Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Jianbin Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hui Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
7
|
Motta CM, Rosati L, Cretì P, Montinari MR, Denre P, Simoniello P, Fogliano C, Scudiero R, Avallone B. Histopathological effects of long-term exposure to realistic concentrations of cadmium in the hepatopancreas of Sparus aurata juveniles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106858. [PMID: 38325058 DOI: 10.1016/j.aquatox.2024.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/25/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
In recent decades, cadmium has emerged as an environmental stressor in aquatic ecosystems due to its persistence and toxicity. It can enter water bodies from various natural and anthropogenic sources and, once introduced into aquatic systems, can accumulate in sediments and biota, leading to bioaccumulation and biomagnification in the food chain. For this reason, the effects of cadmium on aquatic life remain an area of ongoing research and concern. In this paper, a multidisciplinary approach was used to assess the effects of long-term exposure to an environmental concentration on the hepatopancreas of farmed juveniles of sea bream, Sparus aurata. After determining metal uptake, metallothionein production was assessed to gain insight into the organism's defence response. The effects were also assessed by histological and ultrastructural analyses. The results indicate that cadmium accumulates in the hepatopancreas at significant concentrations, inducing structural and functional damage. Despite the parallel increase in metallothioneins, fibrosis, alterations in carbohydrate distribution and endocrine disruption were also observed. These effects would decrease animal fitness although it did not translate into high mortality or reduced growth. This could depend on the fact that the animals were farmed, protected from the pressure deriving from having to search for food or escape from predators. Not to be underestimated is the return to humans, as this species is edible. Understanding the behaviour of cadmium in aquatic systems, its effects at different trophic levels and the potential risks to human health from the consumption of contaminated seafood would therefore be essential for informed environmental management and policy decisions.
Collapse
Affiliation(s)
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Patrizia Cretì
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Maria Rosa Montinari
- Chair of History of Medicine, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Pabitra Denre
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Palma Simoniello
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
| | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Rosaria Scudiero
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Moraes B, Martins R, Lopes C, Martins R, Arcanjo A, Nascimento J, Konnai S, da Silva Vaz I, Logullo C. G6PDH as a key immunometabolic and redox trigger in arthropods. Front Physiol 2023; 14:1287090. [PMID: 38046951 PMCID: PMC10693429 DOI: 10.3389/fphys.2023.1287090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
The enzyme glucose-6-phosphate dehydrogenase (G6PDH) plays crucial roles in glucose homeostasis and the pentose phosphate pathway (PPP), being also involved in redox metabolism. The PPP is an important metabolic pathway that produces ribose and nicotinamide adenine dinucleotide phosphate (NADPH), which are essential for several physiologic and biochemical processes, such as the synthesis of fatty acids and nucleic acids. As a rate-limiting step in PPP, G6PDH is a highly conserved enzyme and its deficiency can lead to severe consequences for the organism, in particular for cell growth. Insufficient G6PDH activity can lead to cell growth arrest, impaired embryonic development, as well as a reduction in insulin sensitivity, inflammation, diabetes, and hypertension. While research on G6PDH and PPP has historically focused on mammalian models, particularly human disorders, recent studies have shed light on the regulation of this enzyme in arthropods, where new functions were discovered. This review will discuss the role of arthropod G6PDH in regulating redox homeostasis and immunometabolism and explore potential avenues for further research on this enzyme in various metabolic adaptations.
Collapse
Affiliation(s)
- Bruno Moraes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Renato Martins
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Cintia Lopes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Ronald Martins
- Programa de Computação Científica, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
| | - Angélica Arcanjo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Jhenifer Nascimento
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Guan T, Feng J, Zhu Q, Wang L, Xie P, Wang H, Li J. Effects of abamectin on nonspecific immunity, antioxidation, and apoptosis in red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2023; 142:109137. [PMID: 37827246 DOI: 10.1016/j.fsi.2023.109137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Abamectin, a pesticide of 16-member macrocyclic lactones, is widely applied in agriculture. As an important environmental factor, pesticides pose a great threat to defense system in aquatic animals. Procambarus clarkii is one of the most important economic aquatic animals in China. It is necessary to explore the defense mechanism of P. clarkii to abamectin. In this study, P. clarkii were exposed to 0, 0.2, 0.4, 0.6 mg/L abamectin, immune- and antioxidant-related enzymes activities, genes expression levels, and histological observations were used to analyze the defense capacity of P. clarkii to abamectin. With increasing abamectin concentration, reactive oxygen species (ROS) level and malondiadehyde (MDA) content increased significantly. Meanwhiile, acid phosphate (ACP), alkaline phosphatase (AKP) activities, total haemocyte counts (THC), and Crustin expression level decreased significantly, superoxide dismutase (SOD), catalase (CAT) activities, total antioxidant capacity (T-AOC), and GPX expression level also decreased significantly. Hematoxylin & eosin (H&E) observation showed that with increasing abamectin concentration, hepatopancreas were damaged, especially membrane structure. Through TUNEL observation and apoptosis-related genes (PcCTSL, Bcl-2, Bax, BI-1, PcCytc, caspase-3) expression levels, with increasing abamectin concentration, apoptosis rate increased significantly. Results of this study indicated that abamectin caused oxidative damage to P. clarkii, resulting in damage to defense system, suppression of nonspecific immunity and antioxidation, and promotion of apoptosis. It provided theoretical basis for healthy P. clarkii culture, and for further study on defense mechanism of aquatic animals to pesticides.
Collapse
Affiliation(s)
- Tianyu Guan
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jianbin Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Qianqian Zhu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Long Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Peng Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Hui Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
10
|
He Y, Fang H, Pan X, Zhu B, Chen J, Wang J, Zhang R, Chen L, Qi X, Zhang H. Cadmium Exposure in Aquatic Products and Health Risk Classification Assessment in Residents of Zhejiang, China. Foods 2023; 12:3094. [PMID: 37628093 PMCID: PMC10453627 DOI: 10.3390/foods12163094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Cadmium (Cd) pollution of food safety is a prominent food safety concern worldwide. The concentration of Cd in six aquatic food categories collected from 2018 to 2022 was analyzed using inductively coupled plasma mass spectrometry, and the Cd exposure levels were calculated by combining the Cd concentration and food consumption data of 18913 urban and rural residents in Zhejiang Province in 2015-2016. The mean Cd concentration was 0.699 mg/kg and the mean Cd exposure of aquatic foods was 0.00951 mg/kg BW/month for the general population. Marine crustaceans were the largest Cd contributor, corresponding to 82.7%. The regional distribution results showed that the average Cd exposure levels of 11 cities did not exceed the provisional tolerable monthly intake (PTMI). According to the subgroups, the Cd mean exposure level of 2-3-year-old children was significantly higher than that of the other age groups but did not exceed the PTMI. Health risk classification assessment demonstrated that the final risk score was six, and the health risk level of Cd exposure in aquatic products in the Zhejiang population was medium. These results demonstrated that the risk of Cd exposure in certain food types or age groups should be given more concern.
Collapse
Affiliation(s)
- Yue He
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Hangyan Fang
- Hangzhou Linping District Center for Disease Control and Prevention, Hangzhou 311100, China;
| | - Xiaodong Pan
- Department of Physical-Chemistry, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China;
| | - Bing Zhu
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Jiang Chen
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Jikai Wang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Ronghua Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Lili Chen
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Xiaojuan Qi
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Hexiang Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| |
Collapse
|
11
|
Das S, Lizon F, Gevaert F, Bialais C, Duong G, Ouddane B, Souissi S. Assessing indicators of arsenic toxicity using variable fluorescence in a commercially valuable microalgae: Physiological and toxicological aspects. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131215. [PMID: 37001210 DOI: 10.1016/j.jhazmat.2023.131215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/08/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Indicators signaling Arsenic (As) stress through physiology of microalgae using non-destructive methods like variable fluorescence are rare but requisite. This study reports stress markers indicating arsenic (As) toxicity (in two concentrations 11.25 µg/L and 22.5 µg/L compared to a control) exposed to a microalga (Diacronema lutheri), using fast repetition rate fluorometry (FRRf). Growth and physiological parameters such as cell density, chl a and the maximum quantum yield Fv/Fm showed coherence and impeded after the exponential phase (day 9 - day 12) in As treatments compared to the control (p < 0.05). On contrary photo-physiological constants were elevated showing higher optical (aLHII) and functional [Sigma (σPSII)] absorption cross-section for the As treatments (p < 0.05) further implying the lack of biomass production yet an increase in light absorption. In addition, As exposure increased the energy dissipation by heat (NPQ-NSV) showing a strong relationship with the de-epoxidation ratio (DR) involving photoprotective pigments. Total As bioaccumulation by D. lutheri showed a strong affinity with Fe adsorption throughout the algal growth curve. This study suggests some prompt photo-physiological proxies signaling As contamination and endorsing its usefulness in risk assessments, given the high toxicity and ubiquitous presence of As in the ecosystem.
Collapse
Affiliation(s)
- Shagnika Das
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France; Amity Institute of Marine Science and Technology, Amity Institute of Biotechnology, Amity University, Noida, UP, India.
| | - Fabrice Lizon
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - François Gevaert
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - Capucine Bialais
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - Gwendoline Duong
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - Baghdad Ouddane
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Equipe Physico-chimie de l'Environnement, Bâtiment C8, F-59000 Lille, France
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| |
Collapse
|
12
|
Xu W, Yang Y, Tian J, Du X, Ye Y, Liu Z, Li Y, Zhao Y. Integrated physiological and transcriptome analysis reveals potential toxicity mechanism of haloxyfop-P-methyl to Chiromantes dehaani. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121879. [PMID: 37230172 DOI: 10.1016/j.envpol.2023.121879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
Haloxyfop-P-methyl is widely used in controlling gramineous weeds, including the invasive plant Spartina alterniflora. However, the mechanism of its toxicity to crustaceans is unclear. In this study, we adopted transcriptome analysis combined with physiologic changes to investigate the response of estuarine crab (Chiromantes dehaani) to haloxyfop-P-methyl. The results showed that the median lethal concentration (LC50) of C. dehaani to haloxyfop-P-methyl at 96 h was 12.886 mg/L. Antioxidant system analysis indicated that MDA, CAT, GR, T-GSH, and GSSG might be sensitive biomarkers that characterize the oxidative defense response of the crab. In total, 782 differentially expressed genes were identified, including 489 up-regulated and 293 down-regulated genes. Glutathione metabolism, detoxification response and energy metabolism were significantly enriched, revealing the potential toxic mechanism of haloxyfop-P-methyl to C. dehaani. These results provide a theoretical foundation for further research on haloxyfop-P-methyl toxicity to crustaceans.
Collapse
Affiliation(s)
- Wenyue Xu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Ying Yang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Jiangtao Tian
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Zhiquan Liu
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
| | - Yiming Li
- Fishery Machinery and Instrument, Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
13
|
Xu Y, Gui Y, Zhi D, Pi J, Liu X, Xiang J, Li D, Li J. Protective effects of calcium against cadmium-induced toxicity in juvenile grass carp (Ctenopharyngodon idellus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114972. [PMID: 37141681 DOI: 10.1016/j.ecoenv.2023.114972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/15/2023] [Revised: 04/22/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023]
Abstract
Cadmium (Cd) is one of the dominant metal pollutants present in the aquatic environment that affects ion homeostasis, oxidative stress (OS) and immune responses of aquatic organisms. Given the physicochemical similarities between Cd2+ and calcium (Ca2+) ions, their antagonism may facilitate the mitigation of Cd-induced toxicity. To better understand the role of Ca in protecting against Cd-induced toxicity in teleosts, juvenile grass carp were exposed to Cd (measured concentration 3 μg/L) and a gradient of Ca concentrations (measured concentration 1.5 mg/L, 2.5 mg/L, 3.0 mg/L, and 3.5 mg/L in the control (CTL) group, low calcium (LCA) group, medium calcium (MCA) group, and high calcium (HCA) group, respectively) for 30 days. Inductively coupled plasma mass spectrometry (ICP-MS) data analyses showed that simultaneous exposure to Ca impaired the accumulation of Cd in all tested tissues. Besides, Ca addition maintained the plasma ion (Na+, K+, Cl-) homeostasis, alleviated Cd-induced oxidative stress (OS), and regulated the activities and transcriptional levels of ATPase. Furthermore, transcriptional heatmap analysis demonstrated that several indicator genes for OS and calcium signaling pathway were found to be significantly modulated by Ca addition. This work delineates a protective effect of Ca against Cd-induced toxicity in grass carp, providing new insight into the possible solutions to Cd pollution issues in aquaculture industry.
Collapse
Affiliation(s)
- Yang Xu
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China
| | - Yuting Gui
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China; Hunan Applied Technology University, Changde 415100, China
| | - Dan Zhi
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jie Pi
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China; Hunan Applied Technology University, Changde 415100, China
| | - Xinhua Liu
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China
| | - Jianguo Xiang
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China
| | - Deliang Li
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China.
| | - Junhua Li
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
14
|
Ying Z, Xie X, Li Y, Bao Y, Ye G, Chen X, Zhang W, Gu YG. A novel cadmium detoxification pathway in Tri-spine horseshoe crab (Tachypleus tridentatus): A 430-million-years-ago organism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114585. [PMID: 36724710 DOI: 10.1016/j.ecoenv.2023.114585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/04/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Marine and intertidal heavy metal pollution has been a major concern in recent years. Tachypleus tridentatus has existed on earth for more than 430 million years. It has suffered a sharp decline in population numbers caused by environmental pollution and anthropogenic disturbance for almost 40 years. However, the effects of heavy metal pollution on juvenile T. tridentatus have not been reported. Here we show the mechanism of cadmium (Cd) detoxification in juvenile T. tridentatus using integrated antioxidant indexes and transcriptomic and metabolomic analysis. High Cd2+ concentration caused oxidative stress in juvenile T. tridentatus. The hazards increase with increasing Cd2+ concentration in juvenile T. tridentatus. Transcriptomics and metabolomics analyses concluded that high Cd2+ concentration resulted in the imbalance of glycerophospholipid metabolism in juvenile T. tridentatus to detoxify Cd. Our results offer a rationale for protective measures and further studies of heavy metal stress in T. tridentatus.
Collapse
Affiliation(s)
- Ziwei Ying
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; College of Fisheries Science and Life Science of Shanghai Ocean University, Shanghai 201306, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| | - Xiaoyong Xie
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; College of Fisheries Science and Life Science of Shanghai Ocean University, Shanghai 201306, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China.
| | - Yinkang Li
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; College of Fisheries Science and Life Science of Shanghai Ocean University, Shanghai 201306, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| | - Yuyuan Bao
- Guangdong Center for Marine Development Research, Guangzhou 510322, China
| | - Guoling Ye
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; College of Fisheries Science and Life Science of Shanghai Ocean University, Shanghai 201306, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| | - Xiaohai Chen
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; College of Fisheries Science and Life Science of Shanghai Ocean University, Shanghai 201306, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| | - Wanling Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; College of Fisheries Science and Life Science of Shanghai Ocean University, Shanghai 201306, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| | - Yang-Guang Gu
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; College of Fisheries Science and Life Science of Shanghai Ocean University, Shanghai 201306, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| |
Collapse
|
15
|
Xiao B, Li D, Liao B, Zheng H, Yang X, Xie Y, Xie Z, Li C. Effects of microplastic combined with Cr(III) on apoptosis and energy pathway of coral endosymbiont. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39750-39763. [PMID: 36602726 DOI: 10.1007/s11356-022-25041-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The combined effect of polyethylene (PE) microplastics and chromium (Cr(III)) on the scleractinian coral Acropora pruinosa (A. pruinosa) was investigated. The endpoints analysed in this study included the endosymbiont density, the chlorophyll a + c content, and the activity of enzymes involved in apoptosis (caspase-1, caspase-3), glycolysis (lactate dehydrogenase, LDH), the pentose phosphate pathway (glucose-6-phosphate dehydrogenase, G6PDH) and electron transfer coenzyme (nicotinamide adenine dinucleotide, NAD+/NADH). During the 7-day exposure to PE and Cr(III) stress, the endosymbiont density and chlorophyll content decreased gradually. The caspase-1 and caspase-3 activities increased in the high-concentration Cr(III) exposure group. Furthermore, the LDH and G6PDH activities decreased significantly, and the NAD+/NADH was decreased significantly. In summary, the results showed that PE and Cr(III) stress inhibited the endosymbiont energy metabolism enzymes and further led to endosymbiont apoptosis in coral. In addition, under exposure to the combination of stressors, when the concentration of Cr(III) remained at 1 × 10-2 mg/L, the toxic effects of heavy metals on the endosymbiont were temporarily relieved with elevated PE concentrations. In contrast, when coral polyps were exposed to 5 mg/L PE and increasing Cr(III) concentrations, their metabolic activities were seriously disturbed, which increased the burden of energy consumption. In the short term, the toxic effect of Cr(III) was more obvious than that of PE because Cr(III) exposure leads to endosymbiont apoptosis and irreversible damage. This is the first study to provide insights into the combined effect of microplastic and Cr(III) stress on the apoptosis and energy pathways of coral endosymbionts. This study suggested that microplastics combined with Cr(III) are an important factor affecting the apoptosis and energy metabolism of endosymbionts, accelerating the collapse of the balance between the coral host and symbiotic endosymbiont.
Collapse
Affiliation(s)
- Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Dongdong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Baolin Liao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Huina Zheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Xiaodong Yang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Yongqi Xie
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Ziqiang Xie
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Chengyong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China.
- School of Chemistry and Environment, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Das S, Souissi A, Ouddane B, Hwang JS, Souissi S. Trace metals exposure in three different coastal compartments show specific morphological and reproductive traits across generations in a sentinel copepod. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160378. [PMID: 36414068 DOI: 10.1016/j.scitotenv.2022.160378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/29/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The effect of exposure from several compartments of the environment at the level of individuals was rarely investigated. This study reports the effect of contaminants from varied compartments like sediment resuspension, elutriation from resuspended sediment (extract) and seawater spiked trace metal mixtures (TM) on morphological and reproductive traits of the pelagic bioindicator copepod Eurytemora affinis. At the population level of E. affinis, lowest survival was observed in dissolved exposures (TM and extract) in the first generation (G1), showing some adaptation in the second generation (G2). An opposite trend for resuspended sediment showed higher sensitivity in survival at G2. At the individual level, prosome length and volume proved to be sensitive parameters for resuspended sediments, whereas clutch size and egg diameter were more sensitive to TM and extract. Although the generation of decontamination (G3, no exposure), showed a significant recovery at the population level (survival % along with clutch size) of E. affinis exposed to resuspended sediment, morphological characteristics like prosome length and volume showed no such recovery (lower than control, p < 0.05). To the contrary, dissolved exposure showed no significant recovery from G1 to G3 on neither survival %, clutch size, egg diameter, prosome volume, but an increase of prosome length (p < 0.05). Such tradeoffs in combatting the stress from varied sources of toxicity were observed in all exposures, from G1 to G3. The number of lipid droplets inside the body cavity of E. affinis showed a significant positive correlation with trace metal bioaccumulation (p < 0.01) along with a negative correlation (p < 0.05) with survival and clutch size in each treatment. This confirms the inability of copepods to utilize lipids under stressful conditions. Our study tenders certain morphological and reproductive markers that show specificity to different compartments of exposure, promising an advantage in risk assessment and fish feed studies.
Collapse
Affiliation(s)
- Shagnika Das
- Laboratoire d'Océanologie et de Géosciences, Université de Lille, CNRS, Université Littoral Côte d'Opale, UMR 8187, F 59000 Lille, France.
| | - Anissa Souissi
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Baghdad Ouddane
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Equipe Physico-Chimie de l'Environnement, Bâtiment C8, 59655 Villeneuve d'Ascq Cedex, France
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Sami Souissi
- Laboratoire d'Océanologie et de Géosciences, Université de Lille, CNRS, Université Littoral Côte d'Opale, UMR 8187, F 59000 Lille, France
| |
Collapse
|
17
|
Liu X, Deng Q, Yang H, Wang J, Wang M. Oxidative Stress of Cadmium and Lead at Environmentally Relevant Concentrations on Hepatopancreas of Macrobrachium nipponensis and Their Mixture Interactivity: Implications for Water Quality Criteria Amendment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:360. [PMID: 36612682 PMCID: PMC9819936 DOI: 10.3390/ijerph20010360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/04/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The biotoxicity of heavy metals in water has always been the focus of ecological health research. In this study, the oxidative stress-associated toxicity of cadmium (Cd) and lead (Pb) at environmentally relevant concentrations on the hepatopancreas of Macrobrachium nipponensis was investigated based on multiple biomarker responses in a 28-day indoor exposure study. Changes in integrated biomarker responses (IBR) and their interactivity were subsequently analyzed. No dead individuals were found across any of the tested conditions. The chronic toxicity of heavy metals depended on their type and exposure time at the same concentration. At low concentrations, organisms have a regulatory capacity to cope with the excess reactive oxygen species (ROS) induced by Pb stress over time. In detail, the activity of superoxide dismutase (SOD) was inhibited by Pb stress at a high concentration as time passed. The sensitivity of metallothionein (MT) to Cd was stronger than Pb, and the potential for Cd to cause lipid peroxidation damage was higher than Pb. At the same time, Pb had a greater disturbance effect on the nervous system than Cd, especially in the early exposure stage. The contribution of Cd and Pb to the interaction effect varied dynamically with time and concentration of exposure, but mostly showed antagonism. The results of this study have important significance for guiding the diagnosis of ecological water health, the amendment of water quality criteria, and the management of wastewater discharge.
Collapse
Affiliation(s)
- Xiang Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230009, China
| | - Qianzhen Deng
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Hao Yang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Jingyao Wang
- Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| | - Min Wang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
18
|
Effects of active coatings based on soluble portion of zedo gum on physicochemical, microbial, and antioxidant enzymes characteristics of white shrimp. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/05/2022]
|
19
|
Rodrigues PDA, Ferrari RG, do Rosário DKA, de Almeida CC, Saint'Pierre TD, Hauser-Davis RA, Dos Santos LN, Conte-Junior CA. Toxic metal and metalloid contamination in seafood from an eutrophic Brazilian estuary and associated public health risks. MARINE POLLUTION BULLETIN 2022; 185:114367. [PMID: 36435023 DOI: 10.1016/j.marpolbul.2022.114367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/02/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Guanabara Bay (GB) is a highly contaminated estuarine system and an important fishing area in Southeastern Brazil. In this regard, knowledge concerning the association of certain contaminants in seafood to abiotic factors and human health risk assessments is still understudied. Therefore, this study aimed to quantify nine toxic elements in highly consumed crabs, shrimp, and squid, and associate the results with abiotic factors. A human health risk assessment was also performed. Our findings indicate that crabs are the main bioaccumulators. Transparency and depth were noteworthy for all three taxonomic groups. In general, contaminant concentrations were below the limits established by different international agencies, except for As, which was higher than the Brazilian limit (1 mg kg-1). However, the Hazard Index identified risks to consumer health for the ingestion of seafood. This study emphasizes the importance of jointly evaluating different toxic elements, for a more accurate health risk assessment.
Collapse
Affiliation(s)
- Paloma de Almeida Rodrigues
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24220-000, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil.
| | - Rafaela Gomes Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Agrarian Sciences Center, Department of Zootechnics, Federal University of Paraiba, Paraíba, Brazil
| | - Denes Kaic Alves do Rosário
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Cristine Couto de Almeida
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | | | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), 21040-360 Rio de Janeiro, Brazil.
| | - Luciano Neves Dos Santos
- Laboratory of Theoretical and Applied Ichthyology, Institute of Biosciences, Federal University of the State of Rio de Janeiro, Rio de Janeiro 22290-240, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24220-000, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| |
Collapse
|
20
|
Liang Z, Chen T, Yang F, Li S, Zhang S, Guo H. Toxicity of chronic waterborne zinc exposure in the hepatopancreas of white shrimp Litopenaeus vannamei. CHEMOSPHERE 2022; 309:136553. [PMID: 36155019 DOI: 10.1016/j.chemosphere.2022.136553] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/22/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Zinc (Zn) is necessary for the survival of aquatic organisms; nevertheless, the accumulation of Zn in excessive amounts may have toxic consequences. Few studies focusing on the biochemical, morphological, and transcriptional effects of aqueous Zn in Litopenaeus vannamei have been reported, and the underlying toxic mechanism remains largely unknown. The present study was performed to investigate the growth performance, morphological alterations, physiological changes, and transcriptional responses after Zn exposure at 0 (control), 0.01, 0.1, and 1 mg/L concentrations for 30 days in white shrimp L. vannamei hepatopancreas. The results found that survival rate (SR) and growth performance were significantly reduced in 1 mg/L Zn group. Significant structural damage and significant Zn accumulation in hepatopancreas were observed. The activities of trypsin and amylase (AMS), and the total antioxidant capacity (T-AOC) were attenuated, while the production of reactive oxygen species (ROS) and malondialdehyde (MDA) content were significantly increased after Zn exposure. Many differentially expressed genes (DEGs) were obtained after Zn exposure, and the majority of these DEGs were downregulated. Ten DEGs involved in oxidative stress, immunological response, apoptosis, and other processes were selected for qRT-PCR validation and the expression profiles of these DEGs kept well consistent with the transcriptome data, which confirmed the accuracy and reliability of the transcriptome results. Subsequently, we screened 12 genes to examine the changes of expression in different concentrations in more detail. All the results implying that Zn exposure caused severe histopathological changes and increased Zn accumulation in hepatopancreas, altered immune, antioxidant and detoxifying response by regulating the gene expressions of related genes, and eventually might trigger apoptosis. These findings provide valuable information and a new perspective on the molecular toxicity of crustaceans in response to environmental heavy metal exposure.
Collapse
Affiliation(s)
- Zhi Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, PR China
| | - Tianci Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, PR China
| | - Furong Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, PR China
| | - Shuhong Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, PR China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| | - Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, PR China.
| |
Collapse
|
21
|
Pedro CA, Bruno CS, Sarly MS, Meireles G, Moutinho A, Novais SC, Marques JC, Gonçalves SC. Are tolerance processes limiting the responses of Hediste diversicolor to cadmium exposure? A multimarker approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106300. [PMID: 36162202 DOI: 10.1016/j.aquatox.2022.106300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/20/2021] [Revised: 08/02/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is considered a priority hazardous substance under the European Community Directive 2013/39 due to its ecotoxicity. The ragworm Hediste diversicolor (O.F. Müller, 1776), a common species in estuaries and coastal lagoons, plays an important ecological role in these ecosystems and is a suitable bioindicator of environmental chemical contamination. In this study, H. diversicolor was chosen as an ecotoxicological model with the aim of evaluating the responses to Cd contamination, considering a multi-biomarker approach (mortality, biometry, behaviour, Cd bioaccumulation, oxidative stress and damage, and energy metabolism). Also, the hypothesis of different tolerances resulting in different responses was evaluated, by collecting worms from three systems distinctly impacted by metal contamination (Mondego estuary, Óbidos Lagoon and Sado estuary - Portugal). Animals were exposed under laboratory conditions to cadmium (10, 50 and 100 µg/L), for 10 days. Significant differences were observed in responses amongst worms originating from the different sites. Organisms from the less impacted systems revealed greater effects on mortality, biomass decrease and burrowing behaviour, as well as higher bioaccumulation potential, after exposure to Cd. Biochemical and behaviour impairments were observed as a consequence of Cd exposure, although not in a concentration-dependant manner. The results obtained in this study reinforce the importance of integrating endpoint responses, at the individual and sub-individual levels, to assess potential changes induced by pollutants in the physiological status and fitness of H. diversicolor and help to predict what their ecological consequences might be.
Collapse
Affiliation(s)
- Carmen A Pedro
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, Peniche 2520-641, Portugal; FCTUC - Faculty of Sciences and Technology, University of Coimbra, Coimbra 3000-456, Portugal
| | - Catarina S Bruno
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, Peniche 2520-641, Portugal
| | - Monique S Sarly
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, Peniche 2520-641, Portugal
| | - Gabriela Meireles
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, Peniche 2520-641, Portugal
| | - Ariana Moutinho
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, Peniche 2520-641, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, Peniche 2520-641, Portugal
| | - João C Marques
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| | - Sílvia C Gonçalves
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, Peniche 2520-641, Portugal; MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal.
| |
Collapse
|
22
|
Bautista-Covarrubias JC, Valdez-Soto IE, Aguilar-Juárez M, Arreola-Hernández JO, Soto-Jiménez MF, Soto-Rodríguez SA, López-Sánchez JA, Osuna-Martínez CC, Frías-Espericueta MG. Cadmium and copper mixture effects on immunological response and susceptibility to Vibrio harveyi in white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 129:145-151. [PMID: 36055556 DOI: 10.1016/j.fsi.2022.08.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/04/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd2+) and copper (Cu2+) are considered immunotoxic metals and their presence in combination in the aquatic environment may cause effects on shrimp species as Litopenaeus vannamei. Thus, this research evaluates the combined effects of Cd2+ and Cu2+ on shrimp inoculated with Vibrio harveyi bacteria. The experiments were performed at 96-h of exposure to sublethal concentrations of both metals. No mortality was observed in organisms exposed to the sum of Criterion of Continuous Concentration (ΣCCC) in Cd + Cu mixture and those inoculated with V. harveyi. Higher clotting times were recorded in Cd + Cu + V. harveyi treatment at higher metal concentrations. No significant differences (P > 0.05) were recorded in hemocyanin content between shrimp exposed to metals and those experimentally infected. Significantly higher (P < 0.05) total hemocyte count (THC) was recorded at 96 h exposure in the ΣCCC and 10% treatments of Cd + Cu + V. harveyi experiment. Regarding Cd + Cu + V. harveyi bioassay, the highest phenoloxidase (PO) activity was recorded in shrimp inoculated with V. harveyi (0.326 ± 0.031 PO units/mg protein) at 96-h exposure. The lowest PO activity was observed in organisms exposed to Cd + Cu + V. harveyi. Regarding superoxide dismutase (SOD) activity, shrimp exposed to higher metal concentrations at 96 h showed the lowest hemolymph activity (6.03 ± 0.62 SOD units/mL). Protein decrease was observed in organisms exposed to metal mixture. The results showed that L. vannamei could be more susceptible to V. harveyi when exposed to Cd + Cu.
Collapse
Affiliation(s)
- Juan Carlos Bautista-Covarrubias
- Unidad Académica Escuela Nacional de Ingeniería Pesquera, Bahía de Matanchén. Universidad Autónoma de Nayarit. Tepic, Nayarit, C.P., 63740, Mexico
| | - Iriana Edith Valdez-Soto
- Facultad de Ciencias del Mar. Universidad Autónoma de Sinaloa, Mazatlán, Sinaloa, C.P., 82000, Mexico
| | - Marisela Aguilar-Juárez
- Facultad de Ciencias del Mar. Universidad Autónoma de Sinaloa, Mazatlán, Sinaloa, C.P., 82000, Mexico
| | | | - Martín Federico Soto-Jiménez
- Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, UNAM. Mazatlán Sinaloa, C.P., 82047, Mexico
| | | | - José Armando López-Sánchez
- Unidad Académica Escuela Nacional de Ingeniería Pesquera, Bahía de Matanchén. Universidad Autónoma de Nayarit. Tepic, Nayarit, C.P., 63740, Mexico
| | | | | |
Collapse
|
23
|
de Almeida Rodrigues P, Ferrari RG, da Anunciação de Pinho JV, do Rosário DKA, de Almeida CC, Saint'Pierre TD, Hauser-Davis RA, Dos Santos LN, Conte-Junior CA. Baseline titanium levels of three highly consumed invertebrates from an eutrophic estuary in southeastern Brazil. MARINE POLLUTION BULLETIN 2022; 183:114038. [PMID: 36029587 DOI: 10.1016/j.marpolbul.2022.114038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/25/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Titanium (Ti) is considered a contaminant of emerging interest, as it displays toxic potential and has been increasingly employed in everyday products, pharmaceuticals, and food additives, mainly in nanoparticle form. However, several knowledge gaps are still noted, especially concerning its dynamics in the water. In this context, this study aimed to quantify total Ti concentrations in highly consumed swimming crabs, squid, and shrimp from an important estuary located in southeastern Brazil. Ti concentrations were higher than those reported in most studies carried out worldwide. Animal length and weight, as well as, depth, transparency, dissolved oxygen, and salinity, significantly influence Ti concentrations in the animals. Human health risks were also noted after calculating a simulated exposure to titanium dioxide, especially considering the uncertainties regarding the effects of this element and the absence of regulatory limits.
Collapse
Affiliation(s)
- Paloma de Almeida Rodrigues
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense, Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24220-000, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil.
| | - Rafaela Gomes Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Agrarian Sciences Center, Department of Zootechnics, Federal University of Paraiba, Areia, PB 58051-900, Brazil
| | - Júlia Vianna da Anunciação de Pinho
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | - Denes Kaic Alves do Rosário
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Cristine Couto de Almeida
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | | | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-360, Brazil.
| | - Luciano Neves Dos Santos
- Laboratory of Theoretical and Applied Ichthyology, Institute of Biosciences, Federal University of the State of Rio de Janeiro, Rio de Janeiro, RJ 22290-240, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense, Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24220-000, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| |
Collapse
|
24
|
Das S, Ouddane B, Souissi S. Responses of the copepod Eurytemora affinis to trace metal exposure: A candidate for sentinel to marine sediment resuspension effects. MARINE POLLUTION BULLETIN 2022; 181:113854. [PMID: 35772260 DOI: 10.1016/j.marpolbul.2022.113854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/04/2021] [Revised: 05/01/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Our study reports the ability of Eurytemora affinis to indicate certain responses in 96 h when exposed to resuspended sediment from a polluted site (PS, Seine estuary, France), less polluted site (LPS, Canche estuary, France) and dissolved trace metals. Mortality from dissolved trace metal was highest (57.5 %) followed by PS (38.59 %) > LPS (24.04 %). The exposure to PS sediment resulted in significantly lower no. of early larval stage (nauplii < 2), sex-ratio (39.24 % of males) and higher ovigerous female (>10). Eurytemora affinis bioaccumulated high concentrations of copper (27.3 mg/kg), nickel (12.8 mg/kg), lead (21.8 mg/kg) and arsenic (13.7 mg/kg) from PS exposure with significantly lower bioaccumulation of metals from LPS. The bioconcentration factor (BCF) was highest from dissolved toxicity (>2000) followed by PS that showed significantly higher BCF for Nickel and Copper, compared to LPS. The responses of E. affinis to different matrices exemplify its role as a sentinel.
Collapse
Affiliation(s)
- Shagnika Das
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187-LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - Baghdad Ouddane
- Univ. Lille, CNRS, UMR 8516-LASIRE - Equipe Physico-chimie de l'Environnement, Bâtiment C8, F-59000 Lille, France
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187-LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France.
| |
Collapse
|
25
|
Huang Q, Zhu Y, Yu J, Fang L, Li Y, Wang M, Liu J, Yan P, Xia J, Liu G, Yang X, Zeng J, Guo L, Ruan G. Effects of sulfated β-glucan from Saccharomyces cerevisiae on growth performance, antioxidant ability, nonspecific immunity, and intestinal flora of the red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2022; 127:891-900. [PMID: 35810965 DOI: 10.1016/j.fsi.2022.06.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/24/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to examine the combined effects of sulfated β-Glucan from Saccharomyces cerevisiae (sGSC) on growth performance, antioxidant ability, nonspecific immunity, and intestinal flora of the red swamp crayfish (Procambarus clarkii). Four experimental diets (sGSC25, sGSC50, sGSC100 and sGSC200) with different levels of sGSC (0.025%, 0.05%, 0.1% and 0.2% in diet, respectively) were fed to juvenile crayfish (average weight: 2.5 ± 0.5 g) for 8 weeks. The control diet was given with 2000 mg/kg GSC (GSC200 group). The based control diet was given without sGSC or GSC (blank group). Each group had 3 parallel test pools, 20 crayfish were reared in each pool. At the end of the growth trial, adding dietary 0.025%-0.1% sGSC could significantly improve the growth performance, antioxidant capacity and immunity of crayfish. Compared with GSC, sGSC had a better effect at lower concentration. Higher concentration of sGSC (>0.1%) would cause some side effects. sGSC also could improve the structure of the intestinal flora and optimize the function of the flora. sGSC would increase the abundances of probiotics such as Hafnia and Acinetobacter, and decreases the abundances of maleficent bacteria such as Enterobacteriaceae. Higher concentration of sGSC (>0.1%) would increase the abundance of Aeromonas. To conclude, 0.025%-0.1% sGSC can be used as a supplement in crayfish feed to increase growth, immunity, and antioxidant capacity and improve the structure of intestinal flora. These results provided a theoretical basis for the application of sGSC instead of GSC in crayfish breeding. It will be necessary to further study the optimal concentration of sGSC in feed additives in different growth stages of crayfish in the future.
Collapse
Affiliation(s)
- Qi Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Yiling Zhu
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Jie Yu
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Liu Fang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Yana Li
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Mi Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jiali Liu
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Pupu Yan
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Jinjin Xia
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Guoping Liu
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Xiaolin Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Liwei Guo
- College of Animal Science, Yangtze University, Jingzhou, 434025, China.
| | - Guoliang Ruan
- College of Animal Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
26
|
Shang X, Xu W, Zhao Z, Luo L, Zhang Q, Li M, Sun Q, Geng L. Effects of exposure to cadmium (Cd) and selenium-enriched Lactobacillus plantarum in Luciobarbus capito: Bioaccumulation, antioxidant responses and intestinal microflora. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109352. [PMID: 35460911 DOI: 10.1016/j.cbpc.2022.109352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/10/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 02/02/2023]
Abstract
Cadmium (Cd) is a dangerous pollutant with multiple toxic effects on aquatic animals, and it exists widely in the environment. Selenium (Se) is a biologically essential trace element. Interactions between heavy metals and selenium can significantly affect their biological toxicity, although little is known about the mechanism of this antagonism. Lactobacillus is one of the dominant probiotics, given that a certain dose promotes host health. In this study, we evaluated the protective effect of a dietary probiotic supplementation, Se-enriched Lactobacillus plantarum (L. plantarum), on the bioaccumulation, oxidative stress and gut microflora of Luciobarbus capito exposed to waterborne Cd. Fish were exposed for 28 days to waterborne Cd at 0.05 mg/L and/or dietary Se-enriched L. plantarum. Exposure to Cd in water leads to Cd accumulation in tissues, oxidative stress and significant changes in gut microflora composition. Adding Se-enriched L. plantarum to the diet can reduce the accumulation of Cd in tissues, enhance the activity of antioxidant enzymes, and reverse changes in intestinal microbial composition after Cd exposure. The results obtained indicate that Se-enriched L. plantarum provides significant protection against the toxicity of Cd by inhibiting bioaccumulation. Selenium reduced oxidative stress by increasing the activity of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and malondialdehyde (MDA). Se-enriched L. plantarum can reduce the increase in the number of pathogenic Aeromonas caviae bacteria in the intestine caused by Cd stress and increase the number of Gemmobacter to regulate the microbial population. The results of this study show that Se-enriched L. plantarum dietary supplements can effectively protect Luciobarbus capito against Cd toxicity at subchronic levels.
Collapse
Affiliation(s)
- Xinchi Shang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China
| | - Wei Xu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China.
| | - Zhigang Zhao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China
| | - Liang Luo
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China
| | - Qing Zhang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China
| | - Muyang Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Qingsong Sun
- Jilin Agricultural Science and Technology University, Key Lab of Preventive Veterinary Medicine in Jilin Province, 77 Hanlin Road, Jilin 132101,China
| | - Longwu Geng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China.
| |
Collapse
|
27
|
Wang S, Ji C, Li F, Wu H. Toxicological responses of juvenile Chinese shrimp Fenneropenaeus chinensis and swimming crab Portunus trituberculatus exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113416. [PMID: 35298968 DOI: 10.1016/j.ecoenv.2022.113416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/09/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is one of the typical metal pollutants in the Bohai Sea. To evaluate the acute toxicological effects of Cd on marine crustaceans, juvenile Fenneropenaeus chinensis and Portunus trituberculatus were exposed to Cd at environmentally relevant concentrations (5 and 50 μg/L) for 96 h. Cd accumulation, antioxidants and metabolite profiles were characterized to elucidate the responses of juvenile crustaceans to Cd stress. Significant Cd accumulation was observed in both juvenile crustaceans in 50 μg/L Cd-treated group. Results showed that Cd exposure induced hormesis based on the alterations of GSH, SOD and CAT activities (i.e. increased levels in the low concentration of Cd treatment and recovered levels in the high concentration of Cd treatment) in juvenile P. trituberculatus. Similarly, the responses of GSH contents presented hormesis pattern in Cd-treated juvenile F. chinensis. Na+-K+-ATPase contents were significantly elevated in 50 μg/L Cd-treated group. In addition, untargeted NMR-based metabolomics indicated Cd caused the disturbance in osmotic regulation and energy consumption in both juvenile F. chinensis and P. trituberculatus via different pathways. The immunotoxicity and movement disorder were uniquely demonstrated in juvenile P. trituberculatus after Cd exposure.
Collapse
Affiliation(s)
- Shuang Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, P. R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China.
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, P. R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| |
Collapse
|
28
|
Das S, Gevaert F, Ouddane B, Duong G, Souissi S. Single toxicity of arsenic and combined trace metal exposure to a microalga of ecological and commercial interest: Diacronema lutheri. CHEMOSPHERE 2022; 291:132949. [PMID: 34798102 DOI: 10.1016/j.chemosphere.2021.132949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/01/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Eco-toxicological assays with species of economic interest such as Diacronema lutheri are essential for industries that produce aquaculture feed, natural food additives and also in drug developing industries. Our study involved the exposure of a single and combined toxicity of arsenic (As V) to D. lutheri for the entire algal growth phase and highlighted that a combined exposure of As V with other essential (Copper, Cu; Nickel, Ni) and non-essential (Cadmium, Cd; Lead, Pb) trace metals reduced significantly the cell number, chlorophyll a content, and also significantly increased the de-epoxidation ratio (DR) as a stress response when compared to the single toxicity of As V. Arsenic, as one of the ubiquitous trace metal and an active industrial effluent is reported to have an increased bio-concentration factor when in mixture with other trace metals in this study. In the combined exposure, the concentration of total As bio-accumulated by D. lutheri was higher than in the single exposure. Hence, polluted areas with the prevalence of multiple contaminants along with the highly toxic trace metals like As can impose a greater risk to the exposed organisms that may get further bio-magnified in the food chain. Our study highlights the consequences and the response of D. lutheri in terms of contamination from single and multiple trace metals in order to obtain a safer biomass production for the growing need of natural derivatives.
Collapse
Affiliation(s)
- Shagnika Das
- Univ. Lille, CNRS, Univ. Littoral Côte D'Opale, IRD, UMR 8187 - LOG - Laboratoire D'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000, Lille, France; Univ. Lille, CNRS, UMR 8516 - LASIRE - Equipe Physico-chimie de L'Environnement, Bâtiment C8, F-59000, Lille, France
| | - François Gevaert
- Univ. Lille, CNRS, Univ. Littoral Côte D'Opale, IRD, UMR 8187 - LOG - Laboratoire D'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000, Lille, France
| | - Baghdad Ouddane
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Equipe Physico-chimie de L'Environnement, Bâtiment C8, F-59000, Lille, France
| | - Gwendoline Duong
- Univ. Lille, CNRS, Univ. Littoral Côte D'Opale, IRD, UMR 8187 - LOG - Laboratoire D'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000, Lille, France
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte D'Opale, IRD, UMR 8187 - LOG - Laboratoire D'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000, Lille, France.
| |
Collapse
|
29
|
Kim WS, Kwak IS. EDCs trigger immune-neurotransmitter related gene expression, and cause histological damage in sensitive mud crab Macrophthalmus japonicus gills and hepatopancreas. FISH & SHELLFISH IMMUNOLOGY 2022; 122:484-494. [PMID: 35150829 DOI: 10.1016/j.fsi.2022.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/08/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Endocrine-disrupting chemicals (EDCs), distributed at various concentrations in freshwater and marine ecosystems, affect the survival, reproduction, and behavior of wide ranges organisms. Most toxicology studies on EDCs have focused on the endocrine system of invertebrates, and research on invertebrate neurotransmitters is limited. In the present study, we investigated the expression of Macrophthalmus japonicus genes encoding γ-aminobutyric acid transporter subtype 2 (GAT-2) and glutamine synthetase (GS), which play important roles as neurotransmitters at synapses. We observed differences in the mRNA expression levels of GAT-2 and GS as well as histological changes in various tissues after exposure to bisphenol-A (BPA) and di-(2-ethylhexyl) phthalate (DEHP). The amino acid sequences of M. japonicus GAT-2 and GS formed separate branches in crustaceans, fish, insects, and mammals. M. japonicus GAT-2 and GS expression levels were highest in the gills, hepatopancreas, and stomach, and showed different between DEHP or BPA treatments. In particular, hepatopancreas GS expression on Day 1, the first step in the presynaptic process, was upregulated after BPA and DEHP exposure, while GAT-2, sequential step in the presynaptic process, was significantly elevated only in DEHP. After BPA treatments, gill GS expression was increased at all concentrations, whereas GAT-2 expression was overall down regulations. In contrast, in DEHP treatment groups hepatopancreatic GS and GAT-2 expression at Day 1 was only significantly higher and all groups including gill GS and GAT-2 expression were downregulation. Histological changes in the gills and hepatopancreas were observed in a concentration-dependent manner. Accordingly, BPA and DEHP exposure in crabs could be stimulate neurotransmitter gene expression and alter the morphological structure of gill and hepatopancreas.
Collapse
Affiliation(s)
- Won-Seok Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, South Korea
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, South Korea.
| |
Collapse
|
30
|
Han R, Khan A, Ling Z, Wu Y, Feng P, Zhou T, Salama ES, El-Dalatony MM, Tian X, Liu P, Li X. Feed-additive Limosilactobacillus fermentum GR-3 reduces arsenic accumulation in Procambarus clarkii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113216. [PMID: 35065503 DOI: 10.1016/j.ecoenv.2022.113216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/25/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Procambarus clarkii (crayfish) accumulates a high concentration of Arsenic (As) from the aquatic environment and causes considerable human health risks. In this study, Limosilactobacillus fermentum GR-3 strain was isolated from "Jiangshui" and applied for As(III) adsorption and antioxidant abilities. Strain GR-3 removed 50.67% of 50 mg/L As(III) and exhibited the high antioxidant potential of DPPH (1,1-Diphenyl-2-picrylhydrazyl) (87.63%) and hydroxyl radical (74.51%) scavenging rate in vitro. P. clarkii was feed with strain GR-3, the results showed that As(III) concentration reduced, and residual level in hepatopancreas was decreased by 36%, compared to As(III)-exposed group (control). Gut microbial sequencing showed that strain GR-3 restores gut microbiota dysbiosis caused by As(III) exposure. Further application in the field scale was performed and revealed a decrease in As(III) accumulation and increasing 50% aquaculture production of the total output. In summary, feed-additive probiotic is recommended as a novel strategy to minimize aquaculture foods toxicity and safe human health.
Collapse
Affiliation(s)
- Rong Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Ying Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Marwa M El-Dalatony
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Xirong Tian
- Hubei Kewang Animal Husbandry Co., Ltd, Qianjiang, Hubei, People's Republic of China
| | - Pu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
31
|
de Almeida Rodrigues P, Ferrari RG, Kato LS, Hauser-Davis RA, Conte-Junior CA. A Systematic Review on Metal Dynamics and Marine Toxicity Risk Assessment Using Crustaceans as Bioindicators. Biol Trace Elem Res 2022; 200:881-903. [PMID: 33788164 DOI: 10.1007/s12011-021-02685-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/04/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
Metals, many of which are potentially toxic, are present in the aquatic environment originated from both natural and anthropogenic sources. In these ecosystems, these elements are mostly deposited in the sediment, followed by water dissolution, potentially contaminating resident biota. Among several aquatic animals, crustaceans are considered excellent bioindicators, as they live in close contact with contaminated sediment. The accumulation of metal, whether they are classified as essential, when in excessive quantities or nonessential, not only cause damage to the health of these animals, but also to the man who consumes seafood. Among the main toxic elements to animal and human health are aluminum, arsenic, cadmium, chromium, copper, lead, mercury, nickel and silver. In this context, this systematic review aimed to investigate the dynamics of these metals in water, the main bioaccumulative tissues in crustaceans, the effects of these contaminants on animal and human health, and the regulatory limits for these metals worldwide. A total of 91 articles were selected for this review, and an additional 68 articles not found in the three assessed databases were considered essential and included, totaling 159 articles published between 2010 and 2020. Our results indicate that both chemical speciation and abiotic factors such as pH, oxygen and salinity in aquatic environments affect element bioavailability, dynamics, and toxicity. Among crustaceans, crabs are considered the main bioindicator biological system, with the hepatopancreas appearing as the main bioaccumulator organ. Studies indicate that exposure to these elements may result in nervous, respiratory, and reproductive system effects in both animals and humans. Finally, many studies indicate that the concentrations of these elements in crustaceans intended for human consumption exceed limits established by international organizations, both with regard to seafood metal contents and well as daily, weekly, or monthly intake limits set for humans, indicating consumer health risks.
Collapse
Affiliation(s)
- Paloma de Almeida Rodrigues
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, 24230-340, Brazil
| | - Rafaela Gomes Ferrari
- Chemistry Institute, Department of Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.
- Agrarian Sciences Center, Department of Zootechnics, Federal University of Paraiba, Paraiba, Brazil.
| | - Lilian Seiko Kato
- Chemistry Institute, Department of Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-360, Brazil
| | - Carlos Adam Conte-Junior
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, 24230-340, Brazil
- Chemistry Institute, Department of Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
- National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
| |
Collapse
|
32
|
Frías-Espericueta MG, Bautista-Covarrubias JC, Osuna-Martínez CC, Delgado-Alvarez C, Bojórquez C, Aguilar-Juárez M, Roos-Muñoz S, Osuna-López I, Páez-Osuna F. Metals and oxidative stress in aquatic decapod crustaceans: A review with special reference to shrimp and crabs. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106024. [PMID: 34808539 DOI: 10.1016/j.aquatox.2021.106024] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/22/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The objective of this review is to synthetize knowledge of the relationship between metals and oxidative stress in aquatic crustaceans (mainly shrimp and crabs) to analyze antioxidant responses when organisms are exposed to metals because the direct metal binding to the active site of enzymes inactivates most of the antioxidant systems. This study reviewed over 150 works, which evidenced that: (i) antioxidant defense strategies used by aquatic decapod crustaceans vary among species; (ii) antioxidant enzymes could be induced or inhibited by metals depending on species, concentration, and exposure time; and (iii) some antioxidant enzymes, as superoxide dismutase increase their activity in low metal levels and time exposures, but their activities are inhibited with higher metal concentrations and exposure time.
Collapse
Affiliation(s)
| | - Juan Carlos Bautista-Covarrubias
- Unidad Académica Escuela Nacional de Ingeniería Pesquera, Universidad Autónoma de Nayarit, Bahía de Matanchén, San Blas Nayarit C.P. 63740, Mexico
| | | | - Carolina Delgado-Alvarez
- Universidad Politécnica de Sinaloa, Carretera Municipal Libre Km. 3 Mazatlán-Higueras Colonia Genaro Estrada, Mazatlán, Sinaloa C.P. 82199, Mexico
| | - Carolina Bojórquez
- Universidad Politécnica de Sinaloa, Carretera Municipal Libre Km. 3 Mazatlán-Higueras Colonia Genaro Estrada, Mazatlán, Sinaloa C.P. 82199, Mexico
| | - Marisela Aguilar-Juárez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, Mazatlán Sinaloa C.P. 82000, Mexico
| | - Sarahí Roos-Muñoz
- Tecnológico Nacional de México/Instituto Tecnológico de Mazatlán. Corsario 1 No. 203, Col. Urías, Mazatlán, Sinaloa C.P. 82070, Mexico
| | - Isidro Osuna-López
- Universidad Autónoma de Occidente, Blvd. Lola Beltrán s/n, Culiacán Sinaloa C.P. 80020, Mexico
| | - Federico Páez-Osuna
- Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Joel Montes Camarena s/n, Mazatlán, Sinaloa C.P. 82040, Mexico; Miembro de El Colegio de Sinaloa, Antonio Rosales 435 Poniente, Culiacán, Sinaloa, Mexico
| |
Collapse
|
33
|
Chang X, Kang M, Shen Y, Yun L, Yang G, Zhu L, Meng X, Zhang J, Su X. Bacillus coagulans SCC-19 maintains intestinal health in cadmium-exposed common carp (Cyprinus carpio L.) by strengthening the gut barriers, relieving oxidative stress and modulating the intestinal microflora. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112977. [PMID: 34781134 DOI: 10.1016/j.ecoenv.2021.112977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/04/2021] [Revised: 10/19/2021] [Accepted: 11/06/2021] [Indexed: 05/26/2023]
Abstract
Heavy metal cadmium (Cd) pollution is a serious problem affecting the sustainable development of aquaculture and the safety of aquatic foods. Research about the use of probiotics to attenuate toxic damage caused by Cd2+ in aquatic animals has received widespread attention. Bacillus coagulans (B. coagulans), a kind of probiotics commonly used in aquaculture, has been shown to adsorb Cd2+ both in vivo and vitro. Here, we aimed to determine the effects of B. coagulans on Cd2+ bioaccumulation, gut barrier function, oxidative stress and gut microbiota in common carp following Cd2+ exposure. The fish were exposure to Cd2+ at 0 and 0.5 mg/L and/or fed a B. coagulans-containing diet at 107, 108 and 109 CFU/g for 8 weeks. The results indicated that B. coagulans can maintain gut barrier function in Cd2+-exposed fish by reducing Cd2+ bioaccumulation, increasing the mRNA levels of tight junction protein genes (occludin, claudin-2 and zonula occludens-1), and decreasing the levels of diamine oxidase and D-lactic acid. In addition, B. coagulans could relieve oxidative stress in Cd2+-exposed fish by restoring the activities of glutathione peroxidase, catalase and superoxide dismutase. Moreover, Cd2+ exposure decreased the intestinal microbiota diversity and changed the intestinal microbiota compositions in common carp. However, supplementation with B. coagulans could reverse the altered intestinal microbiota diversity and composition after Cd2+ exposure, decrease the abundance of some pathogens (Shewanella and Vibrio), and increase the abundance of probiotics (Bacillus and Lactobacillus). These results indicate that B. coagulans may serve as a potential antidote for alleviating Cd2+ toxicity.
Collapse
Affiliation(s)
- Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Meiru Kang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yihao Shen
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Lili Yun
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Lei Zhu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Jianxin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xi Su
- Henan Mental Hospital, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453007, PR China.
| |
Collapse
|
34
|
Ren X, Wang L, Xu Y, Wang Q, Lv J, Liu P, Li J. Characterization of p53 From the Marine Crab Portunus trituberculatus and Its Functions Under Low Salinity Conditions. Front Physiol 2021; 12:724693. [PMID: 34744765 PMCID: PMC8568311 DOI: 10.3389/fphys.2021.724693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Portunus trituberculatus, or the swimming crab, is tolerant of reduced salinity; however, the molecular mechanism of this tolerance is not clear. Cells can be damaged by hyperosmotic salinity. The protein p53, sometimes referred to as “the guardian of the genome,” displays versatile and important functions under changing environmental conditions. Herein, the P. trituberculatus p53 gene (designated as Ptp53) was cloned and studied. The full-length Ptp53 cDNA comprised 1,544bp, with a 1,314bp open reading frame, which encodes a putative polypeptide of 437 amino acids. Quantitative real-time reverse transcription PCR assays revealed ubiquitous expression of Ptp53 in all tissues examined, with the gills showing the highest expression level. Extensive apoptosis was detected under low salinity conditions using terminal deoxynucleotidyl transferase nick-end-labeling staining. Oxidative stress was induced under low salinity conditions, consequently leading to apoptosis. Low salinity stress caused significant upregulation of Ptp53 mRNA and protein levels in the gills. Moreover, compared with that in the control group, the mortality of Ptp53-silenced crabs under low salinity stress was enhanced significantly. Taken together, our findings suggest that Ptp53, via regulation of apoptosis and antioxidant defense, played important functions in the low salinity stress response of the swimming crab.
Collapse
Affiliation(s)
- Xianyun Ren
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lei Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yao Xu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Qiong Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jianjian Lv
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ping Liu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
35
|
Mégevand L, Martínez-Alarcón D, Theuerkauff D, Rivera-Ingraham GA, Lejeune M, Lignot JH, Sucré E. The hepatopancreas of the mangrove crab Neosarmatium africanum: a possible key to understanding the effects of wastewater exposure (Mayotte Island, Indian Ocean). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60649-60662. [PMID: 34160763 DOI: 10.1007/s11356-021-14892-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/05/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Mangrove crabs are ecosystem engineers through their bioturbation activity. On Mayotte Island, the abundance of Neosarmatium africanum decreased in wastewater-impacted areas. Previous analyses showed that global crab metabolism is impacted by wastewater, with a burst in O2 consumption that may be caused by osmo-respiratory trade-offs since gill functioning was impacted. As the hepatopancreas is a key metabolic organ, the purpose of this study was to investigate the physiological effects of wastewater and ammonia-N 5-h exposure on crabs to better understand the potential trade-offs underlying the global metabolic state. Catalase, superoxide dismutase, glutathione S-transferase, total digestive protease, and serine protease (trypsin and chymotrypsin) activities were assessed. Histological analyses were performed to determine structural modifications. No effect of short-term wastewater and ammonia-N exposure was found in antioxidant defenses or digestive enzyme activity. However, histological changes of B-cells indicate an increase in intracellular digestive activity through higher vacuolization processes and tubule dilation in wastewater-exposed crabs.
Collapse
Affiliation(s)
- Laura Mégevand
- UMR9190-MARBEC, Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.
| | - Diana Martínez-Alarcón
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570, Bremerhaven, Germany
| | - Dimitri Theuerkauff
- Station de Recherche Océanographiques et Sous-marines STARESO, 20260 Calvi, Punta Revellata, France
| | | | - Mathilde Lejeune
- Terres Australes et Antarctiques Françaises, rue Gabriel Dejean, 97410, Saint-Pierre, La Réunion, France
| | - Jehan-Hervé Lignot
- UMR9190-MARBEC, Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| | - Elliott Sucré
- UMR9190-MARBEC, Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
- Centre Universitaire de Formation et de Recherche de Mayotte (CUFR), 97660 Dembeni, Mayotte, France
| |
Collapse
|
36
|
Wang L, Feng J, Wang G, Guan T, Zhu C, Li J, Wang H. Effects of cadmium on antioxidant and non-specific immunity of Macrobrachium nipponense. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112651. [PMID: 34419645 DOI: 10.1016/j.ecoenv.2021.112651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/17/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
As a non-essential and toxic element, cadmium poses an important threat to aquatic organisms and human food safety. In this study, the effects of cadmium on antioxidant and non-specific immunity of Macrobrachium nipponense were studied from the physiological and biochemical indexes, histology and expression of related genes. These results showed that low concentrations (0.01, 0.02 mg/L) of cadmium have a positive effect on the non-specific immunity of M. nipponense, but high concentration (0.04 mg/L) of cadmium could inhibit or even damage the non-specific immunity of M. nipponense. The cadmium could induce oxidative stress in M. nipponense, and M. nipponense actived the antioxidant defense system to deal with oxidative stress, but high concentration (0.04 mg/L) of cadmium could inhibit the antioxidant defense system of M. nipponense, leading to oxidative damage, and may induce apoptosis in severe case. At the same time, the results of histology showed that cadmium can damage the structure of gill and hepatopancreas tissues of M. nipponense. This study provides theoretical data for evaluating the influences of heavy metal cadmium on M. nipponense and the toxic mechanism of heavy metal cadmium.
Collapse
Affiliation(s)
- Long Wang
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jianbin Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Tianyu Guan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chuankun Zhu
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hui Wang
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, China.
| |
Collapse
|
37
|
Dellali M, Douggui A, Harrath AH, Mansour L, Alwasel S, Beyrem H, Gyedu-Ababio T, Rohal-Lupher M, Boufahja F. Acute toxicity and biomarker responses in Gammarus locusta amphipods exposed to copper, cadmium, and the organochlorine insecticide dieldrin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36523-36534. [PMID: 33694119 DOI: 10.1007/s11356-021-13158-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/14/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The toxicity of copper, cadmium, and dieldrin in adult Gammarus locusta (a marine amphipod) is currently unclear. Thus, G. locusta from the North Lake of Tunis were subjected to acute toxicity tests to assess LC50s at 48-96 h and to biomarker response tests through the assessment of catalase and acetylcholinesterase activities and malondialdehyde levels. The present study demonstrated the abilities of a chlorinated hydrocarbon pesticide (dieldrin) induce to oxidative stress and neurotoxicity. The comparison of metal toxicity showed that G. locusta was more sensitive to cadmium than copper. The three stressors caused significant inductions of all three biomarkers in a concentration-dependent manner. Catalase induction was dependent on exposure duration for all pollutants, while only copper led to increased malondialdehyde with longer exposure times. Catalase induction and malondialdehyde increase appeared to be sex dependent for all three pollutants. The neurotoxic effects of the pollutants were concentration dependent according to inhibition of acetylcholinesterase activity. In conclusion, catalase, malondialdehyde, and acetylcholinesterase are efficient biomarkers of copper, cadmium, and dieldrin in G. locusta.
Collapse
Affiliation(s)
- Mohamed Dellali
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Amel Douggui
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hamouda Beyrem
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | | | - Melissa Rohal-Lupher
- Texas Water Development Board, 1700 North Congress Avenue, Austin, TX, 78701, USA
| | - Fehmi Boufahja
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia.
| |
Collapse
|
38
|
Xuan R, Wu H, Li Y, Wei B, Wang L. Comparative responses of Sinopotamon henanense to acute and sub-chronic Cd exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35038-35050. [PMID: 33665691 DOI: 10.1007/s11356-021-13230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/03/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Studies on the freshwater crab Sinopotamon henanense have shown that acute and sub-chronic Cd2+ exposure induced differential alterations in the respiratory physiology and gill morphology. To elucidate Cd2+ toxicity under these two exposure conditions, crabs were acutely exposed to 7.14, 14.28, and 28.55 mg/L Cd2+ for 96 h and sub-chronically exposed to 0.71, 1.43, and 2.86 mg/L Cd2+ for 3 weeks. The Cd2+ accumulation, total metallothionein (MT), superoxide dismutase, and malondialdehyde (MDA) contents in the gill tissues were detected. Moreover, the glucose-6-phosphate dehydrogenase (G6PDH) activity, NADPH content, reduced glutathione (GSH), oxidized glutathione (GSSG), and GSH/GSSG ratio in the hepatopancreas were determined. The morphology of the X-organ-sinus gland complex was also observed. The results showed that sub-chronical Cd2+ exposure induced lower MT content and higher MDA level in the gills than in the acute exposure. In the hepatopancreas, acute Cd2+ exposure decreased the pentose phosphate pathway activity and NADPH content; however, an increased G6PDH activity and NADPH content were detected in sub-chronic Cd2+ exposure (2.86 mg/L). Morphological changes occurred in the sinus gland in crabs exposed to 2.86 mg/L Cd2+ for 3 weeks. The tightly packed structure composed by the axons, enlarged terminals, and glial cells, became loose and porous. Ultra-structurally, a large number of vacuoles and few neurosecretory granules were observed in the axon terminal. These effects added to our understanding of the toxic effects of Cd2+ and provide biochemical and histopathological evidence for S. henanense as a biomarker of acute or long-term waterborne Cd2+ pollution.
Collapse
Affiliation(s)
- Ruijing Xuan
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Hao Wu
- Basic Medical School, Shanxi Medical University, Taiyuan, 030001, China
| | - Yingjun Li
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Bingyan Wei
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
39
|
Rodrigues PDA, Ferrari RG, do Rosário DKA, Hauser-Davis RA, Lopes AP, Neves Dos Santos AFG, Conte-Junior CA. Interactions between mercury and environmental factors: A chemometric assessment in seafood from an eutrophic estuary in southeastern Brazil. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105844. [PMID: 33991843 DOI: 10.1016/j.aquatox.2021.105844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/09/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Guanabara Bay (GB) is an estuary in Brazil, constantly the target of pollutants, such as mercury (Hg). Thus, our study aimed to evaluate (i) total mercury (THg) content in shrimp and squid species from GB; (ii) associate THg content to contamination in swimming crabs; (iii) explore potential differences between species, and size; (iv) correlate abiotic water data to the determined THg contents; (v) verify if Hg concentrations are below acceptable limits. Swimming crabs showed greater Hg contamination compared to other species. For shrimp only biometric variables are related to Hg, while for squid, only abiotic. Only squids did not show a correlation between Hg and animal size. Finally, the detected Hg values are below the tolerable limits established by legislations. Our results indicate that the dynamics of Hg contamination differs between groups and that further studies are needed to elucidate the mechanisms that affect bioaccumulation in different species.
Collapse
Affiliation(s)
- Paloma de Almeida Rodrigues
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, 24230-340, Brazil.
| | - Rafaela Gomes Ferrari
- Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil; Agrarian Sciences Center, Department of Zootechnics, Federal University of Paraiba, Paraíba, Brazil.
| | - Denes Kaic Alves do Rosário
- Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), 21040-360 Rio de Janeiro, Brazil
| | - Amanda Pontes Lopes
- Laboratory of Theoretical and Applied Ichthyology, Department of Ecology and Marine Resources, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, 22.290-240, Brazil
| | - Alejandra Filippo Gonzalez Neves Dos Santos
- Laboratory of Applied Ecology, Department of Zootechny and Sustainable Socioenvironmental Development, Fluminense Federal University (UFF), Rua Vital Brasil Filho, 64, 24230-340, Niterói, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, 24230-340, Brazil; Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
40
|
Chen J, Chen D, Li J, Liu Y, Gu X, Teng X. Cadmium-induced Oxidative Stress and Immunosuppression Mediated Mitochondrial Apoptosis via JNK-FoxO3a-PUMA pathway in Common Carp (Cyprinus carpio L.) Gills. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105775. [PMID: 33631492 DOI: 10.1016/j.aquatox.2021.105775] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/10/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd)-caused water environment pollution has become a matter of concern. Gill is an organ with respiratory and mucosal immune functions, and is also one of the organs directly attacked by pollutants. It was found that excess Cd could cause Cd accumulation and gill injury in carp. However, the mechanism of Cd-caused damage in common carp gills is still unclear. Oxidative stress, immunosuppression, and apoptosis took part in the mechanism of poisoning caused by some harmful substances. The aim of the study was to investigate complex molecular mechanism of apoptotic injury caused by Cd in common carp gills. Hence, in this study, we established a Cd poisoning model to explore whether excess Cd can induce apoptosis through observing histomorphology and apoptotic cells; and determining mineral elements, oxidative stress-related factors, immune-related, and apoptosis-related genes in common carp gills. Fifty-four fish were randomly separated into the control group and the Cd group and were cultured for 45 days. The water of the control group was drinking water and the water of the Cd group was CdCl2-added drinking water (0.26 mg/L Cd). In our results, we found that excess Cd increased Cd level, decreased the levels of essential mineral elements (Cu, Fe, Zn, and Mn), damaged mitochondria, and increased apoptotic cells in common carp gills, meaning that excess Cd caused Cd accumulation and apoptotic injury via mitochondrion in common carp gills. Furthermore, we found that Cd inhibited anti-apoptosis-related gene Bcl-2 and stimulated pro-apoptosis-related genes (JNK, FoxO3a, PUMA, Bax, Apaf-1, Caspase-9, and Caspase-3) on 15th, 30th, and 45th days. Above data meant that Cd exposure caused apoptosis via mitochondrion and JNK-FoxO3a-PUMA pathway in common carp gills. In addition, in our experiment, Cd treatment increased oxidants (H2O2 and MDA) and decreased antioxidants (CAT, GPx, GST, SOD, T-AOC, and GSH), indicating that Cd caused oxidative stress via oxidation/antioxidation imbalance. Meanwhile, compared to the control group, T-help 17 (Th17) cell-related factors (IL-17, TNF-α, and RORγ) were up-regulated, regulatory T (Treg) cell-related factors (IL-10 and Foxp3) were down-regulated, and IL-17/IL-10, TNF-α/IL-10, and RORγ/Foxp3 were increased in Cd-exposed group; meaning that excess Cd induced immunosuppression via the imbalance of Th17/Treg cells. Taken together, our findings indicated that JNK-FoxO3a-PUMA pathway and mitochondrion participated in oxidative stress and immunosuppression-mediated apoptosis caused by Cd in common carp (Cyprinus carpio L.) gills. Our data provided new perspectives on the negative effects of heavy metal pollutants on fish.
Collapse
Affiliation(s)
- Jianqing Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Dechun Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China; College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, China
| | - Jingxin Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Yuanlong Liu
- Heilongjiang Animal Husbandry Station, Harbin, 150069, China
| | - Xianhong Gu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
41
|
Hossain MM, Huang H, Yuan Y, Wan T, Jiang C, Dai Z, Xiong S, Cao M, Tu S. Silicone stressed response of crayfish (Procambarus clarkii) in antioxidant enzyme activity and related gene expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:115836. [PMID: 33190981 DOI: 10.1016/j.envpol.2020.115836] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/19/2020] [Revised: 09/24/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Organosilicon has been widely used in various fields of industry and agriculture due to its excellent properties, such as high and low temperature resistance, flame retardant, insulation, radiation resistance and physiological inertia. However, organosilicon toxicity in aquatic animals is seldom known. In this research, two typical silicone or silane coupling agents (KH-560 (3-Glycidoxypropyltrimethoxysilane) and KH-570 (3-Methacryloxypropyltrimethoxysilane)) were used in a hydroponic experiment to evaluate the effects on survival rate, antioxidant response and gene expression in red swamp crayfish (Procambarus clarkii). Crayfishes were grown in black aquaculture boxes containing different concentrations (0, 10, 100 and 1000 mg L-1) of KH-560 and KH-570 for 72 h, and then crayfish samples were harvested and separated into tissues of carapace, gill and muscle for analysis. The results showed that silicone significantly increased malondialdehyde (MDA) content in muscle by 17%-38% except for the treatment of 100 mg L-1 KH-570, and reduced the survival rate of crayfish. Additionally, silicone KH-570 increased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) by 15%-31%, 17%-35%, and 9%-46%, as well as the contents of ascorbate (AsA) and glutathione (GSH) by 19%-31%, and 23%-29% respectively, in muscle tissue, and similar results occurred in KH-560. In the carapace, however, SOD activity was significantly decreased at high concentrations level of both silicone treatments. Moreover, silicon (Si) content was higher in the abdominal muscle of crayfish after silicone treatment. Assay of gene expression showed an obvious increasing expression of antioxidant related genes (Sod1, Sod2, Cat1, Cat2, and Pod1, Pod2) under silicone stress. The above results suggested that silicone caused an obvious stress response in crayfish in both biochemical and molecular levels.
Collapse
Affiliation(s)
- Md Muzammel Hossain
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hengliang Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuan Yuan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tianyin Wan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chengfeng Jiang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhihua Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shuanglian Xiong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Menghua Cao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shuxin Tu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Research Center for Soil Remediation Engineering, Wuhan, 430070, China.
| |
Collapse
|
42
|
Exposure to Dodecamethylcyclohexasiloxane (D6) Affects the Antioxidant Response and Gene Expression of Procambarus clarkii. SUSTAINABILITY 2021. [DOI: 10.3390/su13063495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023]
Abstract
Dodecamethylcyclohexasiloxane (D6) is widely used daily in the chemical industry and exists in the environment; however, its eco-toxicity is not well documented. A hydroponic experiment was performed to investigate the effects of D6 exposure (10–1000 mg L−1) on oxidative stress induction and gene expression changes in crayfish (Procambarus clarkii). The results showed that superoxide dismutase (SOD) activity was enhanced by 20–32% at low D6 exposure (10 mg L−1) in muscle but reduced in gill tissue at high D6 exposure (1000 mg L−1). High D6 (1000 mg L−1) also increased catalase (CAT) and peroxidase (POD) activities in muscle tissue by 14–37% and 14–45%, respectively, and the same trend was observed in the carapace and gill tissue of crayfish. The Malondialdehyde (MDA), ascorbate (AsA), and glutathione (GSH) contents were increased by 16–31%, 19–31%, and 21–28% in the muscle of crayfish under D6 exposure. Additionally, silicon (Si) content increased in three organs (gill, carapace, and muscle) of crayfish. Related genes involved in enzyme and nonenzyme activities were detected, and when crayfish was exposed to D6, genes such as Sod3, Cat3, Pod3, and Gsh3 were up-regulated, while Asa3 and Oxido3 were significantly down-regulated in the muscle. The research results help us to understand the toxicity of D6 in crayfish and provide a basis for further research on the mechanism of D6-induced stress in crayfish and other aquatic organisms.
Collapse
|
43
|
Li L, Shen YC, Liang JR, Liu H, Chen TC, Guo H. Accumulation and Depuration of Cd and its Effect on the Expressions of Metallothionein and Apoptotic Genes in Litopenaeus vannamei. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:501-506. [PMID: 33559033 DOI: 10.1007/s00128-021-03115-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/30/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
We investigated cadmium (Cd) accumulation in muscles, gills and hepatopancreas of Litopenaeus vannamei following 48 h exposure to 5.25 mg/L, and depuration of Cd in these tissues on 1, 5 and 15 d post exposure. We also detected the expressions of metallothionein (MT), caspase-3 and p53 in hepatopancreas of shrimp exposed to 0, 5.25 and 10.5 mg/L Cd (the 24 h median lethal concentration, 24 h LC50) at 0, 3, 12, 24 and 48 h. Cd accumulated with high concentration in hepatopancreas, and low concentration in muscles. Cd depurated fast in hepatopancreas and gills. MT expression increased in a time-dependent manner after Cd exposure. The p53 and caspase-3 increased at 12 and 24 h in 10.5 mg/L group. In conclusion, the accumulation and depuration of Cd in three tissues were tissues-specific. The changes of the expressions of MT, p53 and caspase-3, were stress response of L. vannamei under Cd exposure.
Collapse
Affiliation(s)
- Ling Li
- College of Fisheries, Guangdong Ocean University, Mazhang District, Haida Road No. 1, Zhanjiang, 524000, Guangdong, People's Republic of China
| | - Yu-Chun Shen
- College of Fisheries, Guangdong Ocean University, Mazhang District, Haida Road No. 1, Zhanjiang, 524000, Guangdong, People's Republic of China
| | - Jin-Rong Liang
- College of Fisheries, Guangdong Ocean University, Mazhang District, Haida Road No. 1, Zhanjiang, 524000, Guangdong, People's Republic of China
| | - Hu Liu
- College of Fisheries, Guangdong Ocean University, Mazhang District, Haida Road No. 1, Zhanjiang, 524000, Guangdong, People's Republic of China
| | - Tian-Ci Chen
- College of Fisheries, Guangdong Ocean University, Mazhang District, Haida Road No. 1, Zhanjiang, 524000, Guangdong, People's Republic of China
| | - Hui Guo
- College of Fisheries, Guangdong Ocean University, Mazhang District, Haida Road No. 1, Zhanjiang, 524000, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China.
| |
Collapse
|
44
|
Zhang C, Jin Y, Yu Y, Xiang J, Li F. Cadmium-induced oxidative stress, metabolic dysfunction and metal bioaccumulation in adult palaemonid shrimp Palaemon macrodactylus (Rathbun, 1902). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111591. [PMID: 33396114 DOI: 10.1016/j.ecoenv.2020.111591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/24/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
The Palaemonid shrimp Palaemon macrodactylus is widely distributed in coastal areas and estuaries which are easily contaminated by various pollutants. However, the responses of this species to environmental toxicants are not well described. In the present study, adult individuals of P. macrodactylus were exposed to gradient concentrations of Cadmium (Cd) to evaluate its acute toxic effects, including bioaccumulation, induced oxidative stress and changed energy metabolism in this species. The medium lethal concentration (LC50) of Cd at 24 h, 48 h, 72 h, and 96 h were 2.60, 0.88, 0.49 and 0.37 mg/L, respectively. Cd bioaccumulations in tissues of shrimp increased in a concentration-dependent manner, and higher concentration (50% 96 h-LC50, 0.185 mg/L) of Cd exposure led to a maximum increase of Cd concentration by 14.8, 145.5 and 15.8 folds in gill, hepatopancreas and abdominal muscle. Cd exposure caused a significant inhibition on the activity of catalase (CAT), and total superoxide dismutase (T-SOD), decrease in the total antioxidant capacity (T-AOC), and an increase of malonadehyde (MDA) content, which indicated a damage to the antioxidant system of shrimp. Meanwhile, Cd exposure also led to a significant up-regulation in the expression level of metallothionein gene (MT), and down-regulations at the mRNA level of heat shock protein 70 (HSP70) and CAT. Moreover, Cd exposure significantly inhibited the oxygen consumption rate (22%), and increased the ammonia excretion rate (43%), hence lead to a significant decrease of the O:N ratio (45%) in shrimp. The results indicated that Cd exposure could induce obvious oxidative stress, energy metabolic dysfunction and bioaccumulation of Cd in P. macrodactylus. The data obtained from the present study would provide useful information for further understanding on the toxicological mechanism of Cd to crustaceans in coastal areas and estuaries.
Collapse
Affiliation(s)
- Chengsong Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yue Jin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
45
|
Ren X, Xu Y, Yu Z, Mu C, Liu P, Li J. The role of Nrf2 in mitigating cadmium-induced oxidative stress of Marsupenaeus japonicus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116112. [PMID: 33272803 DOI: 10.1016/j.envpol.2020.116112] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/25/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Nuclear factor-erythroid 2-related factor-2 (Nrf2) is an important modulator of cellular responses against Cd in mammalian cells. However, whether such modulation is conserved in Marsupenaeus japonicas remains unknown.In our study, the shrimps were injected with dsRNA targeting Nrf2 at 4 μg g-1 body weight (b.w.) or sulforaphane (SFN) at 5 μg g-1 b.w., and then were exposed to 40 mg L-1 CdCl2 for 48 h. After Nrf2 knockdown, the Cd content increased, but decreased in the SFN group. This suggested that Nrf2 could promote Cd excretion. A terminal deoxynulceotidyl transferase nick-end-labeling (TUNEL) assay revealed that the Nrf2 knockdown increased the number of apoptotic cells in M. japonicas, while SFN decreased the number of apoptotic cells. After Nrf2 knockdown, the total antioxidant capacity (T-AOC), superoxide dismutase (Sod) activity, and related gene expression decreased significantly, while the malondialdehyde (MDA) content increased remarkably. By contrast, SFN injection alleviated the oxidative stress, as evidenced by increased T-AOC, Sod activity, sod mRNA expression and a reduced MDA content. Similarly, detoxification related enzyme activities (ethoxyresorufin O-deethylase and glutathione-S-transferase (GST)) and their corresponding gene expressions (cyp3a (cytochrome P450 family 3 subfamily A) and gst) were suppressed in the ds-Nrf2 injection group, while they were elevated in the SFN group. In addition, ds-Nrf2 activated mitochondrial apoptotic pathway, as evidenced the mRNA and protein levels of caspase-3, Bcl2 associated X protein (Bax), and p53, while SFN treatment suppressed them. These results displayed that in M. japonicus Cd-induced cellular oxidative damage probably acts via the Nrf2 pathway.
Collapse
Affiliation(s)
- Xianyun Ren
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Yao Xu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, PR China
| | - Zhenxing Yu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
| | - Cuimin Mu
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, PR China
| | - Ping Liu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Jian Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
46
|
Sharma KV, Sarvalingam BK, Marigoudar SR. A review of mesocosm experiments on heavy metals in marine environment and related issues of emerging concerns. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1304-1316. [PMID: 33079346 DOI: 10.1007/s11356-020-11121-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/07/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Mesocosms are real-world environmental science tools for bridging the gap between laboratory-scale experiments and actual habitat studies on ecosystem complexities. These experiments are increasingly being applied in understanding the complex impacts of heavy metals, ocean acidification, global warming, and oil spills. The insights of the present review indicate how metals and metal-bound activities impact on various aspects of ecological complexities like prey predator cues, growth, embryonic development, and reproduction. Plankton and benthos are used more often over fish and microbes owing to their smaller size, faster reproduction, amenability, and repeatability during mesocosm experiments. The results of ocean acidification reveal calcification of plankton, corals, alteration of pelagic structures, and plankton blooms. The subtle effect of oil spills is amplified on sediment microorganisms, primary producers, and crustaceans. An overview of the mesocosm designs over the years indicates that gradual changes have evolved in the type, size, design, composition, parameters, methodology employed, and the outputs obtained. Most of the pelagic and benthic mesocosm designs involve consideration of interactions within the water columns, between water and sediments, trophic levels, and nutrient rivalry. Mesocosm structures are built considering physical processes (tidal currents, turbulence, inner cycling of nutrients, thermal stratification, and mixing), biological complexities (population, community, and ecosystem) using appropriate filling containers, and sampling facilities that employ inert materials. The principle of design is easy transportation, mooring, deployment, and free floating structures besides addressing the unique ecosystem-based science problems. The evolution of the mesocosm tools helps in understanding further advancement of techniques and their applications in marine ecosystems.
Collapse
Affiliation(s)
- Krishna Venkatarama Sharma
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, NIOT Campus, Pallikaranai, Chennai, 600 100, India
| | - Barath Kumar Sarvalingam
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, NIOT Campus, Pallikaranai, Chennai, 600 100, India
| | | |
Collapse
|
47
|
Wang N, Guo Z, Zhang Y, Zhang P, Liu J, Cheng Y, Zhang L, Li Y. Effect on intestinal microbiota, bioaccumulation, and oxidative stress of Carassius auratus gibelio under waterborne cadmium exposure. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2299-2309. [PMID: 32986141 DOI: 10.1007/s10695-020-00870-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/08/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is a hazardous pollutant known to exert various toxic effects and other sublethal effects on aquatic organisms, and induce a variety of adverse effects on human health, and can be commonly found in environment. The aim of this study was to explore the effects of waterborne Cd exposure on the intestinal microbiota, and Cd accumulation and oxidative response in Carassius auratus gibelio (C. gibelio). The fish were exposed to waterborne Cd at 0, 1, 2, and 4 mg/L for 30 days. Waterborne Cd exposure resulted marked alterations in the composition of microbiota. At the genus level, Bacteroides, Aeromonas, Akkermansia, Acinetobacter, Chryseobacterium, Shinella, Cetobacterium and Bacillus were significantly changed in Cd groups. The results obtained indicate that Cd exposure significantly increased the bioaccumulation level of Cd and profoundly affected antioxidant enzyme including superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), total antioxidant (T-AOC), malonaldehyde (MDA), and glutathione-S-transferase (GST). The present findings may provide a new framework for the role of gut microbiota in the response to environmental chemical contamination and in the pathogenesis of body disorders.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of education laboratory of animal production and quality security, Jilin Agricultural University, Changchun, 130118, China
| | - Zhengyao Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of education laboratory of animal production and quality security, Jilin Agricultural University, Changchun, 130118, China
| | - Yilin Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of education laboratory of animal production and quality security, Jilin Agricultural University, Changchun, 130118, China
| | - Peijun Zhang
- Health Monitoring and Inspection Center of Jilin Province, Changchun, 130062, China
| | - Jia Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of education laboratory of animal production and quality security, Jilin Agricultural University, Changchun, 130118, China
| | - Yi Cheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of education laboratory of animal production and quality security, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of education laboratory of animal production and quality security, Jilin Agricultural University, Changchun, 130118, China
| | - Yuehong Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Ministry of education laboratory of animal production and quality security, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
48
|
Das S, Ouddane B, Hwang JS, Souissi S. Intergenerational effects of resuspended sediment and trace metal mixtures on life cycle traits of a pelagic copepod. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115460. [PMID: 32892010 DOI: 10.1016/j.envpol.2020.115460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/22/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Multiple stressors like metal toxicity, organic compounds and sediment pollution from the Seine estuary are raising concern and novel toxicological approaches are needed to better assess and monitor the risk. In the present study, the copepod Eurytemora affinis from the Seine, was exposed to two different sources of contaminants, which were resuspended polluted sediments and a mixture of trace metals (dissolved phase). The exposure continued for four generations (F0, F1, F2, F3) where F0 is a generation for acclimation to the exposure condition and F3 is a generation for decontamination followed without any exposure, to detect possible maternal carryover effects of pollutants (F0 - F2) and the role of recovery (in F3). Higher accumulation of metals resulted in higher mortalities at both exposure conditions, with particularly F1 being the most sensitive generation showing highest bioaccumulation of metals, highest mortality, and smallest population size. Copper accumulation was highest of all metals in mixture from both the resuspended sediment and the combined trace metal treatment. A significantly lower naupliar production was seen in copepods exposed to resuspended sediment compared to trace metal exposed copepods. However, the decontamination phase (F3) indicated that E. affinis pre-exposed to resuspended sediment had a higher ability to recover the total population size, increase naupliar production, and depurate accumulated Cu. The population exposed to a trace metal mixture showed lower recovery and lower ability to discharge accumulated toxic metals indicating its greater effect on our experimental model when compared to resuspended sediment.
Collapse
Affiliation(s)
- Shagnika Das
- Univ. Lille, CNRS, Univ, Littoral Côte D'Opale, UMR 8187, LOG - Laboratoire D'Océanologie et de Géosciences, F- 59000, Lille, France; Université de Lille, LASIRE (UMR CNRS 8516), Equipe Physico-chimie de L'Environnement, Bâtiment C8, 59655, Villeneuve D'Ascq Cedex, France
| | - Baghdad Ouddane
- Université de Lille, LASIRE (UMR CNRS 8516), Equipe Physico-chimie de L'Environnement, Bâtiment C8, 59655, Villeneuve D'Ascq Cedex, France
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Sami Souissi
- Univ. Lille, CNRS, Univ, Littoral Côte D'Opale, UMR 8187, LOG - Laboratoire D'Océanologie et de Géosciences, F- 59000, Lille, France.
| |
Collapse
|
49
|
Wang S, You M, Wang C, Zhang Y, Fan C, Yan S. Heat shock pretreatment induced cadmium resistance in the nematode Caenorhabditis elegans is depend on transcription factors DAF-16 and HSF-1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114081. [PMID: 32062098 DOI: 10.1016/j.envpol.2020.114081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/02/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) exposure poses a serious environmental problem due to the metal's bioaccumulation and difficult to eliminate from body. Understanding the mechanisms of Cd detoxification and resistance can provide insights into methods to protect against the damaging effects of the heavy metal. In the present study, we found that heat shock (HS) pretreatment increased Cd resistance of the nematode Caenorhabditis elegans by reducing the bagging phenotype and protecting the integrity of the intestinal barrier. HS pretreatment increased the expression of heat shock protein-16.2 (HSP-16.2) prior to Cd exposure, and HS-induced Cd resistance was absent in worms with hsp-16.2 loss-of-function mutation. Worm strain with daf-2(e1370) mutation presented enhanced HS-induced Cd resistance, which was eliminated in worm strains of daf-16(mu86) and hsf-1(sy441). HS pretreatment increased DAF-16 nuclear localization and HSF-1 granule formation prior to Cd exposure. DAF-16 and HSF-1 was essential in reducing bagging formation and protecting the integrity of intestinal barrier after HS pretreatment. In conclusion, the present study demonstrated that HS-induced Cd resistance in C. elegans is regulated by the DAF-16/FOXO and HSF-1 pathways through regulation of HSP-16.2 expression.
Collapse
Affiliation(s)
- Shunchang Wang
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China.
| | - Mu You
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Chengrun Wang
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Yuecheng Zhang
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China
| | - Caiqi Fan
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China
| | - Shoubao Yan
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| |
Collapse
|
50
|
Chen C, Xu C, Qian D, Yu Q, Huang M, Zhou L, Qin JG, Chen L, Li E. Growth and health status of Pacific white shrimp, Litopenaeus vannamei, exposed to chronic water born cobalt. FISH & SHELLFISH IMMUNOLOGY 2020; 100:137-145. [PMID: 32151686 DOI: 10.1016/j.fsi.2020.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/02/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Cobalt (Co) is an important component of vitamin B12, but is toxic to aquatic animals at a high level. In this study, the Pacific white shrimp, Litopenaeus vannamei were exposed to three Co concentrations (0, 100, and 1000 μg/L) for 4 weeks. The survival and condition factor in shrimp exposed to the Co treatments were not different from the control, but the shrimp exposed to 100 μg Co/L gained more weight than in other two groups, and the shrimp exposed to 1000 μg Co/L gained less weight than in other groups. The SOD and GSH-PX activities were higher in shrimp exposed to 100 μg Co/L, but lower in the shrimp exposed to 100 μg Co/L compared with the control, respectively. The MDA contents in the hepatopancreas decreased in the 100 μg Co/L, but increased in the 1000 μg Co/L. The serum lysozyme decreased with ambient cobalt, was lower in the shrimp exposed to 1000 μg Co/L than in other two groups. The expression of C-type lectin 3 was down-regulated by Co concentrations. The Toll and immune deficiency in shrimp exposed to 100 μg Co/L was higher than in other two groups. The mucin-1 was lower in the 1000 μg Co/L group than in other two groups, but mucin-2 and mucin-5AC were higher in the 1000 μg Co/L group than in the control. With increasing Co concentration, Shannon and Simpson indexes of the intestinal microbial communities were decreased. The abundance of pathogenic bacteria (Ruegeria and Vibrio) increased in both Co groups. This study indicates that chronic exposure to waterborne cobalt could affect growth, cause oxidative stress, stimulate the immune response, damage intestinal histology, and reshape intestinal microbiota community L. vannamei.
Collapse
Affiliation(s)
- Chengzhuang Chen
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, Hainan, 570228, China; Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, Hainan, 570228, China; Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China.
| | - Dunwei Qian
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, Hainan, 570228, China; Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Qiuran Yu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, Hainan, 570228, China; Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Maoxian Huang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, Hainan, 570228, China; Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Li Zhou
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, Hainan, 570228, China; Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, Hainan, 570228, China; Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|