1
|
Kasongo J, Alleman LY, Kanda JM, Kaniki A, Riffault V. Metal-bearing airborne particles from mining activities: A review on their characteristics, impacts and research perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175426. [PMID: 39137842 DOI: 10.1016/j.scitotenv.2024.175426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The presence of various contaminants in airborne dusts from metal mining sites poses obvious risks to human health and the environment. Yet, few studies have thoroughly investigated the properties of airborne particles in terms of their morphology, size distribution and chemical composition, that are associated with health effects around mining activities. This review presents the most recent knowledge on the sources, physicochemical characteristics, and health and environmental risks associated with airborne dusts from various mining and smelting operations. The literature reviewed found only one research on atmospheric dust associated with hydrometallurgical plants compared to a larger number of pyrometallurgical processes/smelters studies. In addition, there are relatively few works comparing the distribution of metals between the fine and coarse size fractions around mining sites. Our analysis suggests that (i) exposure pathways of metal(loid)s to the human body are defined by linking concentration data in human biosamples and contaminated samples such as soils, drinking water and food, and (ii) chitosan and its derivatives may serve as an environmentally friendly and cost-effective method for soil remediation, with removal rates for metal(loid)s around 70-95 % at pH 6-8, and as dust suppressants for unpaved roads around mining sites. The specific limit values for PM and metal(loid)s at mining sites are not well documented. Despite the health risks associated with fine particles around mining areas, regulations have tended to focus on coarse particles. While some air quality agencies have issued regulations for occupational health and safety, there is no global alignment or common regulatory framework for enforcement. Future research priorities should focus on investigating PM and secondary inorganic aerosols associated with hydrometallurgical processes and dust monitoring, using online metal(loid)s analysers to identify the driving parameters in the deposition and resuspension process.
Collapse
Affiliation(s)
- John Kasongo
- IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Energy and Environnement, 59000 Lille, France; Department of Industrial Chemistry, Polytechnic Faculty, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.
| | - Laurent Y Alleman
- IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Energy and Environnement, 59000 Lille, France.
| | - Jean-Marie Kanda
- Department of Industrial Chemistry, Polytechnic Faculty, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Arthur Kaniki
- Department of Industrial Chemistry, Polytechnic Faculty, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Véronique Riffault
- IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Energy and Environnement, 59000 Lille, France
| |
Collapse
|
2
|
Deabji N, Fomba KW, Dos Santos Souza EJ, Mellouki A, Herrmann H. Influence of anthropogenic activities on metals, sugars and PAHs in PM 10 in the city of Fez, Morocco: Implications on air quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25238-25257. [PMID: 38468011 PMCID: PMC11024011 DOI: 10.1007/s11356-024-32740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Particulate matter (PM) is an important component in the atmosphere, affecting air quality, health, radiation balance, and global climate. To assess regional air quality in the city of Fez, an intensive field campaign was carried out in the autumn of 2019 in the Middle Atlas region of Morocco. Aerosol sampling was performed simultaneously at two urban sites in the city of Fez: (1) Fez University (FU), a sub-urban site, and (2) Fez Parc (FP), an urban site located in the city center of Fez, using PM10 collectors. Various laboratory analyses were carried out, including PM mass, trace metals, inorganic ions, OC/EC, sugar compounds, and PAHs. The results indicate that the PM10 mass (61 ng m-3) was comparable at both sites, with a 37-107 ng m-3 range. Most of the 19 investigated PAHs at the FU site (10.2 ± 6.2 ng m-3) were low-molecular-weight PAHs, while the most abundant PAHs at the FP site (6.9 ± 3.8 ng m-3) were mainly higher-molecular-weight PAHs. A diagnostic ratio analysis at both sites indicated that PAHs originated from fossil fuel combustion and traffic emissions from diesel engines, with Ant/(Ant + Phe) and Flu/(Flu + Pyr) ratios averaging 0.22 and 0.84, respectively. PMF analysis identified traffic emissions as a major source (30%), with secondary inorganic aerosols (20%) and biomass burning (14%). Polar plots highlight the dominance of local anthropogenic activities in PM pollution, with vehicular emissions, industrial activities, and biomass burning. This study shows that local sources and combustion processes significantly contribute to PM10 sources in Morocco, providing insights into air pollution mitigation in North Africa.
Collapse
Affiliation(s)
- Nabil Deabji
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318, Leipzig, Germany
| | - Khanneh Wadinga Fomba
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318, Leipzig, Germany
| | - Eduardo José Dos Santos Souza
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318, Leipzig, Germany
| | - Abdelwahid Mellouki
- Université Mohammed VI Polytechnique (UM6P), Lot 660 Hay Moulay Rachid, 43150, Ben Guerir, Morocco
- Institut de Combustion Aérothermique Réactivité Et Environnement, OSUC-CNRS, 1C Avenue de La Recherche Scientifique, 45071, CEDEX 2, Orléans, France
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318, Leipzig, Germany.
| |
Collapse
|
3
|
Adekoya OB, Daniel OO, Ogunbowale GO, Al-Faryan MAS. Unregulated economic activities and the environment: The role of fiscal policies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119533. [PMID: 37976637 DOI: 10.1016/j.jenvman.2023.119533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
African countries are characterized by high unofficial activities, coupled with a fiscal structure that could either undermine or promote these activities to affect the environment. This study examines the direct and indirect environmental impacts of the unregulated economy and the fiscal instruments of government expenditure and tax using the panel quantiles regression technique. Driven by data availability, our analysis covers 46 countries when the fiscal variables are not considered, while 41 and 38 countries are respectively included in the models involving government expenditure and tax revenue from 2000 to 2016. We discover that the direct impact of unofficial economic activities is unfavourable on the environment, as it increases carbon emissions. The direct impacts of the fiscal policies are heterogeneous. The environmental effect of government expenditure changes from favourable to unfavourable as the countries move from low to high emissions levels. On the other hand, tax is only environmentally friendly in countries with moderate levels of emissions. The interactive effect of an unregulated economy and government expenditure worsens and improves the environment at low and high emissions levels, respectively. The results are heterogeneous for the interactive effect of unregulated economy and tax, although they are more biased toward a satisfactory impact on the environment at the extreme quantiles. Appropriate regulation of informal activities and the design of effective fiscal policy frameworks for environmental sustainability are policy derivatives of these findings.
Collapse
Affiliation(s)
| | - Omolara O Daniel
- Department of Economics, Tai Solarin University of Education, Ijebu-Ode, Nigeria.
| | - Gideon O Ogunbowale
- Department of Economics, Tai Solarin University of Education, Ijebu-Ode, Nigeria.
| | - Mamdouh Abdulaziz Saleh Al-Faryan
- School of Accounting, Economics and Finance, Faculty of Business and Law, University of Portsmouth, Richmond Building, Portland Street, Portsmouth, PO1 3DE, United Kingdom; Economics and Finance, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Khajehpour H, Taksibi F, Hassanvand MS. Comparative review of ambient air PM 2.5 source apportioning studies in Tehran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:21-34. [PMID: 37159743 PMCID: PMC10163186 DOI: 10.1007/s40201-023-00855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/19/2023] [Indexed: 05/11/2023]
Abstract
Rapid urbanization and consuming lifestyles have intensified air pollution in urban areas. Air pollution in megacities has imposed severe environmental damages to human health. Proper management of the issue necessitates identification of the share of emission sources. Therefore, numerous research works have studied the apportionment of the total emissions and observed concentrations among different emissions sources. In this research, a comprehensive review is conducted to compare the source apportioning results for ambient air PM2.5 in the megacity of Tehran, the capital of Iran. One hundred seventy-seven pieces of scientific literatures, published between 2005 and 2021, were reviewed. The reviewed research are categorized according to the source apportioning methods: emission inventory (EI), source apportionment (SA), and sensitivity analysis of the concentration to the emission sources (SNA). The possible reasons for inconsistency among the results are discussed according to the scope of the studies and the implemented methods. Although 85% of the reviewed original estimates identify that mobile sources contribute to more thant 60% of Tehran air pollution, the distribution of vehicle types and modes are clearly inconsistent among the EI studies. Our review suggests that consistent results in the SA studies in different locations in central Tehran may indicate the reliability of this method for the identification of the type and share of the emission sources. In contrast, differences among the geographical and sectoral coverage of the EI studies and the disparities among the emission factors and activity data have caused significant deviations among the reviewed EI studies. Also, it is shown that the results of the SNA studies are highly dependent on the categorization type, model capabilities and EI presumptions and data input to the pollutant dispersion modelings. As a result, integrated source apportioning in which the three methods complement each other's results is necessary for consistent air pollution management in megacities. Supplementary information The online version contains supplementary material available at 10.1007/s40201-023-00855-0.
Collapse
Affiliation(s)
- Hossein Khajehpour
- Department of Energy Engineering, Sharif University of Technology, Tehran, Iran
| | - Farzaneh Taksibi
- Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Mohammad Sadegh Hassanvand
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, 8th Floor, No. 1547, North Kargar Avenue, Tehran, Iran
| |
Collapse
|
5
|
Gordon JND, Bilsback KR, Fiddler MN, Pokhrel RP, Fischer EV, Pierce JR, Bililign S. The Effects of Trash, Residential Biofuel, and Open Biomass Burning Emissions on Local and Transported PM 2.5 and Its Attributed Mortality in Africa. GEOHEALTH 2023; 7:e2022GH000673. [PMID: 36743737 PMCID: PMC9884662 DOI: 10.1029/2022gh000673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Long-term exposure to ambient fine particulate matter (PM2.5) is the second leading risk factor of premature death in Sub-Saharan Africa. We use GEOS-Chem to quantify the effects of (a) trash burning, (b) residential solid-fuel burning, and (c) open biomass burning (BB) (i.e., landscape fires) on ambient PM2.5 and PM2.5-attributable mortality in Africa. Using a series of sensitivity simulations, we excluded each of the three combustion sources in each of five African regions. We estimate that in 2017 emissions from these three combustion sources within Africa increased global ambient PM2.5 by 2%, leading to 203,000 (95% confidence interval: 133,000-259,000) premature mortalities yr-1 globally and 167,000 premature mortalities yr-1 in Africa. BB contributes more ambient PM2.5-related premature mortalities per year (63%) than residential solid-fuel burning (29%) and trash burning (8%). Open BB in Central Africa leads to the largest number of PM2.5-attributed mortalities inside the region, while trash burning in North Africa and residential solid-fuel burning in West Africa contribute the most regional mortalities for each source. Overall, Africa has a unique ambient air pollution profile because natural sources, such as windblown dust and BB, contribute strongly to ambient PM2.5 levels and PM2.5-related mortality. Air pollution policies may need to focus on taking preventative measures to avoid exposure to ambient PM2.5 from these less-controllable sources.
Collapse
Affiliation(s)
- Janica N. D. Gordon
- Department of PhysicsNorth Carolina Agricultural and Technical State UniversityGreensboroNCUSA
- Applied Sciences and Technology PhD programNorth Carolina Agricultural and Technical State UniversityGreensboroNCUSA
| | - Kelsey R. Bilsback
- Department of Atmospheric ScienceColorado State UniversityFort CollinsCOUSA
- PSE Healthy EnergyOaklandCAUSA
| | - Marc N. Fiddler
- Department of ChemistryNorth Carolina Agricultural and Technical State UniversityGreensboroNCUSA
| | - Rudra P. Pokhrel
- Department of PhysicsNorth Carolina Agricultural and Technical State UniversityGreensboroNCUSA
- NOAA Chemical Sciences LaboratoryBoulderCOUSA
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado BoulderBoulderCOUSA
| | - Emily V. Fischer
- Department of Atmospheric ScienceColorado State UniversityFort CollinsCOUSA
| | - Jeffrey R. Pierce
- Department of Atmospheric ScienceColorado State UniversityFort CollinsCOUSA
| | - Solomon Bililign
- Department of PhysicsNorth Carolina Agricultural and Technical State UniversityGreensboroNCUSA
- Applied Sciences and Technology PhD programNorth Carolina Agricultural and Technical State UniversityGreensboroNCUSA
| |
Collapse
|
6
|
Fawole OG, Yusuf N, Sunmonu LA, Obafaye A, Audu DK, Onuorah L, Olusegun CF, Deme A, Senghor H. Impacts of COVID-19 Restrictions on Regional and Local Air Quality Across Selected West African Cities. GEOHEALTH 2022; 6:e2022GH000597. [PMID: 36248060 PMCID: PMC9538168 DOI: 10.1029/2022gh000597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/27/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
The emergence of COVID-19 brought with it panic and a sense of urgency causing governments to impose strict restrictions on human activities and vehicular movements. With anthropogenic emissions, especially waste management (domestic and municipal), traffic, and industrial activities, said to be a significant contributor to ambient air pollution, this study assessed the impacts of the imposed restrictions on the concentrations and size distribution of atmospheric aerosols and concentration of gaseous pollutants over West African subregion and seven major COVID-19 epicenters in the subregion. Satellite retrievals and reanalysis data sets were used to study the impact of the restrictions on Aerosol Optical Depth (AOD) and atmospheric concentrations NO2, SO2, CO, and O3. The anomalies were computed for 2020 relative to 2017-2019 (the reference years). In 2020 relative to the reference years, for area-averaged AOD levels, there was a consequential mean percentage change between -6.7% ± 21.0% and 19.2% ± 27.9% in the epicenters and -10.1% ± 15.4% over the subregion. The levels of NO2 and SO2 also reduced substantially at the epicenters, especially during the periods when the restrictions were highly enforced. However, the atmospheric levels of CO and ozone increased slightly in 2020 compared to the reference years. This study shows that "a one cap fits all" policy cannot reduced the level of air pollutants and that traffic and industrial processes are not the predominant sources of CO in major cities in the subregion.
Collapse
Affiliation(s)
- Olusegun G. Fawole
- School of the Environment, Geography and GeosciencesUniversity of PortsmouthPortsmouthUK
- Department of Physics and Engineering PhysicsObafemi Awolowo UniversityIle‐IfeNigeria
| | - Najib Yusuf
- Centre for Atmospheric Research (CAR)National Space Research and Development AgencyKogi State UniversityAnyigba CampusAbujaNigeria
| | - Lukman A. Sunmonu
- Department of Physics and Engineering PhysicsObafemi Awolowo UniversityIle‐IfeNigeria
| | - Aderonke Obafaye
- Centre for Atmospheric Research (CAR)National Space Research and Development AgencyKogi State UniversityAnyigba CampusAbujaNigeria
| | - Dauda K. Audu
- Centre for Atmospheric Research (CAR)National Space Research and Development AgencyKogi State UniversityAnyigba CampusAbujaNigeria
| | - Loretta Onuorah
- Department of Physical and GeosciencesGodfrey Okoye UniversityEnuguNigeria
| | - Christiana F. Olusegun
- Centre for Atmospheric Research (CAR)National Space Research and Development AgencyKogi State UniversityAnyigba CampusAbujaNigeria
| | - Abdoulaye Deme
- UFR Sciences Appliquees et Technologie (SAT)Universite Gaston BergerSaint‐LouisSenegal
| | - Habib Senghor
- Senegalese National Agency of Civil Aviation and Meteorology (ANACIM)DakarSenegal
| |
Collapse
|
7
|
The Influence of Air Pollution on Pulmonary Disease Incidence Analyzed Based on Grey Correlation Analysis. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4764720. [PMID: 36262999 PMCID: PMC9546706 DOI: 10.1155/2022/4764720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/08/2022] [Accepted: 08/27/2022] [Indexed: 01/26/2023]
Abstract
Air pollution is a primary health threat issue worldwide because it is closely concerned with respiratory diseases. A random survey reported that around 7 million people died because of ambient and household air pollution. Especially, the people suffering from asthma and chronic obstructive pulmonary disease (COPD) are highly affected by air pollutants. The air pollution components induce asthma onset and COPD acute exacerbation, which leads to maximized mortality and morbidity rate. Therefore, the influence of air pollution on COPD should be examined continuously to minimize the mortality rate. Several methods are presented in this field to investigate the relationship between health and pollutants. However, the existing approaches are only predicting the short-term data and have difficulties such as computation time, redundant data in large data analysis, and data continuity. Then, this research introduced the meta-heuristic optimized grey correlation analysis (MH-GCA) to solve the research difficulties. The correlation analysis has several models that identify the relationship between the pollution factors with COPD disease. The method analysis of the particulate matter (〖PM〗_10) in air pollution is more relevant to COPD and lung cancer disease. The grey analysis uses the uncertainty concept to identify the particle influence on air pollution. In the analysis, the cuttlefish optimization algorithm was applied to select more relevant features from the pollutant list that reduces the computation time and correlation analysis rate. The introduced system was evaluated using the air quality dataset and COPD dataset developed with the help of the MATLAB tool. The system increases the influence recognition accuracy (2.48%) and MCC (3.11%) and decreases the error rate (55.89%) for different pollutants.
Collapse
|
8
|
Flanagan E, Oudin A, Walles J, Abera A, Mattisson K, Isaxon C, Malmqvist E. Ambient and indoor air pollution exposure and adverse birth outcomes in Adama, Ethiopia. ENVIRONMENT INTERNATIONAL 2022; 164:107251. [PMID: 35533531 DOI: 10.1016/j.envint.2022.107251] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Air pollution poses a threat to human health, with pregnant women and their developing fetuses being particularly vulnerable. A high dual burden of ambient and indoor air pollution exposure has been identified in Ethiopia, but studies investigating their effects on adverse birth outcomes are currently lacking. This study explores the association between ambient air pollution (NOX and NO2) and indoor air pollution (cooking fuel type) and fetal and neonatal death in Adama, Ethiopia. A prospective cohort of mothers and their babies was used, into which pregnant women were recruited at their first antenatal visit (n = 2085) from November 2015 to February 2018. Previously developed land-use regression models were utilized to assess ambient concentrations of NOX and NO2 at the residential address, whereas data on cooking fuel type was derived from questionnaires. Birth outcome data was obtained from self-reported questionnaire responses during the participant's postnatal visit or by phone if an in-person meeting was not possible. Binary logistic regression was employed to assess associations within the final study population (n = 1616) using both univariate and multivariate models; the latter of which adjusted for age, education, parity, and HIV status. Odds ratios (OR) and their corresponding 95% confidence intervals (CI) were reported. Within the cohort, 69 instances of fetal death (n = 16 miscarriages; n = 53 stillbirths) and 16 cases of neonatal death were identified. The findings suggest a tendency towards an association between ambient NOX and NO2 exposure during pregnancy and an increased risk of fetal death overall as well as stillbirth, specifically. However, statistical significance was not observed. Results for indoor air pollution and neonatal death were inconclusive. As limited evidence on the effects of exposure to ambient air pollution on adverse birth outcomes exists in Sub-Saharan Africa and Ethiopia, additional studies with larger study populations should be conducted.
Collapse
Affiliation(s)
- Erin Flanagan
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Lund, Sweden.
| | - Anna Oudin
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - John Walles
- Clinical Infection Medicine, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Asmamaw Abera
- Ethiopia Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kristoffer Mattisson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Christina Isaxon
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, LTH, Lund University, Lund, Sweden
| | - Ebba Malmqvist
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Hu Y, Wu M, Li Y, Liu X. Influence of PM 1 exposure on total and cause-specific respiratory diseases: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15117-15126. [PMID: 34628607 PMCID: PMC8810454 DOI: 10.1007/s11356-021-16536-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
An increasing number of studies examined the potential effects of PM1 (submicronic particulate matter with an aerodynamic diameter ≤ 1 μm) on the risk of respiratory diseases; however, the results have been inconclusive. This study aimed to determine the overall association between PM1 with total and cause-specific respiratory diseases. A systematic review and meta-analysis was conducted with 68 related articles retrieved, and six articles met the full inclusion criteria for the final analysis. For a 10 μg/m3 increase in PM1, the pooled odds ratio (OR) was 1.05 (95% CI 0.98-1.12) for total respiratory diseases, 1.25 (95% CI 1.00-1.56) for asthma, and 1.07 (95% CI 1.04-1.10) for pneumonia with the I2 value of 87%, 70%, and 0%, respectively. Subgroup analyses showed that long-term exposure to PM1 was associated with increased risk of asthma (OR 1.47, 95% CI 1.33-1.63) with an I2 value of 0%, while short-term exposure to PM1 was not associated with asthma (OR 1.07, 95% CI 0.89-1.27) with the I2 value of 0%. Egger's test showed that publication bias existed (P = 0.041); however, the funnel plot was symmetrical with the inclusion of the moderator. In conclusion, elevated levels of PM1 may increase morbidity in total and cause-specific respiratory diseases in the population.
Collapse
Affiliation(s)
- Yaoyu Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069 China
| | - Mengqiu Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069 China
| | - Yutong Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069 China
| | - Xiangtong Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069 China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069 China
| |
Collapse
|
10
|
Chandra M, Rai CB, Kumari N, Sandhu VK, Chandra K, Krishna M, Kota SH, Anand KS, Oudin A. Air Pollution and Cognitive Impairment across the Life Course in Humans: A Systematic Review with Specific Focus on Income Level of Study Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031405. [PMID: 35162428 PMCID: PMC8835599 DOI: 10.3390/ijerph19031405] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 02/01/2023]
Abstract
Cognitive function is a crucial determinant of human capital. The Lancet Commission (2020) has recognized air pollution as a risk factor for dementia. However, the scientific evidence on the impact of air pollution on cognitive outcomes across the life course and across different income settings, with varying levels of air pollution, needs further exploration. A systematic review was conducted, using Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) Guidelines to assess the association between air pollution and cognitive outcomes across the life course with a plan to analyze findings as per the income status of the study population. The PubMed search included keywords related to cognition and to pollution (in their titles) to identify studies on human participants published in English until 10 July 2020. The search yielded 84 relevant studies that described associations between exposure to air pollutants and an increased risk of lower cognitive function among children and adolescents, cognitive impairment and decline among adults, and dementia among older adults with supportive evidence of neuroimaging and inflammatory biomarkers. No study from low- and middle-income countries (LMICs)was identified despite high levels of air pollutants and high rates of dementia. To conclude, air pollution may impair cognitive function across the life-course, but a paucity of studies from reLMICs is a major lacuna in research.
Collapse
Affiliation(s)
- Mina Chandra
- Department of Psychiatry, Centre of Excellence in Mental Health, Atal Bihari Vajpayee Institute of Medical Sciences (formerly PGIMER) and Dr. Ram Manohar Lohia Hospital, New Delhi 110001, India; (C.B.R.); (N.K.); (V.K.S.)
- Correspondence: ; Tel.: +91-98-1183-1902
| | - Chandra Bhushan Rai
- Department of Psychiatry, Centre of Excellence in Mental Health, Atal Bihari Vajpayee Institute of Medical Sciences (formerly PGIMER) and Dr. Ram Manohar Lohia Hospital, New Delhi 110001, India; (C.B.R.); (N.K.); (V.K.S.)
| | - Neelam Kumari
- Department of Psychiatry, Centre of Excellence in Mental Health, Atal Bihari Vajpayee Institute of Medical Sciences (formerly PGIMER) and Dr. Ram Manohar Lohia Hospital, New Delhi 110001, India; (C.B.R.); (N.K.); (V.K.S.)
| | - Vipindeep Kaur Sandhu
- Department of Psychiatry, Centre of Excellence in Mental Health, Atal Bihari Vajpayee Institute of Medical Sciences (formerly PGIMER) and Dr. Ram Manohar Lohia Hospital, New Delhi 110001, India; (C.B.R.); (N.K.); (V.K.S.)
| | - Kalpana Chandra
- Delhi Jal Board, Government of National Capital Territory of Delhi, New Delhi 110094, India;
| | - Murali Krishna
- JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India;
| | - Sri Harsha Kota
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Kuljeet Singh Anand
- Department of Neurology, Atal Bihari Vajpayee Institute of Medical Sciences (Formerly PGIMER) and Dr. Ram Manohar Lohia Hospital, New Delhi 110001, India;
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umea, Sweden;
- Department of Laboratory Medicine, Lund University, 901 87 Umea, Sweden
| |
Collapse
|
11
|
A Characterization and Cell Toxicity Assessment of Particulate Pollutants from Road Traffic Sites in Kano State, Nigeria. ATMOSPHERE 2022. [DOI: 10.3390/atmos13010080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Emerging African countries are characterized by explosive population growth and urbanization, which threaten environmental sustainability. This study comparatively characterized ambient aerosols and assessed cytotoxicity to facilitate improving health and environmental policy. Twenty-four air samples were collected at high and low-density traffic sites in Kano State using polysulfone and stainless steel filters attached to an automated pump. The physico-chemical properties of particulate matter were determined using scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX). In vitro, their potential toxicity was assessed using macrophages and cell fixation with staining. Results showed 51.7% of particles as PM2.5, with the highest particle concentration in mixed sites (urban and industrial). Particle classification into four groups by elemental composition and structure showed: Si, Al, and Ca 58–67%; other fibres, Fe, S, Mo, and Zn 1–17%; non-sand non-fibres 23–56%; and silicone-based fibres 2–28%. The abundant elements are: Si, Al, Ca, Ce, Ti, Fe, Cl, Pb, and Mn. The lowest viability on cytotoxicity assessment was recorded in mixed site M2. The majority of households were located within 50 m of air sampling sites. Proximity to traffic sites worsens health, as evidenced in cytotoxicity findings. We recommend improved urban planning and intensification of emissions control.
Collapse
|
12
|
Abera A, Friberg J, Isaxon C, Jerrett M, Malmqvist E, Sjöström C, Taj T, Vargas AM. Air Quality in Africa: Public Health Implications. Annu Rev Public Health 2021; 42:193-210. [PMID: 33348996 DOI: 10.1146/annurev-publhealth-100119-113802] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review highlights the importance of air quality in the African urban development process. We address connections between air pollution and (a) rapid urbanization, (b) social problems, (c) health impacts, (d) climate change, (e) policies, and (f) new innovations. We acknowledge that air pollution levels in Africa can be extremely high and a serious health threat. The toxic content of the pollution could relate to region-specific sources such as low standards for vehicles and fuels, cooking with solid fuels, and burning household waste. We implore the pursuit of interdisciplinary research to create new approaches with relevant stakeholders. Moreover, successful air pollution research must regard conflicts, tensions, and synergies inherent to development processes in African municipalities, regions, and countries. This includes global relationships regarding climate change, trade, urban planning, and transportation. Incorporating aspects of local political situations (e.g., democracy) can also enhance greater political accountability and awareness about air pollution.
Collapse
Affiliation(s)
- Asmamaw Abera
- Department of Public Health, Addis Ababa University, 9086 Addis Ababa, Ethiopia
| | - Johan Friberg
- Division of Nuclear Physics, Faculty of Engineering, Lund University, 223 63 Lund, Sweden
| | - Christina Isaxon
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, 223 62 Lund, Sweden;
| | - Michael Jerrett
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, California 90095, USA
| | - Ebba Malmqvist
- Division of Occupational and Environmental Medicine, Lund University, 221 00 Lund, Sweden;
| | - Cheryl Sjöström
- Centre for Environmental and Climate Science, Lund University, 221 00 Lund, Sweden
| | - Tahir Taj
- Division of Occupational and Environmental Medicine, Lund University, 221 00 Lund, Sweden
| | | |
Collapse
|
13
|
Balidemaj F, Isaxon C, Abera A, Malmqvist E. Indoor Air Pollution Exposure of Women in Adama, Ethiopia, and Assessment of Disease Burden Attributable to Risk Factor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9859. [PMID: 34574780 PMCID: PMC8472573 DOI: 10.3390/ijerph18189859] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION AND AIM Air pollution, a major environmental threat to human health, contributes to the premature deaths of millions of people worldwide. Cooking with solid fuels, such as charcoal and wood, in low- and middle-income countries generates very high emissions of particulate matter within and near the household as a result of their inefficient combustion. Women are especially exposed, as they often perform the cooking. The purpose of this study was to assess the burden of disease attributable to household air pollution exposure from cooking among women in Adama, Ethiopia. METHODS AirQ+ software (WHO Regional Office for Europe, Copenhagen, Denmark) was used to assess the health impact of household air pollution by estimating the burden of disease (BoD) including Acute Lower Respiratory Infections (ALRI), Chronic Obstructive Pulmonary Disease (COPD), Ischemic Heart Disease (IHD), lung cancer, and stroke, among a cohort of women in Adama. Household air pollution exposure estimated by cooking fuel type was assessed through questionnaires. RESULTS Three-quarters (75%) of Adama's population used solid fuel for cooking; with this, the household air pollution attributable mortality was estimated to be 50% (95% CI: 38-58%) due to ALRI, 50% (95% CI: 35-61%) due to COPD, 50% (95% CI: 27-58%) due to lung cancer, (95% CI: 23-48%) due to IHD, and (95% CI: 23-51%) due to stroke. The corresponding disability-adjusted life years (DALYs) per 100,000 women ranged between 6000 and 9000 per disease. CONCLUSIONS This health impact assessment illustrates that household air pollution due to solid fuel use among women in Adama leads to premature death and a substantial quantity of DALYs. Therefore, decreasing or eliminating solid fuel use for cooking purposes could prevent deaths and improve quality of life.
Collapse
Affiliation(s)
- Festina Balidemaj
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 222 42 Lund, Sweden;
| | - Christina Isaxon
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, 223 62 Lund, Sweden;
| | - Asmamaw Abera
- Water and Public Health Department, Ethiopia Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia;
| | - Ebba Malmqvist
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 222 42 Lund, Sweden;
| |
Collapse
|
14
|
Alli AS, Clark SN, Hughes A, Nimo J, Bedford-Moses J, Baah S, Wang J, Vallarino J, Agyemang E, Barratt B, Beddows A, Kelly F, Owusu G, Baumgartner J, Brauer M, Ezzati M, Agyei-Mensah S, Arku RE. Spatial-temporal patterns of ambient fine particulate matter (PM 2.5) and black carbon (BC) pollution in Accra. ENVIRONMENTAL RESEARCH LETTERS : ERL [WEB SITE] 2021; 16:074013. [PMID: 34239599 PMCID: PMC8227509 DOI: 10.1088/1748-9326/ac074a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 05/06/2023]
Abstract
Sub-Saharan Africa (SSA) is rapidly urbanizing, and ambient air pollution has emerged as a major environmental health concern in growing cities. Yet, effective air quality management is hindered by limited data. We deployed robust, low-cost and low-power devices in a large-scale measurement campaign and characterized within-city variations in fine particulate matter (PM2.5) and black carbon (BC) pollution in Accra, Ghana. Between April 2019 and June 2020, we measured weekly gravimetric (filter-based) and minute-by-minute PM2.5 concentrations at 146 unique locations, comprising of 10 fixed (∼1 year) and 136 rotating (7 day) sites covering a range of land-use and source influences. Filters were weighed for mass, and light absorbance (10-5m-1) of the filters was used as proxy for BC concentration. Year-long data at four fixed sites that were monitored in a previous study (2006-2007) were compared to assess changes in PM2.5 concentrations. The mean annual PM2.5 across the fixed sites ranged from 26 μg m-3 at a peri-urban site to 43 μg m-3 at a commercial, business, and industrial (CBI) site. CBI areas had the highest PM2.5 levels (mean: 37 μg m-3), followed by high-density residential neighborhoods (mean: 36 μg m-3), while peri-urban areas recorded the lowest (mean: 26 μg m-3). Both PM2.5 and BC levels were highest during the dry dusty Harmattan period (mean PM2.5: 89 μg m-3) compared to non-Harmattan season (mean PM2.5: 23 μg m-3). PM2.5 at all sites peaked at dawn and dusk, coinciding with morning and evening heavy traffic. We found about a 50% reduction (71 vs 37 μg m-3) in mean annual PM2.5 concentrations when compared to measurements in 2006-2007 in Accra. Ambient PM2.5 concentrations in Accra may have plateaued at levels lower than those seen in large Asian megacities. However, levels are still 2- to 4-fold higher than the WHO guideline. Effective and equitable policies are needed to reduce pollution levels and protect public health.
Collapse
Affiliation(s)
- Abosede S Alli
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States of America
| | - Sierra N Clark
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom
- MRC Center for Environment and Health, Imperial College London, London, United Kingdom
| | - Allison Hughes
- Department of Physics, University of Ghana, Legon, Ghana
| | - James Nimo
- Department of Physics, University of Ghana, Legon, Ghana
| | | | - Solomon Baah
- Department of Physics, University of Ghana, Legon, Ghana
| | - Jiayuan Wang
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States of America
| | - Jose Vallarino
- Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Ernest Agyemang
- Department of Geography and Resource Development, University of Ghana, Legon, Ghana
| | - Benjamin Barratt
- MRC Center for Environment and Health, Imperial College London, London, United Kingdom
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - Andrew Beddows
- MRC Center for Environment and Health, Imperial College London, London, United Kingdom
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - Frank Kelly
- MRC Center for Environment and Health, Imperial College London, London, United Kingdom
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - George Owusu
- Department of Geography and Resource Development, University of Ghana, Legon, Ghana
| | - Jill Baumgartner
- Institute for Health and Social Policy, McGill University, Montreal, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
| | - Michael Brauer
- School of Population and Public Health, The University of British Columbia, Vancouver, Canada
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, United States of America
| | - Majid Ezzati
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom
- MRC Center for Environment and Health, Imperial College London, London, United Kingdom
- Regional Institute for Population Studies, University of Ghana, Legon, Ghana
| | - Samuel Agyei-Mensah
- Department of Geography and Resource Development, University of Ghana, Legon, Ghana
| | - Raphael E Arku
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States of America
| |
Collapse
|
15
|
Onyeuwaoma N, Okoh D, Okere B. A neural network-based method for modeling PM 2.5 measurements obtained from the surface particulate matter network. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:261. [PMID: 33846862 PMCID: PMC8041022 DOI: 10.1007/s10661-021-09049-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Air pollution is a global problem; hence, many countries devoted lots of resources towards its study and possible eradication. The major parameter indicator for air quality is the particulate matter (PM). These particles, especially PM2.5, are injurious to health either under high concentration levels or after a long-term exposure. PM2.5 particles are known to cause lung and respiratory diseases, cardiovascular diseases, and even cancer. In this research, artificial neural networks were used to train PM 2.5 measurements obtained from the Surface Particulate Matter Network (SPARTAN). The training was done using inputs that indicate time series of the measurements and the prevailing atmospheric conditions. The developed models were used to estimate PM 2.5 over a sub-Saharan site in Ilorin. Our study considered meteorological parameters and aerosol optical depth (AOD) as inputs for the neural networks. The targets are PM 2.5 measurements obtained from SPARTAN. Our models showed very high correlation with measured data. Apart from the data generated using model p which has a correlation of 0.0009, the correlation R2 for other models ranges from 0.59 to 0.95) which has a good performance. The model PRB estimated both low and high PM better while others either under or over predict emission scenarios.
Collapse
Affiliation(s)
- Nnaemeka Onyeuwaoma
- NASRDA-Center for Basic Space Science, University of Nigeria, Nsukka, Nigeria.
| | - Daniel Okoh
- NASRDA-Center for Atmospheric Research, Anyigba, Nigeria
| | - Bonaventure Okere
- NASRDA-Center for Basic Space Science, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
16
|
Yan X, Zang Z, Zhao C, Husi L. Understanding global changes in fine-mode aerosols during 2008-2017 using statistical methods and deep learning approach. ENVIRONMENT INTERNATIONAL 2021; 149:106392. [PMID: 33516989 DOI: 10.1016/j.envint.2021.106392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Despite their extremely small size, fine-mode aerosols have significant impacts on the environment, climate, and human health. However, current understandings of global changes in fine-mode aerosols are limited. In this study, we employed newly developed satellite retrieval data and an attentive interpretable deep learning model to explore the status, changes, and association factors of the global fine-mode aerosol optical depth (fAOD) and aerosol fine-mode fraction (FMF) from 2008 to 2017. At the global scale, the results show a significant increasing trend in land FMF (2.34 × 10-3/year); however, the FMF over the ocean and the fAOD over land and ocean did not reveal significant trends. Between 2008 and 2017, high levels of both fAOD (>0.30) and FMF (>0.75) were identified over China, southeastern Asia, India, and Africa. Seasonally, global land FMF showed high values in summer (>0.70) and low values in spring (<0.65), while land fAOD was high in summer (>0.15) but low in winter (<0.13). Importantly, Australia and Mexico experienced significant increasing trends in FMF during all four seasons. At the regional scale, a significant decline in fAOD was identified in China, which indicates that government emission controls and reductions have been effective in recent decades. The deep learning model was used to interpret the result and showed that O3 was significantly associated with changes in both the FMF and fAOD. This finding suggests the importance of synergizing the regulations for both O3 and fine particles. Our work comprehensively examined global spatial and seasonal fAOD and FMF changes and provides a holistic understanding of global anthropogenic impacts.
Collapse
Affiliation(s)
- Xing Yan
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Zhou Zang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Chuanfeng Zhao
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China.
| | - Letu Husi
- Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences (CAS), DaTun Road No. 20 (North), Beijing 100101, China
| |
Collapse
|
17
|
Air Pollution Measurements and Land-Use Regression in Urban Sub-Saharan Africa Using Low-Cost Sensors—Possibilities and Pitfalls. ATMOSPHERE 2020. [DOI: 10.3390/atmos11121357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Air pollution is recognized as the most important environmental factor that adversely affects human and societal wellbeing. Due to rapid urbanization, air pollution levels are increasing in the Sub-Saharan region, but there is a shortage of air pollution monitoring. Hence, exposure data to use as a base for exposure modelling and health effect assessments is also lacking. In this study, low-cost sensors were used to assess PM2.5 (particulate matter) levels in the city of Adama, Ethiopia. The measurements were conducted during two separate 1-week periods. The measurements were used to develop a land-use regression (LUR) model. The developed LUR model explained 33.4% of the variance in the concentrations of PM2.5. Two predictor variables were included in the final model, of which both were related to emissions from traffic sources. Some concern regarding influential observations remained in the final model. Long-term PM2.5 and wind direction data were obtained from the city’s meteorological station, which should be used to validate the representativeness of our sensor measurements. The PM2.5 long-term data were however not reliable. Means of obtaining good reference data combined with longer sensor measurements would be a good way forward to develop a stronger LUR model which, together with improved knowledge, can be applied towards improving the quality of health. A health impact assessment, based on the mean level of PM2.5 (23 µg/m3), presented the attributable burden of disease and showed the importance of addressing causes of these high ambient levels in the area.
Collapse
|
18
|
Chen J, Hoek G. Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis. ENVIRONMENT INTERNATIONAL 2020; 143:105974. [PMID: 32703584 DOI: 10.1016/j.envint.2020.105974] [Citation(s) in RCA: 372] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 05/21/2023]
Abstract
As new scientific evidence on health effects of air pollution is generated, air quality guidelines need to be periodically updated. The objective of this review is to support the derivation of updated guidelines by the World Health Organization (WHO) by performing a systematic review of evidence of associations between long-term exposure to particulate matter with diameter under 2.5 µm (PM2.5) and particulate matter with diameter under 10 µm (PM10), in relation to all-cause and cause-specific mortality. As there is especially uncertainty about the relationship at the low and high end of the exposure range, the review needed to provide an indication of the shape of the concentration-response function (CRF). We systematically searched MEDLINE and EMBASE from database inception to 9 October 2018. Articles were checked for eligibility by two reviewers. We included cohort and case-control studies on outdoor air pollution in human populations using individual level data. In addition to natural-cause mortality, we evaluated mortality from circulatory diseases (ischemic heart disease (IHD) and cerebrovascular disease (stroke) also specifically), respiratory diseases (Chronic Obstructive Pulmonary Disease (COPD) and acute lower respiratory infection (ALRI) also specifically) and lung cancer. A random-effect meta-analysis was performed when at least three studies were available for a specific exposure-outcome pair. Risk of bias was assessed for all included articles using a specifically developed tool coordinated by WHO. Additional analyses were performed to assess consistency across geographic region, explain heterogeneity and explore the shape of the CRF. An adapted GRADE (Grading of Recommendations Assessment, Development and Evaluation) assessment of the body of evidence was made using a specifically developed tool coordinated by WHO. A large number (N = 107) of predominantly cohort studies (N = 104) were included after screening more than 3000 abstracts. Studies were conducted globally with the majority of studies from North America (N = 62) and Europe (N = 25). More studies used PM2.5 (N = 71) as the exposure metric than PM10 (N = 42). PM2.5 was significantly associated with all causes of death evaluated. The combined Risk Ratio (RR) for PM2.5 and natural-cause mortality was 1.08 (95%CI 1.06, 1.09) per 10 µg/m3. Meta analyses of studies conducted at the low mean PM2.5 levels (<25, 20, 15, 12, 10 µg/m3) yielded RRs that were similar or higher compared to the overall RR, consistent with the finding of generally linear or supra-linear CRFs in individual studies. Pooled RRs were almost identical for studies conducted in North America, Europe and Western Pacific region. PM10 was significantly associated with natural-cause and most but not all causes of death. Application of the risk of bias tool showed that few studies were at a high risk of bias in any domain. Application of the adapted GRADE tool resulted in an assessment of "high certainty of evidence" for PM2.5 with all assessed endpoints except for respiratory mortality (moderate). The evidence was rated as less certain for PM10 and cause-specific mortality ("moderate" for circulatory, IHD, COPD and "low" for stroke mortality. Compared to the previous global WHO evaluation, the evidence base has increased substantially. However, studies conducted in low- and middle- income countries (LMICs) are still limited. There is clear evidence that both PM2.5 and PM10 were associated with increased mortality from all causes, cardiovascular disease, respiratory disease and lung cancer. Associations remained below the current WHO guideline exposure level of 10 µg/m3 for PM2.5. Systematic review registration number (PROSPERO ID): CRD42018082577.
Collapse
Affiliation(s)
- Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands.
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| |
Collapse
|
19
|
Kwarteng L, Baiden EA, Fobil J, Arko‐Mensah J, Robins T, Batterman S. Air Quality Impacts at an E-Waste Site in Ghana Using Flexible, Moderate-Cost and Quality-Assured Measurements. GEOHEALTH 2020; 4:e2020GH000247. [PMID: 32832821 PMCID: PMC7431652 DOI: 10.1029/2020gh000247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 05/08/2023]
Abstract
Air quality information is scarce in low- and middle-income countries. This study describes the application of moderate cost approaches that can provide spatial and temporal information on concentrations of particulate matter (PM) needed to assess community and occupational exposures. We evaluated PM levels at the Agbogbloshie e-waste and scrap yard site in Accra, Ghana, and at upwind and downwind locations, obtaining both optical and gravimetric measurements, local meteorological data and satellite aerosol optical depth. Due to overload issues, the gravimetric 24-hr samplers were modified for periodic sampling and some optical data were screened for quality assurance. Exceptionally high concentrations (e.g., 1-hr average PM10 exceeding 2000 μg/m3) were sometimes encountered near combustion sources, including open fires at the e-waste site and spoil piles. 24-hr PM2.5 levels averaged 31, 88 and 57 μg/m3 at upwind, e-waste and downwind sites, respectively, and PM10 averaged 145, 214 and 190 μg/m3, considerably exceeding air quality standards. Upwind levels likely reflected biomass burning that is prevalent in the surrounding informal settlements; levels at the e-waste and downwind sites also reflected contributions from biomass combustion and traffic. The highest PM levels occurred in evenings, influenced by diurnal changes in emission rates, atmospheric dispersion and wind direction shifts. We demonstrate that moderate cost instrumentation, with some modifications, appropriate data cleaning protocols, and attention to understanding local sources and background levels, can be used to characterize spatial and temporal variation in PM levels in urban and industrial areas.
Collapse
Affiliation(s)
- Lawrencia Kwarteng
- Department of Biological, Environmental and Occupational Health SciencesUniversity of GhanaAccraGhana
| | - Emmanuel Acquah Baiden
- Department of Biological, Environmental and Occupational Health SciencesUniversity of GhanaAccraGhana
| | - Julius Fobil
- Department of Biological, Environmental and Occupational Health SciencesUniversity of GhanaAccraGhana
| | - John Arko‐Mensah
- Department of Biological, Environmental and Occupational Health SciencesUniversity of GhanaAccraGhana
| | - Thomas Robins
- Environmental Health SciencesUniversity of MichiganAnn ArborMichiganUSA
| | - Stuart Batterman
- Environmental Health SciencesUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
20
|
Ketfi A, Gharnaout M, Ben Saad H. Les équations de référence pléthysmographiques établies chez les adultes natifs de l’Est Algérien sont inapplicables pour ceux natifs du Nord Algérien. Rev Mal Respir 2019; 36:870-879. [DOI: 10.1016/j.rmr.2019.05.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/17/2019] [Indexed: 01/10/2023]
|
21
|
Urban Landscape Structure of a Fast-Growing African City: The Case of Niamey (Niger). URBAN SCIENCE 2019. [DOI: 10.3390/urbansci3020063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Combining multivariable statistics and geostatistics with landscape metrics, we attempted to quantify the spatial pattern of urbanization in the city of Niamey, Niger. Landscape metrics provided local quantification of both landscape composition and physiognomy while the Principal Component Analysis (PCA) yielded a multivariable summary of the main source of landscape metrics variation across the city. We used the variogram (geostatistics) to analyze the spatial pattern of the PCA outcomes and to characterize the associated spatial scales of variation. In Niamey, the main urban structure corresponded to a gradient ranging from highly diversified, fragmented, and both wooded and built-up areas in the city center and along the Niger River, to less green zones gathering steel-roofed houses whose density diminished towards the periphery. This concentric structure centered on the Niger River clearly reflected the history of Niamey. PCA and geostatistics provided appealing quantitative estimates of spatial patterns, scales, anisotropy and intensity of urban structures. Although these different tools are known in landscape ecology, they are rarely used together. The present paper illustrates how they allow characterizing the marked spatial variation of the urban landscape of the fast-growing African city of Niamey (Niger). Such a quantification of the urban landscapes may be extremely useful for future correlative investigations in various fields of research and planning.
Collapse
|
22
|
García MÁ, Sánchez ML, de Los Ríos A, Pérez IA, Pardo N, Fernández-Duque B. Analysis of PM10 and PM2.5 Concentrations in an Urban Atmosphere in Northern Spain. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 76:331-345. [PMID: 30430193 DOI: 10.1007/s00244-018-0581-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
This work analyses levels of particles PM10 and PM2.5 recorded at four air-quality monitoring stations located in the urban area of Valladolid (Spain) during 2015-2016. To achieve this, the evolution of particle concentrations at different time scales was determined. Average concentrations ranged from 15.3 to 17.6 µg m-3 for PM10 and between 8.9 and 14.8 µg m-3 for PM2.5. The highest monthly means were recorded in autumn and winter. The difference between mean concentrations at weekends and on weekdays for PM10 was around 3 µg m-3 at most of the measuring stations and was 1 µg m-3 for PM2.5. Two concentration peaks were found during the day, one in the morning and the other in the evening, which evidenced the influence of traffic and other anthropogenic activities on PM concentrations. Their mean values were approximately 21 and 17-21 µg m-3, respectively, for PM10. Mean maximum values for PM2.5 were 12 µg m-3, except at one of the measuring sites, with 17 µg m-3 for the morning maximum and 1 µg m-3 more for the nocturnal peak. In addition, the impact of long-distance transport of air masses in the study area was analysed by applying a HYSPLIT trajectory model, taking into account backward trajectories of European, African, and Atlantic origins as well as local conditions. In particular, high concentration events due to Saharan dust intrusions are presented. Finally, background levels of particle concentrations estimated at most sampling areas were around 15 and 7.7 µg m-3 for the PM10 and PM2.5 particle fractions, respectively.
Collapse
Affiliation(s)
- M Ángeles García
- Department of Applied Physics, University of Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain.
| | - M Luisa Sánchez
- Department of Applied Physics, University of Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain
| | - Adrián de Los Ríos
- Department of Applied Physics, University of Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain
| | - Isidro A Pérez
- Department of Applied Physics, University of Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain
| | - Nuria Pardo
- Department of Applied Physics, University of Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain
| | - Beatriz Fernández-Duque
- Department of Applied Physics, University of Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain
| |
Collapse
|
23
|
Anyanwu BO, Ezejiofor AN, Igweze ZN, Orisakwe OE. Heavy Metal Mixture Exposure and Effects in Developing Nations: An Update. TOXICS 2018; 6:E65. [PMID: 30400192 PMCID: PMC6316100 DOI: 10.3390/toxics6040065] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 01/06/2023]
Abstract
The drive for development and modernization has come at great cost. Various human activities in developed and developing countries, particularly in sub-Saharan Africa (SSA) have given rise to environmental safety concerns. Increased artisanal mining activities, illegal refining, use of leaded petrol, airborne dust, arbitrary discarding and burning of toxic waste, absorption of production industries in inhabited areas, inadequate environmental legislation, and weak implementation of policies, have given rise to the incomparable contamination and pollution associated with heavy metals in recent decades. This review evaluates the public health effects of heavy metals and their mixtures in SSA. This shows the extent and size of the problem posed by exposure to heavy metal mixtures in regard to public health.
Collapse
Affiliation(s)
- Brilliance Onyinyechi Anyanwu
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research, University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria.
| | - Anthonet Ndidiamaka Ezejiofor
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria.
| | - Zelinjo Nkeiruka Igweze
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, Madonna University Elele, PMB, 5001 Elele, Rivers State, Nigeria.
| | - Orish Ebere Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria.
| |
Collapse
|