1
|
Di Marcantonio C, Chiavola A, Noce A, Straccamore E, Giannuzzi A, Jirillo J, Gallo F, Boni MR. A sustainable approach to enhance heavy hydrocarbons removal in landfarming treatment. Biodegradation 2023; 34:417-430. [PMID: 36964873 PMCID: PMC10442250 DOI: 10.1007/s10532-023-10025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/03/2023] [Indexed: 03/26/2023]
Abstract
The present study aimed to evaluate the best strategy to enhance the degradation rate of heavy petroleum hydrocarbons (HPH) contaminated soil in a landfarming plant. Samples of real contaminated soil, further spiked with HPH, were treated in mesocosm reactors simulating the landfarming system. One reactor was operated without any modification compared to the real landfarming plant. The other three reactors were operated with different strategies to improve the removal rate: biostimulation (BS) through the addition of nitrogen and phosphorus; bioaugmentation (BA) with the inoculation of sludge produced in the treatment of the process water from the oil re-fining plant of the same industrial area; combination of biostimulation and bioaugmentation (BAS). The biostimulation (BS) was the most effective strategy, leading to a reduction of the remediation time by 35% as compared to the traditional treatment. Bioaugmentation (BA) also provided positive effects leading to a reduction of the remediation time by 24%; its performance improved further when the addition of sludge was combined with the increase of phosphorous (BAS). Therefore, the key tool was represented by the phosphorous availability, whereas the application of sludge was most useful to provide waste with a new possibility of reuse, thus fulfilling the principles of the circular economy. The final characterization showed that the treated soil was suitable for reuse in industrial areas according to the legislation in force.
Collapse
Affiliation(s)
- Camilla Di Marcantonio
- Department of Civil, Building and Environmental Engineering (DICEA), Sapienza University of Rome, Rome, Italy.
| | - Agostina Chiavola
- Department of Civil, Building and Environmental Engineering (DICEA), Sapienza University of Rome, Rome, Italy
| | - Alessandra Noce
- Department of Civil, Building and Environmental Engineering (DICEA), Sapienza University of Rome, Rome, Italy
| | | | | | | | | | - Maria Rosaria Boni
- Department of Civil, Building and Environmental Engineering (DICEA), Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Di Marcantonio C, Chiavola A, Gioia V, Leoni S, Cecchini G, Frugis A, Ceci C, Spizzirri M, Boni MR. A step forward on site-specific environmental risk assessment and insight into the main influencing factors of CECs removal from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116541. [PMID: 36419300 DOI: 10.1016/j.jenvman.2022.116541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The presence of Contaminants of Emerging Concern (CECs) in water systems has been recognized as a potential source of risk for human health and the ecosystem. The present paper aims at evaluating the effects of different characteristics of full-scale Wastewater Treatment Plants (WWTPs) on the removal of 14 selected CECs belonging to the classes of caffeine, illicit drugs and pharmaceuticals. Particularly, the investigated plants differed because of the treatment lay-out, the type of biological process, the value of the operating parameters, the fate of the treated effluent (i.e. release into surface water or reuse), and the treatment capacity. The activity consisted of measuring concentrations of the selected CECs and also traditional water quality parameters (i.e. COD, phosphorous, nitrogen species and TSS) in the influent and effluent of 8 plants. The study highlights that biodegradable CECs (cocaine, methamphetamine, amphetamine, benzoylecgonine, 11-nor-9carboxy-Δ9-THC, lincomycin, trimethoprim, sulfamethoxazole, sulfadiazine, sulfadimethoxine, carbamazepine, ketoprofen, warfarin and caffeine) were well removed by all the WWTPs, with the best performance achieved by the MBR for antibiotics. Carbamazepine was removed at the lowest extent by all the WWTPs. The environmental risk assessed by using the site-specific value of the dilution factor resulted to be high in 3 out of 8 WWTPs for carbamazepine and less frequently for caffeine. However, the risk was reduced when the dilution factor was assumed equal to the default value of 10 as proposed by EU guidelines. Therefore, a specific determination of this factor is needed taking into account the hydraulic characteristics of the receiving water body.
Collapse
Affiliation(s)
- Camilla Di Marcantonio
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, Rome, Italy, Zip code 00184.
| | - Agostina Chiavola
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, Rome, Italy, Zip code 00184
| | | | - Simone Leoni
- ACEA ELABORI SpA, Via Vitorchiano 165, Rome, Italy
| | | | | | - Claudia Ceci
- ACEA ATO 2 SpA, Viale di Porta Ardeatina 129, 00154, Rome, Italy
| | | | - Maria Rosaria Boni
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, Rome, Italy, Zip code 00184
| |
Collapse
|
3
|
Abstract
METHs are drugs that enter wastewater through the feces and urine of users. Conventional wastewater treatment plants are not capable of removing this type of emerging contaminant, but, in recent years, techniques have been developed to abate drugs of abuse. The present investigation focused on obtaining the technique that keeps the best balance between the comparison criteria considered: efficiency; costs; development stage; and waste generation. That is why a bibliographic review was carried out in the scientific databases of the last eight years, concluding that the six most popular techniques are: SBR, Fenton reaction, mixed-flow bioreactor, ozonation, photocatalysis, and UV disinfection. Subsequently, the Saaty and Modified Saaty methods were applied, obtaining a polynomial equation containing the four comparison criteria for the evaluation of the techniques. It is concluded that the UV disinfection method is the one with the best relationship between the analyzed criteria, reaching a score of 0.8591/1, followed by the Fenton method with a score of 0.6925/1. This research work constitutes a practical and easy-to-use tool for decision-makers, since it allows finding an optimal treatment for the abatement of METHs.
Collapse
|
4
|
A Review on the Removal of Carbamazepine from Aqueous Solution by Using Activated Carbon and Biochar. SUSTAINABILITY 2021. [DOI: 10.3390/su132111760] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Carbamazepine (CBZ), one of the most used pharmaceuticals worldwide and a Contaminant of Emerging Concern, represents a potential risk for the environment and human health. Wastewater treatment plants (WWTPs) are a significant source of CBZ to the environment, polluting the whole water cycle. In this review, the CBZ presence and fate in the urban water cycle are addressed, with a focus on adsorption as a possible solution for its removal. Specifically, the scientific literature on CBZ removal by activated carbon and its possible substitute Biochar, is comprehensively scanned and summed up, in view of increasing the circularity in water treatments. CBZ adsorption onto activated carbon and biochar is analyzed considering several aspects, such as physicochemical characteristics of the adsorbents, operational conditions of the adsorption processes and adsorption kinetics and isotherms models. WWTPs usually show almost no removal of CBZ (even negative), whereas removal is witnessed in drinking water treatment plants through advanced treatments (even >90%). Among these, adsorption is considered one of the preferable methods, being economical and easier to operate. Adsorption capacity of CBZ is influenced by the characteristics of the adsorbent precursors, pyrolysis temperature and modification or activation processes. Among operational conditions, pH shows low influence on the process, as CBZ has no charge in most pH ranges. Differently, increasing temperature and rotational speed favor the adsorption of CBZ. The presence of other micro-contaminants and organic matter decreases the CBZ adsorption due to competition effects. These results, however, concern mainly laboratory-scale studies, hence, full-scale investigations are recommended to take into account the complexity of the real conditions.
Collapse
|
5
|
Erickson TB, Endo N, Duvallet C, Ghaeli N, Hess K, Alm EJ, Matus M, Chai PR. "Waste Not, Want Not" - Leveraging Sewer Systems and Wastewater-Based Epidemiology for Drug Use Trends and Pharmaceutical Monitoring. J Med Toxicol 2021; 17:397-410. [PMID: 34402038 PMCID: PMC8366482 DOI: 10.1007/s13181-021-00853-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 12/26/2022] Open
Abstract
During the current global COVID-19 pandemic and opioid epidemic, wastewater-based epidemiology (WBE) has emerged as a powerful tool for monitoring public health trends by analysis of biomarkers including drugs, chemicals, and pathogens. Wastewater surveillance downstream at wastewater treatment plants provides large-scale population and regional-scale aggregation while upstream surveillance monitors locations at the neighborhood level with more precise geographic analysis. WBE can provide insights into dynamic drug consumption trends as well as environmental and toxicological contaminants. Applications of WBE include monitoring policy changes with cannabinoid legalization, tracking emerging illicit drugs, and early warning systems for potent fentanyl analogues along with the resurging wave of stimulants (e.g., methamphetamine, cocaine). Beyond drug consumption, WBE can also be used to monitor pharmaceuticals and their metabolites, including antidepressants and antipsychotics. In this manuscript, we describe the basic tenets and techniques of WBE, review its current application among drugs of abuse, and propose methods to scale and develop both monitoring and early warning systems with respect to measurement of illicit drugs and pharmaceuticals. We propose new frontiers in toxicological research with wastewater surveillance including assessment of medication assisted treatment of opioid use disorder (e.g., buprenorphine, methadone) in the context of other social burdens like COVID-19 disease.
Collapse
Affiliation(s)
- Timothy B Erickson
- Department of Emergency Medicine / Division of Toxicology, Brigham & Women's Hospital / Harvard Medical School, 10 Vining St, Boston, MA, 02155, USA.
- Division of Medical Toxicology, Department of Emergency Medicine, Mass General Brigham, Boston, USA.
- Harvard Humanitarian Institute, Cambridge, MA, USA.
| | | | | | | | | | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Peter R Chai
- Department of Emergency Medicine / Division of Toxicology, Brigham & Women's Hospital / Harvard Medical School, 10 Vining St, Boston, MA, 02155, USA
- Division of Medical Toxicology, Department of Emergency Medicine, Mass General Brigham, Boston, USA
- The Fenway Institute, Boston, MA, USA
- The Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| |
Collapse
|
6
|
Rehman S, Huang Z, Wu P, Ahmed Z, Ye Q, Liu J, Zhu N. Adsorption of lead and antimony in the presence and absence of EDTA by a new vermiculite product with potential recyclability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49112-49124. [PMID: 33932217 DOI: 10.1007/s11356-021-13949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
A new two-step modification method has been proposed where 1.8% HCl and 3.1% HNO3 were applied to modify the interlayer of vermiculite (VMT). This product was given 90 °C of heat in 30% H2SO4 solution that was used for Pb (II) and Sb (III) adsorption. The EDTA presence on the individual adsorption was assessed. X-ray diffraction revealed that the VMT inter-stratified reflection through acid intercalation within the interlayer decreased the parallel gaps between the atoms, witnessing on the outer-sphere adsorption. The driving force was found electrostatic, which fits well with pseudo-second-order kinetics and Langmuir isotherm. The Pb (II) and Sb (III) uptake followed descending order adsorption with increasing concentration of chelating EDTA. Three consecutive desorption cycles revealed that the prepared adsorbent was suitable that may be regarded as a good candidate for complex wastewaters.
Collapse
Affiliation(s)
- Saeed Rehman
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zhiyan Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, People's Republic of China.
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou, 510006, People's Republic of China.
| | - Zubair Ahmed
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Department of Energy and Environment Engineering , Dawood University of Engineering and Technology , Karachi, 74800, Pakistan
| | - Quanyun Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Junqin Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, People's Republic of China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
7
|
Ji J, Peng L, Redina MM, Gao T, Khan A, Liu P, Li X. Perfluorooctane sulfonate decreases the performance of a sequencing batch reactor system and changes the sludge microbial community. CHEMOSPHERE 2021; 279:130596. [PMID: 33887592 DOI: 10.1016/j.chemosphere.2021.130596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
The existence of perfluorooctane sulfonate (PFOS) in large quantities threatens environment biosafety. However, the fate of PFOS in a sequencing batch reactor (SBR) system and its influence in system has not yet been revealed. In this study, the fate and behavior of PFOS in an SBR processing system were investigated. Mass balance analyses revealed that PFOS removal was mainly through adsorption. After the reactors were run for 20 days, the PFOS (100 mg/L) removal rate was only 28%. Under the influence of PFOS, the removal rates of chemical oxygen demand (COD) and ammonia nitrogen dropped rapidly from 92, 98% to 23, 35% in the 20th day of system operation, respectively, while, accumulation of nitrite and nitrate was reduced. Compared with the control group, PFOS stimulates microorganisms to secrete more soluble microbial products (SMP) and extracellular polymeric substances (EPS). The adsorption of PFOS and EPS causes sludge bulking and decreases settling. The richness and diversity of microorganisms decreased significantly, affecting the system's removal of COD and ammonia nitrogen. Therefore, the SBR system is not suitable for treating wastewater containing PFOS. It is necessary to remove PFOS through pretreatment to reduce its impact on the SBR system.
Collapse
Affiliation(s)
- Jing Ji
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, PR China
| | - Liang Peng
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, PR China
| | - M M Redina
- Peoples' Friendship University of Russia, 117198, Moscow, Miklukho-Maklaya str., 6, Russia
| | - Tianpeng Gao
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, 710065, PR China
| | - Aman Khan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, PR China
| | - Pu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, PR China
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, 730020, PR China.
| |
Collapse
|
8
|
Experimental and Numerical Study of Biochar Fixed Bed Column for the Adsorption of Arsenic from Aqueous Solutions. WATER 2021. [DOI: 10.3390/w13070915] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two laboratory tests were carried out to verify the suitability of an Italian commercial biochar as an adsorbing material. The chosen contaminant, considered dissolved in groundwater, was As. The circular economic concept demands the use of such waste material. Its use has been studied in recent years on several contaminants. The possibility of using an efficient material at low cost could help the use of low-impact technologies like permeable reactive barriers (PRBs). A numerical model was used to derive the kinetic constant for two of the most used isotherms. The results are aligned with others derived from the literature, but they also indicate that the use of a large amount of biochar does not improve the efficiency of the removal. The particular origin of the biochar, together with its grain size, causes a decrease in contact time required for the adsorption. Furthermore, it is possible that a strong local decrease in the hydraulic conductibility does not allow for a correct dispersion of the flow, thereby limiting its efficiency.
Collapse
|
9
|
Kim KY, Oh JE. Evaluation of pharmaceutical abuse and illicit drug use in South Korea by wastewater-based epidemiology. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122622. [PMID: 32388180 DOI: 10.1016/j.jhazmat.2020.122622] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Drug abuse trends in South Korea were assessed by estimating the consumption rates of drugs that may be abused or misused by performing wastewater-based drug epidemiology. Of the 29 target compounds, 10 were found in samples from three wastewater treatment plants. Ephedrine had the highest mean estimated consumption rate, 574.1 mg d-1 (1000 people)-1. The anti-obesity drugs phendimetrazine and phentermine had the second and fifth highest mean estimated consumption rates, 182.9 and 113.1 mg d-1 (1000 people)-1, respectively. The zolpidem consumption rate was 65.8 mg d-1 (1000 people)-1. Methamphetamine was the only illicit drug detected in wastewater, and the estimated consumption rates (14.9-28.6 mg d-1 (1000 people)-1) were similar to consumption rates found in previous Korean studies (not detected to 45.8 mg d-1 (1000 people)-1). The mean estimated meperidine and cis-tramadol (opioid) consumption rates were 120 and 27.5 mg d-1 (1000 people)-1, respectively, and were 8.2 and 1.7 times higher, respectively, than the consumption rates found in 2013. Methylphenidate was detected in the influent and effluent samples at mean concentrations of 2.7 and 2.6 ng L-1, respectively, but the methylphenidate consumption rate could not be estimated because of the low excretion rate for humans (<1%).
Collapse
Affiliation(s)
- Ki Yong Kim
- Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
10
|
Masteri-Farahani M, Mashhadi-Ramezani S, Mosleh N. Molecularly imprinted polymer containing fluorescent graphene quantum dots as a new fluorescent nanosensor for detection of methamphetamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:118021. [PMID: 31923795 DOI: 10.1016/j.saa.2019.118021] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/28/2019] [Accepted: 12/29/2019] [Indexed: 05/20/2023]
Abstract
A novel fluorescent nanosensor based on graphene quantum dots embedded within molecularly imprinted polymer (GQDs@MIP) was developed for detection and determination of methamphetamine (METH). The resulting GQDs@MIP nanocomposite exhibited higher methamphetamine selectivity in comparison with corresponding non-imprinted polymer (GQDs@NIP). Characterization of the GQDs@MIP nanocomposite was done by nitrogen adsorption and desorption analysis (BET method), transmission electron microscopy (TEM), photoluminescence (PL), ultraviolet-visible (UV-Vis), and Fourier transform infrared (FT-IR) spectroscopies. The fluorescence intensity of GQDs@MIP was efficiently quenched in the presence of methamphetamine template molecules while no quenching was observed in the presence of other analytes such as amphetamine, ibuprofen, codeine, and morphine. Using this method, the detection limit of 1.7 μg/L was obtained for methamphetamine determination.
Collapse
Affiliation(s)
| | | | - Nazanin Mosleh
- Faculty of Chemistry, Kharazmi University, Tehran, Islamic Republic of Iran
| |
Collapse
|
11
|
Ng A, Weerakoon D, Lim E, Padhye LP. Fate of environmental pollutants. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1294-1325. [PMID: 31502369 DOI: 10.1002/wer.1225] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
This annual review covers the literature published in 2018 on topics related to the occurrence and fate of environmental pollutants in wastewater. Due to the vast amount of literature published on this topic, we have discussed only a portion of the quality research publications, due to the limitation of space. The abstract search was carried out using Web of Science, and the abstracts were selected based on their relevance. In a few cases, full-text articles were referred to understand new findings better. This review is divided into the following sections: antibiotic-resistant bacteria (ARBs) and antibiotic-resistant genes (ARGs), disinfection by-products (DBPs), drugs of abuse (DoAs), estrogens, heavy metals, microplastics, per- and polyfluoroalkyl compounds (PFAS), pesticides, and pharmaceuticals and personal care products (PPCPs), with the addition of two new classes of pollutants to previous years (DoAs and PFAS).
Collapse
Affiliation(s)
- Archie Ng
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand
| | - Dilieka Weerakoon
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand
| | - Erin Lim
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Chiavola A, Boni MR, Di Marcantonio C, Cecchini G, Biagioli S, Frugis A. A laboratory-study on the analytical determination and removal processes of THC-COOH and bezoylecgonine in the activated sludge reactor. CHEMOSPHERE 2019; 222:83-90. [PMID: 30690404 DOI: 10.1016/j.chemosphere.2019.01.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
The present study focused on 11-nor-9carboxy-Δ9-THC (THC-COOH) and Benzoylecgonine (BE), the most common metabolites of cannabis and cocaine, respectively, present in the domestic sewage entering the wastewater treatment plants. The aims of the study were: (1) to validate the analytical method of detection in wastewater and sludge; (2) to determine contribution of biodegradation and other processes to the removal in the biological reactor of the wastewater treatment plant (WWTP) and the response of biomass to different drug concentrations. The Ultra-Performance Liquid Chromatography coupled to tandem Mass Spectrometry method showed to be repeatable and reliable (recovery>75%; repeatability<10-15%; bias uncertainty<10) for measurements in wastewater; the ultrasound assisted extraction (USE) demonstrated to be reliable as pre-treatment of activated sludge solid phase. Both drugs were fully removed from the liquid phase in the lab-scale biological reactor within 24 h. Biodegradation was the main BE removal mechanism, and the first order kinetic model provided the best fitting of the experimental data. THC-COOH was mainly removed due to a combination of adsorption and biodegradation; adsorption was better described by the pseudo-second order kinetic model and the Freundlich isotherm. Both drugs at the higher concentrations caused inhibition of nitrogen oxidation and carbon removal.
Collapse
Affiliation(s)
- Agostina Chiavola
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, 00184, Rome, Italy
| | - Maria Rosaria Boni
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, 00184, Rome, Italy
| | - Camilla Di Marcantonio
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, 00184, Rome, Italy.
| | | | | | | |
Collapse
|