1
|
Luo J, Chen L. Status and development of spent mushroom substrate recycling: A review. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024:1-18. [PMID: 39348219 DOI: 10.1080/10962247.2024.2410447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
The edible mushroom industry is the sixth largest after grain, cotton, oil, vegetables and fruits, and the annual production of edible mushrooms in China exceeds 40 million tons. Edible mushroom cultivation produces a class of by-products consisting mainly of mycelium remnants and lignocellulosic waste, known as Spent Mushroom Substrate (SMS) or Spent Mushroom Compost (SMC). SMS/SMC is rich in nutrients and active ingredients and has an extremely high recycling potential. This review paper summarizes SMS recycling strategies from the perspectives of "environmental remediation" and "circular economy", and briefly discusses the legitimacy, possible challenges and future research of SMS recycling. It is hoped that this will assist researchers in related fields and promote the development of the SMS recycling industry, thereby contributing to sustainable environmental and economic development.Implications: The efficient management of SMS is important for many countries around the world, particularly major mushroom producing countries. Traditional disposal methods (incineration, burial, piling) can cause serious damage to the environment and waste resources. The correct disposal method can protect the natural environment and provide certain economic benefits. This study presents the main methods of SMS processing from both an "environmental remediation" and "circular economy" perspective. In general, this paper emphasizes the importance of SMS processing, introduces the current mainstream processing methods and briefly discusses the legality of their processing methods.
Collapse
Affiliation(s)
- Jiahao Luo
- Shandong Provincial Key Laboratory of Gelatine Medicines Research and Development, Dong'e Ejiao Co., Ltd., Liaocheng, Shandong, P.R. China
| | - Lijing Chen
- Department of Pharmacy, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P.R. China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P.R. China
| |
Collapse
|
2
|
Feng D, Cui Y, Zeng Y, Wang D, Zhang H, Zhang Y, Song W. Enhancing compost quality through biochar and oyster shell amendments in the co-composting of seaweed and sugar residue. CHEMOSPHERE 2024; 366:143500. [PMID: 39384133 DOI: 10.1016/j.chemosphere.2024.143500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Aquaculture and agricultural production generate substantial amounts of waste, including seaweed (which has plant-stimulating properties), oyster shells, and sugar residues. Through composting and appropriate management, these wastes have the potential to be converted into beneficial soil amendments. However, there is a lack of research exploring the potential of composting in promoting the conversion of seaweed into more stable humified forms, as well as in assessing whether composted seaweed retains its beneficial effects on plant growth. Additionally, studies on using oyster shells as additives to reduce waste pressure and comparing their effectiveness with biochar are relatively scarce. This study examines the impact of incorporating 5% corn stover biochar (T1), 10% biochar (T2), and 10% oyster shell powder (T3) on key physicochemical properties, product quality, and microbial community dynamics during the co-composting of seaweed and sugar residues. Results indicate that organic matter (OM) loss in T1 and T2 increased by 31.2% and 26.4%, respectively, compared to the control (CK). Moreover, Excitation-emission matrix (EEM) fluorescence spectroscopy revealed that humic substances in T1 and T2 surged by 434% and 423%, respectively, far exceeding the 289% increase in CK. The 10% biochar treatment also improved alginate degradation and seed germination index, due to the presence of biostimulants in seaweed and an increased abundance of Cobetia. Microbial analysis post-composting showed that T2 and T3 significantly enhanced the diversity and richness of bacterial communities. Notably, although oyster shell powder did not improve the humification degree of compost as significantly as biochar, it achieved effective weight reduction of waste (OM loss of 43.57%, far exceeding CK's 35.34%) without hindering the composting process. All four compost treatments retained the plant-stimulating effects of seaweed and facilitated alginate degradation. These results underscore the potential of biochar to enhance composting efficiency and utilize composting to process large quantities of oyster shell waste.
Collapse
Affiliation(s)
- Dawei Feng
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Yinjie Cui
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Yang Zeng
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Derui Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Hongxia Zhang
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| | - Yuxue Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Wanlin Song
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
3
|
Zhang J, Kong Y, Yang Y, Ma R, Li G, Wang J, Cui Z, Yuan J. Effects of thermophilic bacteria inoculation on maturity, gaseous emission and bacterial community succession in hyperthermophilic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172304. [PMID: 38604357 DOI: 10.1016/j.scitotenv.2024.172304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Hyperthermophilic composting, characterized by temperatures equal to or exceeding 75 °C, offers superior compost maturity and performance. Inoculation with thermophilic bacteria presents a viable approach to achieving hyperthermophilic composting. This study investigates the effects of inoculating thermophilic bacteria, isolated at different temperatures (50 °C, 60 °C, and 70 °C) into compost on maturity, gaseous emissions, and microbial community dynamics during co-composting. Results indicate that the thermophilic bacteria inoculation treatments exhibited peak temperature on Day 3, with the maximum temperature of 75 °C reached two days earlier than the control treatment. Furthermore, these treatments demonstrated increased bacterial richness and diversity, along with elevated relative abundances of Firmicutes and Proteobacteria. They also fostered mutualistic correlations among microbial species, enhancing network connectivity and complexity, thereby facilitating lignocellulose degradation. Specifically, inoculation with thermophilic bacteria at 60 °C increased the relative abundance of Thermobifida and unclassified-f-Thermomonosporaceae (Actinobacteriota), whereas Bacillus, a thermophilic bacterium, was enriched in the 70 °C inoculation treatment. Consequently, the thermophilic bacteria at 60 °C and 70 °C enhanced maturity by 36 %-50 % and reduced NH3 emissions by 1.08 %-27.50 % through the proliferation of thermophilic heterotrophic ammonia-oxidizing bacteria (Corynebacterium). Moreover, all inoculation treatments decreased CH4 emissions by 6 %-27 % through the enrichment of methanotrophic bacteria (Methylococcaceae) and reduced H2S, Me2S, and Me2SS emissions by 1 %-25 %, 47 %-63 %, and 15 %-53 %, respectively. However, the inoculation treatments led to increased N2O emissions through enhanced denitrification, as evidenced by the enrichment of Truepera and Pusillimonas. Overall, thermophilic bacteria inoculation promoted bacteria associated with compost maturity while attenuating the relationship between core bacteria and gaseous emissions during composting.
Collapse
Affiliation(s)
- Jing Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jiani Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Zhongliang Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Wang X, Liu N, Zeng R, Liu G, Yao H, Fang J. Change of core microorganisms and nitrogen conversion pathways in chicken manure composts by different substrates to reduce nitrogen losses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14959-14970. [PMID: 38285254 DOI: 10.1007/s11356-024-31901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Due to the rapid development of animal husbandry, the associated environmental problems cannot be ignored, with the management of livestock and poultry manure emerging as the most prominent issue. Composting technology has been widely used in livestock and poultry manure management. A deeper understanding of the nitrogen conversion process during composting offers a theoretical foundation for selecting compost substrates. In this study, the effects of sawdust (CK) and spent mushroom compost (T1) as auxiliary materials on nitrogen as well as microbial structure in the composting process when composted with chicken manure were investigated. At the end of composting, the nitrogen loss of T1 was reduced by 17.18% relative to CK. When used as a compost substrate, spent mushroom compost accelerates the succession of microbial communities within the compost pile and alters the core microbial communities within the microbial community. Bacterial genera capable of cellulose degradation (Fibrobacter, Herbinix) are new core microorganisms that influence the assimilation of nitrate reduction during compost maturation. Using spent mushroom compost as a composting substrate increased the enzyme activity of nitrogen assimilation while decreasing the enzyme activity of the denitrification pathway.
Collapse
Affiliation(s)
- Xinyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Naiyuan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Rong Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China
| | - Hao Yao
- Changsha IMADEK Intelligent Technology Co., LTD, Changsha, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China.
| |
Collapse
|
5
|
Ansari SA, Shakeel A, Sawarkar R, Maddalwar S, Khan D, Singh L. Additive facilitated co-composting of lignocellulosic biomass waste, approach towards minimizing greenhouse gas emissions: An up to date review. ENVIRONMENTAL RESEARCH 2023; 224:115529. [PMID: 36822534 DOI: 10.1016/j.envres.2023.115529] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Although the composting of lignocellulosic biomass is an emerging waste-to-wealth approach towards organic waste management and circular economy, it still has some environmental loopholes that must be addressed to make it more sustainable and reliable. The significant difficulties encountered when composting lignocellulosic waste biomass are consequently discussed in this study, as well as the advances in science that have been achieved throughout time to handle these problems in a sustainable manner. It discusses an important global concern, the emission of greenhouse gases during the composting process which limits its applicability on a broader scale. Furthermore, it discusses in detail, how different organic minerals and biological additives modify the physiochemical and biological characteristics of compost, aiming at developing eco-friendly compost with minimum odor, greenhouse gases emission and an optimum C/N ratio. It brings novel insights by demonstrating the effect of additives on the microbial enzymes and their pathways involved in the degradation of lignocellulosic biomass. This review also highlights the limitations of the application of additives in composting and suggests possible ways to overcome these limitations in the future for the sustainable and eco-friendly management of agricultural waste. The present review concludes that the use of additives in the co-composting of lignocellulosic biomass can be a viable remedy for the ongoing issues with the management of lignocellulosic waste.
Collapse
Affiliation(s)
- Suhel Aneesh Ansari
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Adnan Shakeel
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Riya Sawarkar
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Shrirang Maddalwar
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Debishree Khan
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| |
Collapse
|
6
|
Kong Y, Wang G, Chen W, Yang Y, Ma R, Li D, Shen Y, Li G, Yuan J. Phytotoxicity of farm livestock manures in facultative heap composting using the seed germination index as indicator. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114251. [PMID: 36327785 DOI: 10.1016/j.ecoenv.2022.114251] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Static facultative heap composting of animal manure is widely used in China, but there is almost no systematic research on the phytotoxicity of the produced compost. Here, we evaluated the phytotoxic variation in compost produced by facultative heap composting of four types of animal manure (chicken manure, pig manure, sheep manure, and cattle manure) using different plant seeds (cucumber, radish, Chinese cabbage, and oilseed rape) to determine germination index (GI). The key factors that affected GI values were identified, including the dynamics of the phytotoxicity and microbial community during heap composting. Sensitivity to toxicity differed depending on the type of plant seed used. Phytotoxicity during facultative heap composting, evaluated by the GI, was in the order: chicken manure (0-6.6 %) < pig manure (14.4-90.5 %) < sheep manure (46.0-93.0 %) < cattle manure (50.2-105.8 %). Network analysis showed that the volatile fatty acid (VFA) concentration was positively correlated with Firmicutes abundance, and NH4+-N was correlated with Actinobacteria, Proteobacteria, and Bacteroidetes. More bacteria were stimulated to participate in conversions of dissolved organic carbon, dissolved nitrogen, VFA, and ammonia-nitrogen (NH4+-N) in sheep manure heap composting than that in other manure. The GI was most affected by VFA in chicken manure and cattle manure heap composting, while NH4+-N was the main factor affecting the GI in pig manure and sheep manure compost. The dissolved carbon and nitrogen content and composition, as well as the core and proprietary microbial communities, were the primary factors that affected the succession of phytotoxic substances in facultative heap composting, which in turn affected GI values. In this study, the key pathways of livestock manure composting that affected GI and phytotoxicity were found and evaluated, which provided new insights and theoretical support for the safe use of organic fertilizer.
Collapse
Affiliation(s)
- Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Wenjie Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Danyang Li
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Yujun Shen
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
7
|
Li D, Yuan J, Ding J, Wang H, Shen Y, Li G. Effects of carbon/nitrogen ratio and aeration rate on the sheep manure composting process and associated gaseous emissions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116093. [PMID: 36095985 DOI: 10.1016/j.jenvman.2022.116093] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
There are several issues such as low maturity degree of compost product and severe pollution gas emissions during the composting process. Carbon/Nitrogen (C/N) ratio and aeration rate (AR) are the most important factors affecting the composting performance. According to the results of previous studies, the proper C/N ratio and AR were 20-30:1 and 0.1-0.4 L kg-1 DM·min-1, respectively. Therefore, a lab-scale experiment was conducted to investigate the effects of C/N ratio and AR on sheep manure composting process and associated gaseous emissions. The initial C/N ratio in this experiment were set at 23, 26 and 29 to simulate the C/N ratio at low, medium and high levels. The AR were decided at 0.12, 0.24 and 0.36 L kg-1 DM·min-1 to simulate the aeration at low, middle and high levels. The results showed that as the C/N ratio or AR increased, the methane (CH4) and hydrogen sulfide (H2S) emissions decreased. The nitrous oxide (N2O) emission peaked at the low C/N ratio or AR treatments. The total greenhouse gas (GHG) emissions decreased with the increase of C/N ratio or AR, and the maximum value occurred in the treatment with C/N ratio 23 and AR 0.24 L kg-1 DM·min-1. In the treatment with C/N ratio 26 and AR 0.36 L kg-1 DM·min-1, the GI value of compost product was the highest (about 250%), and the total greenhouse effect was the lowest (2.36 kg CO2-eq·t-1 DM). Therefore, considering reduction of pollution gas emissions and improvement of the quality of compost products comprehensively, the optimum conditions were initial C/N ratio 26 and AR 0.36 L kg-1 DM·min-1 during the co-composting of sheep manure and cornstalks. In addition, the key physicochemical factors and eight key bacterial communities were determined to regulate compost maturity and pollution gas emissions during the sheep manure composting, which could provide scientific support and theoretical reference for controlling pollution gas emissions and obtaining high quality sheep manure compost products.
Collapse
Affiliation(s)
- Danyang Li
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Jingtao Ding
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Huihui Wang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Yujun Shen
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China.
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Yang Y, Yin Z, Li L, Li Y, Liu Y, Luo Y, Li G, Yuan J. Effects of dicyandiamide, phosphogypsum and superphosphate on greenhouse gas emissions during pig manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157487. [PMID: 35870587 DOI: 10.1016/j.scitotenv.2022.157487] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the effects of dicyandiamide, phosphogypsum and superphosphate on greenhouse gas emissions and compost maturity during pig manure composting. The results indicated that the addition of dicyandiamide and phosphorus additives had no negative effect on organic matter degradation, and could improve the compost maturity. Adding dicyandiamide alone reduced the emissions of ammonia (NH3), methane (CH4) and nitrous oxide (N2O) by 9.37 %, 9.60 % and 31.79 %, respectively, which was attributed that dicyandiamide effectively inhibited nitrification to reduce the formation of N2O. Dicyandiamide combined with phosphogypsum or superphosphate could enhance mitigation of the total greenhouse gas (29.55 %-37.46 %) and NH3 emission (18.28 %-21.48 %), which was mainly due to lower pH value and phosphoric acid composition. The combination of dicyandiamide and phosphogypsum exhibited the most pronounced emission reduction effect, simultaneously decreasing the NH3, CH4 and N2O emissions by 18.28 %, 38.58 % and 36.14 %, respectively. The temperature and C/N content of the compost were significantly positively correlated with greenhouse gas emissions.
Collapse
Affiliation(s)
- Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ziming Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Liqiong Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yun Li
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yiming Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
9
|
Qin W, Zhang J, Hou D, Li X, Jiang H, Chen H, Yu Z, Tomberlin JK, Zhang Z, Li Q. Effects of biochar amendment on bioconversion of soybean dregs by black soldier fly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154605. [PMID: 35307415 DOI: 10.1016/j.scitotenv.2022.154605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Biochar is known to accelerate composting process and improve the quality of end-products. However, its effects on bioconversion of organic waste by black soldier fly larvae (BSFL) remains largely unexamined. To investigate the effects of corn straw biochar (CS-BC) on bioconversion of soybean dregs (SD) by BSFL, SD was amended with four different dosages of CS-BC [0%, 2%, 5%, and 8% (w/w)] and digested by BSFL for ten days. The results indicated that the peak values of single larva wet weight in the treatments amended with CS-BC were advanced by 2-3 days and the reduction rate of SD increased from 72.09% to 85.37% with the increasing dosage of CS-BC. Meanwhile, SD mixed with 2%, 5% and 8% of CS-BC decreased ammonia (NH3) emission by 2.7%, 3.6% and 18.0%, respectively. The nitrous oxide (N2O) emissions reduced (-23.6%, -29.1% and -49.2%) with 2%, 5% and 8% CS-BC additions, respectively. In addition, the residual nitrogen of SD‑nitrogen proportionally increased with CS-BC application (28.3%, 28.6%, 30.1% and 35.0% for application at the dosage of 0%, 2%, 5% and 8%, respectively). Based on the comprehensive evaluation of bioconversion performance, alleviation of pollutant gas emission, and nitrogen conservation, we recommend the introduction of 8% (w/w) CS-BC during bioconversion of SD by BSFL. This study confirmed the feasibility of CS-BC as an amendment for the BSFL-based bioconversion system.
Collapse
Affiliation(s)
- Wenjie Qin
- College of Science, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Junfang Zhang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Dejia Hou
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuan Li
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Jiang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziniu Yu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Zhenyu Zhang
- Hubei Key Laboratory of Insect Resource Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qing Li
- College of Science, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Kong Y, Ma R, Li G, Wang G, Liu Y, Yuan J. Impact of biochar, calcium magnesium phosphate fertilizer and spent mushroom substrate on humification and heavy metal passivation during composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153755. [PMID: 35151730 DOI: 10.1016/j.scitotenv.2022.153755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 05/16/2023]
Abstract
The effects of exogenous additives (biochar, calcium magnesium phosphate fertilizer, and spent mushroom substrate) on humification process and heavy metal passivation during pig manure composting were investigated. The aerobic composting trial were carried out in 60 L reactors for 49 d. The calcium magnesium phosphate fertilizer, biochar, and spent mushroom substrate amendment treatments all accelerated the organic matter degradation and increased the temperature, decreased the volatile fatty acid content by 45%-49.0% and promoted humification of the compost (increasing the humic acid content and humus index). The biochar passivated Cu best, calcium magnesium phosphate fertilizer passivated Zn best (passivation rate 13.85%), and spent mushroom substrate passivated Cd, Cr, and Pb best (passivation rates 25.47%-47.91%). The additives amendment improved Cu, Zn, Cd, Cr, and Pb passivation performance by promoting composting humification process.
Collapse
Affiliation(s)
- Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Yan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China.
| |
Collapse
|
11
|
Evaluation of Maturity and Greenhouse Gas Emission in Co-Composting of Chicken Manure with Tobacco Powder and Vinasse/Mushroom Bran. Processes (Basel) 2021. [DOI: 10.3390/pr9122105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effects of different proportions (0%, 5%, 10%, 15%) of bulking agent (vinasse, mushroom bran, and tobacco powder) on maturity and gaseous emissions in chicken manure composting. The results showed that all of the treatments reached the standard of harmless disposal. With the exception of the control treatment, the CH4, N2O, and NH3 emissions in the treatments that had been prepared using the addition of mixed bulking agents were effectively reduced by 2.9–30.6%, 8.30–80.9%, and 37.3–26.6%; their compost maturity also met the Chinese national standard. Specifically, 10% mushroom bran combined with 5% tobacco powder was the optimal combination for simultaneously improving the maturity and reducing greenhouse gas emission in chicken manure composting.
Collapse
|
12
|
Planifilum fulgidum Is the Dominant Functional Microorganism in Compost Containing Spent Mushroom Substrate. SUSTAINABILITY 2021. [DOI: 10.3390/su131810002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The extensive accumulation of spent mushroom substrate (SMS) owing to the large-scale production of edible fungi is causing environmental problems that cannot be ignored. Co-composting is a promising method for agricultural and animal husbandry waste disposal. In this study, the composition and function of microbial communities in the process of cattle manure–maize straw composting with SMS addition were compared through an integrated meta-omics approach. The results showed that irrespective of SMS addition, the predominant fungi were Ascomycota, while the dominant bacteria were Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. High temperature promoted the evolution from Gram-negative bacteria (Bacteroides, Proteobacteria) to Gram-positive bacteria (Firmicutes, Actinomycetes). The composting process was accelerated by SMS addition, and the substrate was effectively degraded in 14 days. Metaproteomics results showed that the dominant microorganism, Planifilum fulgidum, secreted large amounts of S8, M17, and M32 proteases that could degrade macromolecular protein substrates in the presence of SMS. Planifilum fulgidum, along with Thermobifida fusca and Melanocarpus albomyces, synergistically degraded hemicellulose, cellulose, and protein. In addition, the dominant microorganisms related to the initial raw materials such as Pichia, Lactobacillus in the microbial agent and Hypsizygus in SMS could not adapt to the high-temperature environment (>60 °C) and were replaced by thermophilic bacteria after 5 days of composting.
Collapse
|
13
|
Lu XL, Wu H, Song SL, Bai HY, Tang MJ, Xu FJ, Ma Y, Dai CC, Jia Y. Effects of multi-phase inoculation on the fungal community related with the improvement of medicinal herbal residues composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27998-28013. [PMID: 33523381 DOI: 10.1007/s11356-021-12569-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Composting has become the most important way to recycle medicinal herbal residues (MHRs). The traditional composting method, adding a microbial agent at one time, has been greatly limited due to its low composting efficiency, mutual influence of microbial agents, and unstable compost products. This study was conducted to assess the effect of multi-phase inoculation on the lignocellulose degradation, enzyme activities, and fungal community during MHRs composting. The results showed that multi-phase inoculation treatment had the highest thermophilic temperature (68.2 °C) and germination index (102.68%), significantly improved available phosphorus content, humic acid, and humic substances concentration, accelerated the degradation of cellulose and lignin, and increased the activities of cellulase in the mature phase, xylanase, manganese peroxidase, and utilization of phenolic compounds. Furthermore, the non-metric multi-dimensional scaling showed that the composting process and inoculation significantly influenced fungal community composition. In multi-phase inoculation treatment, Thermomyces in mesophilic, thermophilic, and mature phase, unclassified_Sordariales, and Coprinopsis in mature phase were the dominant genus that might be the main functional groups to degrade lignocellulose and improve the MHRs composting process.
Collapse
Affiliation(s)
- Xiao-Lin Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hao Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shi-Li Song
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Hong-Yan Bai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Meng-Jun Tang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Fang-Ji Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yan Ma
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Yong Jia
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
14
|
Lu M, Shi X, Feng Q, Li X, Lian S, Zhang M, Guo R. Effects of humic acid modified oyster shell addition on lignocellulose degradation and nitrogen transformation during digestate composting. BIORESOURCE TECHNOLOGY 2021; 329:124834. [PMID: 33639384 DOI: 10.1016/j.biortech.2021.124834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
The aim of this work was to investigate the performance of a novel humic acid modified oyster shell (MOS) bulking agent on the digestate composting. MOS was prepared by immobilizing humic acid onto oyster shell using solid phase grafting method, and then applied to the composting process. Results showed more obvious degradation of lignocellulose was observed in the MOS treatment, which was probably due to the high relative abundance of Actinobacteria. Moreover, the addition of MOS could significantly preserve NH4+ and reduce the NO3- generation with the decreasing abundance of ammonia-oxidizing bacteria and archaea. Besides, adding MOS reduced the N2O emission by 59.63% compared with the control. After composting, excitation-emission matrix fluorescence spectra demonstrated that the humification degree as well as compost maturity was enhanced with MOS added.
Collapse
Affiliation(s)
- Mingyi Lu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoshuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Quan Feng
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Xu Li
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shujuan Lian
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Mengdan Zhang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Dalian National Laboratory for Clean Energy, Dalian 116023, PR China.
| |
Collapse
|
15
|
Li S, Li J, Shi L, Li Y, Wang Y. Role of phosphorous additives on nitrogen conservation and maturity during pig manure composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17981-17991. [PMID: 33405112 DOI: 10.1007/s11356-020-11694-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
This study compared different types and addition amounts of phosphorous additives on nitrogen conservation and maturity during pig manure composting. Phosphogypsum and superphosphate were applied with the same amount of phosphorus (5% of the initial total nitrogen, molar basis) or weight (10% of initial dry matter) and compared to a control treatment without additives. Results show that phosphorous additives could effectively conserve nitrogen. Adding phosphogypsum could significantly reduce NH3 emission and total nitrogen loss, but increase N2O emission. Application of 10% superphosphate mitigated NH3 emissions and total nitrogen loss but inhibited the organic matter degradation and compost maturity. More importantly, with the addition of 5% initial total nitrogen (i.e., 2.5% dry matter), superphosphate could synchronously reduce NH3 and N2O emissions and improve compost quality by introducing additional nutrients into the compost. In comprehensive evolution of gaseous emissions, nitrogen loss, and compost maturity, superphosphate addition with 2.5% of initial dry matter was suggested to be used in practice.
Collapse
Affiliation(s)
- Shuyan Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, China
| | - Jijin Li
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Lianhui Shi
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Yangyang Li
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Yaya Wang
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
16
|
Luo Y, Liang J, Zeng G, Zhang Y, Xing W, Tang N. Tetracycline stress disturbs the mobilization of protein bodies in seed storage reserves during radicle elongation after seed germination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42150-42157. [PMID: 32851521 DOI: 10.1007/s11356-020-10569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Residues of antibiotics in the soil can have adverse effects on crop plants related closely to humans. However, there is a lack of knowledge on the phytotoxicity of antibiotics to sensitive species. The aim of our study was mainly to reveal tetracycline stress on the mobilization of seed storage proteins, lipids, and minerals of Chinese cabbage (Brassica rapa L.) during radicle elongation after germination. The Chinese cabbage seed was incubated for 48 h in tetracycline solutions at 1 and 5 μM. For the cotyledons of the seed, the result of TEM showed that tetracycline significantly hindered the mobilization of protein bodies, which was in line with the result of FTIR spectroscopy. However, the mobilization of oil bodies and mineral bodies in cotyledons was not significantly disturbed by the stress of tetracycline, as well as the energy supply in different organs including the cotyledons, hypocotyl, and radicle of the seed. To our knowledge, this is the first study to demonstrate the disturbance on mobilization of protein bodies in seed storage reserves caused by the stress of tetracycline at low levels during radicle elongation after germination.
Collapse
Affiliation(s)
- Yuan Luo
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China.
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China.
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China.
| | - Yafei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Wenle Xing
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| |
Collapse
|
17
|
Yang Y, Awasthi MK, Bao H, Bie J, Lei S, Lv J. Exploring the microbial mechanisms of organic matter transformation during pig manure composting amended with bean dregs and biochar. BIORESOURCE TECHNOLOGY 2020; 313:123647. [PMID: 32562966 DOI: 10.1016/j.biortech.2020.123647] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
This study researched the impacts of biochar (B) and bean dregs (BD) on organic matter degradation and humification, as well as the bacterial community and functional characteristics during pig manure (PM) composting. The temperature, pH, and dissolved organic carbon (DOC) were reached the maturity of compost. Results indicated that BD + B treatment promoted organic matter degradation and increased humic acid content by 19.5-25.1% from the control (CK). Additionally, the bacterial communities were determined by high-throughput sequencing, and their metabolic functions were evaluated through the phylogenetic investigation of communities by reconstructing unobserved states (PICRUSt). BD + B influenced the microbial community structure of compost, and the PICRUSt results indicated that BD + B strengthened the metabolism of carbohydrates and amino acids. Redundancy analysis (RDA) was conducted, and a positive correlation was observed between organic matter transformation and temperature, pH, DOC, and community structure. Therefore, regulating these compost properties can effectively promote organic matter transformation during composting.
Collapse
Affiliation(s)
- Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Huanyu Bao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Jingya Bie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Shuang Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China.
| |
Collapse
|
18
|
Wei P, Li Y, Lai D, Geng L, Liu C, Zhang J, Shu C, Liu R. Protaetia brevitarsis larvae can feed on and convert spent mushroom substrate from Auricularia auricula and Lentinula edodes cultivation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 114:234-239. [PMID: 32682088 DOI: 10.1016/j.wasman.2020.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/19/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
The edible mushroom industry produces massive amounts of spent mushroom substrate (SMS). Thus, there is an urgent need for high-value utilization technology to process the SMS, especially SMSs originating from woodchips. Protaetia brevitarsis larvae (PBL) can feed on various types of organic matter and can produce organic fertilizer and insect protein. In this study, we investigated the potential of PBL to utilize and convert SMSs from Auricularia auricula (SMS-AA) and Lentinula edodes (SMS-LE) cultivation. The results showed that the PBL were able to feed on SMS-AA and SMS-LE and form nutrient-enriched organic fertilizer with a low phytotoxicity and high humic acid content. Further analysis of the organic carbon dynamics suggested that PBL can efficiently digest and utilize lignin. This study demonstrates a new strategy for the utilization of SMSs originating from woodchips, and provides a new model for further investigations on the mechanism of lignin decomposition.
Collapse
Affiliation(s)
- Panpan Wei
- Northeast Agricultural University, No. 600 Changjiang Street Xiangfang District, HarBin 150030, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Yimei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Deqiang Lai
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou 061001, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Chunqin Liu
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou 061001, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing 100193, China.
| | - Rongmei Liu
- Northeast Agricultural University, No. 600 Changjiang Street Xiangfang District, HarBin 150030, China.
| |
Collapse
|
19
|
Liu Y, Ma R, Li D, Qi C, Han L, Chen M, Fu F, Yuan J, Li G. Effects of calcium magnesium phosphate fertilizer, biochar and spent mushroom substrate on compost maturity and gaseous emissions during pig manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 267:110649. [PMID: 32364133 DOI: 10.1016/j.jenvman.2020.110649] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/17/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
This study used a laboratory-scale system to investigate the effects of calcium magnesium phosphate fertilizer (CaMgP), biochar, and spent mushroom substrate (SMS) on compost maturity and gasous emissions during pig manure composting. The results showed that the addition of CaMgP, Biochar or SMS had no negative effect on the quality and maturity of compost, and all three additives could reduce the emissions of ammonia (NH3), hydrogen sulfide (H2S), dimethyl sulfide (Me2S) and dimethyl disulfide (Me2SS). Among them, the effect of adding CaMgP on NH3 emission reduction was the most obvious, reduced 42.90%. The emission reduction of CaMgP to H2S was similar to that of SMS, which decreased by 34.91% and 32.88% respectively. The emission reduction effects of the three additives on Me2S and Me2SS were obvious, all of which were over 50%. However, only adding SMS reduced the N2O emission by 37.08%.
Collapse
Affiliation(s)
- Yan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Danyang Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Lina Han
- Yangpulvbaofeng Agricultural Materials Co., Ltd, Danzhou, Hainan, 571744, China
| | - Mei Chen
- Yangpulvbaofeng Agricultural Materials Co., Ltd, Danzhou, Hainan, 571744, China
| | - Feng Fu
- Yangpulvbaofeng Agricultural Materials Co., Ltd, Danzhou, Hainan, 571744, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
20
|
Yang Y, Du W, Ren X, Cui Z, Zhou W, Lv J. Effect of bean dregs amendment on the organic matter degradation, humification, maturity and stability of pig manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134623. [PMID: 31796292 DOI: 10.1016/j.scitotenv.2019.134623] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
The purpose of this study was to effectively dispose of bean dregs (BD) using composting technology, which could provide a theoretical basis for the disposal of BD. Therefore, the influence of different quantities of bean dregs (BD) (0%, 5%, 10% and 15%, w/w with a dry base of pig manure (PM)) on the decomposition and humification of organic matter during PM-composting was investigated, and a 0% BD amendment was used as the control (CK). Wheat straw was used as a bulking agent. Compared to the CK, the BD amendment promoted the degradation of organic matter. The degree of organic matter degradation increased by 16.46-25.04% upon BD amendment. Furthermore, the BD amendment improved humification and increased indices of the humification ratio (HR), percentage of humic acids (PHA), degree of polymerization (DP) and the humification index (HI). Furthermore, Fourier transform infrared (FTIR) spectroscopy indicated that the aromatic structure was enhanced with the BD amendment, and excitation-emission matrix (EEM) fluorescence spectra showed increased humic-like substance production. Additionally, the dissolved organic carbon (DOC), germination index (GI), electrical conductivity (Ec) and carbon/nitrogen (C/N) influenced the maturity and stability of composting. Comparatively, a 10% BD addition showed the optimal performance among all PM-composting treatments.
Collapse
Affiliation(s)
- Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Wei Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ziying Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Wei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China.
| |
Collapse
|
21
|
Chen Z, Wu Y, Wen Q, Ni H, Chai C. Effects of multiple antibiotics on greenhouse gas and ammonia emissions during swine manure composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7289-7298. [PMID: 31884542 DOI: 10.1007/s11356-019-07269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Antibiotics are commonly used in intensive farming, leading to multiple antibiotic residue in livestock waste. However, the effects of multiple antibiotics on the emissions of greenhouse gas and ammonia remain indistinct. This paper selects sulfamethoxazole and norfloxacin to represent two different types of antibiotics to explore their effects on gaseous emissions. Four treatments including CK (control), SMZ (spiked with 5 mg kg-1 DW sulfamethoxazole), NOR (spiked with 5 mg kg-1 DW norfloxacin), and SN (spiked with 5 mg kg-1 DW sulfamethoxazole and 5 mg kg-1 DW norfloxacin) were composted for 65 days. Coexistence of sulfamethoxazole and norfloxacin facilitated the biodegradation of organic carbon, and significantly (p < 0.05) increased the cumulative CO2 emission by 31.9%. The cumulative CH4 emissions were decreased by 6.19%, 23.7%, and 27.6% for SMZ, NOR, and SN, respectively. The total NH3 volatilization in SMZ and NOR rose to 1020 and 1190 mg kg-1 DW, respectively. The individual existence of sulfamethoxazole significantly (p < 0.05) ascended the N2O emission rate in the first 7 days due to the increase of NO2--N content. In addition, coexistence of sulfamethoxazole and norfloxacin notably dropped the total greenhouse gas emission (subtracting CO2) by 15.5%.
Collapse
Affiliation(s)
- Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Yiqi Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China.
| | - Hongwei Ni
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, 150040, Heilongjiang, China
| | - Chunrong Chai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, 150040, Heilongjiang, China
| |
Collapse
|
22
|
Peng W, Lü F, Hao L, Zhang H, Shao L, He P. Digestate management for high-solid anaerobic digestion of organic wastes: A review. BIORESOURCE TECHNOLOGY 2020; 297:122485. [PMID: 31810738 DOI: 10.1016/j.biortech.2019.122485] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Digestate management for anaerobic digestion (AD) is becoming a bottleneck of the sustainability of AD plants when the use of digestate for agricultural application is restricted due to nutrient surplus and low market acceptance. Digestate quality and treatment in high solid anaerobic digestion (HSAD) can be better than conventional low-solid system. The rheological behavior of digestate in high solid anaerobic digestion (HSAD) can have a great impact on the energy consumption of digestate management. After post-conditioning guided by rheological parameters, the solid digestate can be further treated based on the integrated solutions to enhance the energy efficiency or nutrients recovery. The environmental impacts for some core parts of those integrated systems were also evaluated in this study. This article presented a critical review of recent investigations of digestate management for HSAD, especially focusing on the rheology of HSAD digestate, integrated solutions and their environmental performances.
Collapse
Affiliation(s)
- Wei Peng
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Fan Lü
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Liping Hao
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Hua Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
| | - Pinjing He
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
23
|
Chen J, Hou D, Pang W, Nowar EE, Tomberlin JK, Hu R, Chen H, Xie J, Zhang J, Yu Z, Li Q. Effect of moisture content on greenhouse gas and NH 3 emissions from pig manure converted by black soldier fly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:133840. [PMID: 31487598 DOI: 10.1016/j.scitotenv.2019.133840] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
The effects of different moisture contents on greenhouse gas (GHG) emissions from pig manure (PM) digested by black soldier fly larvae (BSFL) as well as the accompanying changes of nitrogen and carbon contents in gaseous emissions and residues were studied. A mixture of PM and corncob at the ratio of 2.2:1 was prepared with a moisture content of 45%. Then, distilled water was added to adjust the moisture contents of the mixture to 55%, 65%, 75% and 85%, respectively. The prepared mixtures were digested by BSFL for eight days. The results indicated that BSFL could reduce CH4, N2O and NH3 emissions respectively by 72.63-99.99%, 99.68%-99.91% and 82.30-89.92%, compared with conventional composting, while CO2 emissions increased potentially due to BSFL metabolism. With increasing moisture content, the cumulative CH4 emissions increased, while cumulative NH3 emissions peaked at 55% moisture content and then decreased. Interestingly, the tendency of total cumulative CO2 emissions was consistent with that of the total weight of BSFL. The total GHG emissions were about only 1% those from of traditional composting at the optimum moisture content (75%), which was the most favorable for the growth of BSFL. The nitrogen and carbon contents of BSFL content in all treatments accounted for 1.03%-12.67% and 0.25%-4.68% of the initial contents in the raw materials, respectively. Moreover, the residues retained 71.12%-90.58% carbon and 67.91%-80.39% nitrogen of the initial raw materials. Overall, our results suggest that BSFL treatment is an environment-friendly alternative for decreasing CH4, N2O and NH3 emissions as well as reducing global warming potential (GWP).
Collapse
Affiliation(s)
- Jiangshan Chen
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, China
| | - Dejia Hou
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, China
| | - Wancheng Pang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, China
| | - Elhosseny E Nowar
- Plant protection Department, Faculty of Agriculture, Benha University, Moshtohor, Kaluybia, 13736, Egypt
| | | | - Ronggui Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, China
| | - Jingsong Xie
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, China
| | - Qing Li
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
24
|
Wang Y, Liu S, Xue W, Guo H, Li X, Zou G, Zhao T, Dong H. The Characteristics of Carbon, Nitrogen and Sulfur Transformation During Cattle Manure Composting-Based on Different Aeration Strategies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16203930. [PMID: 31623089 PMCID: PMC6844082 DOI: 10.3390/ijerph16203930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/08/2023]
Abstract
This study aimed to investigate the characteristics of gaseous emission (methane-CH4, carbon dioxide-CO2, nitrous oxide-N2O, nitric oxide-NO, hydrogen sulfide-H2S and sulfur dioxide-SO2) and the conservation of carbon (C), nitrogen (N), and sulfur (S) during cattle manure composting under different aeration strategies. Three aeration strategies were set as C60, C100, and I60, representing the different combinations of aeration method (continuous-C or intermittent-I) and aeration rate (60 or 100 L·min-1·m-3). Results showed that C, N, S mass was reduced by 48.8-53.1%, 29.8-35.9% and 19.6-21.9%, respectively, after the composing process. Among the three strategies, the intermittent aeration treatment I60 obtained the highest N2O emissions, resulting in the highest N loss and greenhouse gas (GHG) emissions when the GHG emissions from power consumption were not considered. Within two continuous aeration treatments, lower aeration rates in C60 caused lower CO2, N2O, NO, and SO2 emissions but higher CH4 emissions than those from C100. Meanwhile, C and N losses were also lowest in the C60 treatment. H2S emission was not detected because of the more alkaline pH of the compost material. Thus, C60 can be recommended for cattle manure composting because of its nutrient conservation and mitigation of major gas and GHG emissions.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100087, China.
| | - Shanjiang Liu
- Institute of Plant Nutrition and Resources, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100087, China.
| | - Wentao Xue
- Institute of Plant Nutrition and Resources, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100087, China.
| | - He Guo
- Urban Construction School, Beijing City University, Beijing 100083, China.
| | - Xinrong Li
- Institute of Plant Nutrition and Resources, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100087, China.
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA.
| | - Guoyuan Zou
- Institute of Plant Nutrition and Resources, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100087, China.
| | - Tongke Zhao
- Institute of Plant Nutrition and Resources, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100087, China.
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
25
|
Chang CC, Li R. Agricultural waste. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1150-1167. [PMID: 31433884 DOI: 10.1002/wer.1211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The management of agricultural waste has become very important because the inappropriate disposal yields negative effects on the environment. The resource recovery from agricultural waste which converts waste into available resources can reduce the waste and new resource consumption. This review summarizes the 2018 researches of over three hundred scholar papers from several aspects: agricultural waste, and, waste chemical characterization, agricultural waste material, adsorption, waste energy, composting, waste biogas, agricultural waste management, and others.
Collapse
Affiliation(s)
- Chein-Chi Chang
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, China
- Department of Engineering and Technical Services, DC Water and Sewer Authority, Washington, DC, USA
| | - Rundong Li
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, China
| |
Collapse
|
26
|
Adsorption Thermodynamics and Dynamics of Three Typical Dyes onto Bio-adsorbent Spent Substrate of Pleurotus eryngii. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16050679. [PMID: 30813535 PMCID: PMC6427265 DOI: 10.3390/ijerph16050679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
Dyeing wastewater is very hard to treat, and adsorption could be a good choice. Spent substrate of Pleurotus eryngii (SSPE) was first used to adsorb malachite green, safranine T and methylene blue from aqueous solutions, and the corresponding adsorption isotherm, thermodynamics and dynamics models were simulated. More than 93% of the dyes were removed with solutions with 100 mg/L of initial dye concentration, 1 g of SSPE and pH of 6.0 after adsorption for 4 h. Freundlich isotherm models fit better the adsorption data than Langmuir models. Adsorption of the dyes onto SSPE was a spontaneous exothermic process based on an adsorption thermodynamics model. SSPE could adsorb the dyes rapidly, and a second-order kinetics model fit better with the adsorption data than a pseudo first-order kinetics model. Accordingly, SSPE could be a good bio-adsorbent for the removal of malachite green, safranine T and methylene blue from the aqueous solution.
Collapse
|
27
|
Mushroom cultivation in the circular economy. Appl Microbiol Biotechnol 2018; 102:7795-7803. [PMID: 30027491 PMCID: PMC6132538 DOI: 10.1007/s00253-018-9226-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022]
Abstract
Commercial mushrooms are produced on lignocellulose such as straw, saw dust, and wood chips. As such, mushroom-forming fungi convert low-quality waste streams into high-quality food. Spent mushroom substrate (SMS) is usually considered a waste product. This review discusses the applications of SMS to promote the transition to a circular economy. SMS can be used as compost, as a substrate for other mushroom-forming fungi, as animal feed, to promote health of animals, and to produce packaging and construction materials, biofuels, and enzymes. This range of applications can make agricultural production more sustainable and efficient, especially if the CO2 emission and heat from mushroom cultivation can be used to promote plant growth in greenhouses.
Collapse
|