1
|
Huang E, Tang J, Song S, Yan H, Yu X, Luo C, Chen Y, Ji H, Chen A, Zhou J, Liao H. Caffeic acid O-methyltransferase from Ligusticum chuanxiong alleviates drought stress, and improves lignin and melatonin biosynthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1458296. [PMID: 39359625 PMCID: PMC11445181 DOI: 10.3389/fpls.2024.1458296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
Drought stress is a major constraint on plant growth and agricultural productivity. Caffeic acid O-methyltransferase (COMT), an enzyme involved in the methylation of various substrates, plays a pivotal role in plant responses to abiotic stress. The involvement of COMTs in drought response, particularly through the enhancement of lignin and melatonin biosynthesis, remains poorly understood. In this study, LcCOMT was firstly proposed to be associated with the biosynthesis of both lignin and melatonin, as demonstrated through sequence comparison, phylogenetic analysis, and conserved motif identification. In vitro enzymatic assays revealed that LcCOMT effectively methylates N-acetylserotonin to melatonin, albeit with a higher Km value compared to caffeic acid. Site-directed mutagenesis of residues Phe171 and Asp269 resulted in a significant reduction in catalytic activity for caffeic acid, with minimal impact on N-acetylserotonin, underscoring the specificity of these residues in substrate binding and catalysis. Under drought conditions, LcCOMT expression was significantly upregulated. Overexpression of LcCOMT gene in Arabidopsis plants conferred enhanced drought tolerance, characterized by elevated lignin and melatonin levels, increased chlorophyll and carotenoid content, heightened activities of antioxidant enzymes peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD), and reduced malondialdehyde (MDA) and hydrogen peroxide (H2O2) accumulation. This study is among the few to demonstrate that COMT-mediated drought tolerance is achieved through the simultaneous promotion of lignin and melatonin biosynthesis. LcCOMT represents the first functionally characterized COMT in Apiaceae family, and it holds potential as a target for genetic enhancement of drought tolerance in future crop improvement strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Su W, Qiu J, Soufan W, El Sabagh A. Synergistic effects of melatonin and glycine betaine on seed germination, seedling growth, and biochemical attributes of maize under salinity stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14514. [PMID: 39256195 DOI: 10.1111/ppl.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024]
Abstract
Salinity stress represents a major threat to crop production by inhibiting seed germination, growth of seedlings, and final yield and, therefore, to the social and economic prosperity of developing countries. Recently, plant growth-promoting substances have been widely used as a chemical strategy for improving plant resilience towards abiotic stresses. This study aimed to determine whether melatonin (MT) and glycine betaine (GB) alone or in combination could alleviate the salinity-induced impacts on seed germination and growth of maize seedlings. Increasing NaCl concentration from 100 to 200 mM declined seed germination rate (4.6-37.7%), germination potential (24.5-46.7%), radical length (7.7-40.0%), plumule length (2.2-35.6%), seedling fresh (1.7-41.3%) and dry weight (23.0-56.1%) compared to control (CN) plants. However, MT and GB treatments lessened the adverse effects of 100 and 150 mM NaCl and enhanced germination comparable to control plants. In addition, results from the pot experiments show that 200 mM NaCl stress disrupted the osmotic balance and persuaded oxidative stress, presented by higher electrolyte leakage, hydrogen peroxide, superoxide radicals, and malondialdehyde compared to control plants. However, compared to the NaCl treatment, NaCl+MT+GB treatment decreased the accumulation of malondialdehyde (24.2-42.1%), hydrogen peroxide (36.2-44.0%), and superoxide radicals (20.1-50.9%) by up-regulating the activity of superoxide dismutase (28.4-51.2%), catalase (82.2-111.5%), ascorbate peroxidase (40.3-59.2%), and peroxidase (62.2-117.9%), and by enhancing osmolytes accumulation, thereby reducing NaCl-induced oxidative damages. Based on these findings, the application of MT+GB is an efficient chemical strategy for improving seed germination and growth of seedlings by improving the physiological and biochemical attributes of maize under 200 mM NaCl stress.
Collapse
Affiliation(s)
- Wennan Su
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, Hebei Province, China
| | - Jiaoqi Qiu
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, Hebei Province, China
| | - Walid Soufan
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ayman El Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
| |
Collapse
|
3
|
Liu W, Cui J, Ran C, Zhang Y, Liang J, Shao X, Zhang Q, Geng Y, Guo L. Paclobutrazol Enhanced Stem Lodging Resistance of Direct-Seeded Rice by Affecting Basal Internode Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:2289. [PMID: 39204725 PMCID: PMC11359414 DOI: 10.3390/plants13162289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The objectives of this study were to explore the mechanism of stem mechanical strength in direct-seeded rice (DSR) as affected by paclobutrazol, especially its related endogenous hormone and cell wall component changes in culm tissue and response to the application of paclobutrazol. Field experiments were conducted in Changchun County, Jilin Province, China, by using two japonica rice varieties, Jiyujing and Jijing305, with soaking seeds in paclobutrazol at concentrations of (0 mg L-1, S0; 50 mg L-1; S1; 100 mg L-1; S2; 150 mg L-1, S3; 200 mg L-1, S4) in 2021 and 2022. The results suggest that the application of paclobutrazol increased the grain yield and reduced the lodging rate of DSR. Compared with the S0 treatments, soaking the seeds in paclobutrazol treatments rapidly shortened the length of the basal internode by decreasing the endogenous indole acetic acid (IAA) and gibberellin A3 (GA3) contents in culm tissue. The larger breaking strength (M) was attributed to a higher section modulus (SM) and bending stress (BS). The higher mechanical tissue thickness in culm tissue under paclobutrazol treatments, which was raised by higher endogenous zeatin and zeatin riboside (Z+ZR) content in culm tissue, increased the culm diameter, culm wall thickness, and section modulus (SM) of the internode. Compared with the S0 treatments, soaking the seeds in paclobutrazol treatments increased the cellulose content, lignin content, activities of lignin-related enzymes, and expression of key genes in lignin biosynthesis, as well as resulted in a higher bending stress (BS) to enhance the culm breaking strength (M).
Collapse
Affiliation(s)
- Weiyang Liu
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
| | - Jiehao Cui
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
| | - Cheng Ran
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
| | - Yuchen Zhang
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
| | - Jianuo Liang
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
| | - Xiwen Shao
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
- National Crop Variety Approval and Characterization Station, Jilin Agricultural University, Changchun 130118, China
| | - Qiang Zhang
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
| | - Yanqiu Geng
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
- National Crop Variety Approval and Characterization Station, Jilin Agricultural University, Changchun 130118, China
| | - Liying Guo
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
- National Crop Variety Approval and Characterization Station, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
4
|
Gu Y, Zheng H, Li S, Wang W, Guan Z, Li J, Mei N, Hu W. Effects of narrow-wide row planting patterns on canopy photosynthetic characteristics, bending resistance and yield of soybean in maize‒soybean intercropping systems. Sci Rep 2024; 14:9361. [PMID: 38654091 DOI: 10.1038/s41598-024-59916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
With the improvements in mechanization levels, it is difficult for the traditional intercropping planting patterns to meet the needs of mechanization. In the traditional maize‒soybean intercropping, maize has a shading effect on soybean, which leads to a decrease in soybean photosynthetic capacity and stem bend resistance, resulting in severe lodging, which greatly affects soybean yield. In this study, we investigated the effects of three intercropping ratios (four rows of maize and four rows of soybean; four rows of maize and six rows of soybean; six rows of maize and six rows of soybean) and two planting patterns (narrow-wide row planting pattern of 80-50 cm and uniform-ridges planting pattern of 65 cm) on soybean canopy photosynthesis, stem bending resistance, cellulose, hemicellulose, lignin and related enzyme activities. Compared with the uniform-ridge planting pattern, the narrow-wide row planting pattern significantly increased the LAI, PAR, light transmittance and compound yield by 6.06%, 2.49%, 5.68% and 5.95%, respectively. The stem bending resistance and cellulose, hemicellulose, lignin and PAL, TAL and CAD activities were also significantly increased. Compared with those under the uniform-ridge planting pattern, these values increased by 7.74%, 3.04%, 8.42%, 9.76%, 7.39%, 10.54% and 8.73% respectively. Under the three intercropping ratios, the stem bending resistance, cellulose, hemicellulose, lignin content and PAL, TAL, and CAD activities in the M4S6 treatment were significantly greater than those in the M4S4 and M6S6 treatments. Compared with the M4S4 treatment, these variables increased by 12.05%, 11.09%, 21.56%, 11.91%, 18.46%, 16.1%, and 16.84%, respectively, and compared with the M6S6 treatment, they increased by 2.06%, 2.53%, 2.78%, 2.98%, 8.81%, 4.59%, and 4.36%, respectively. The D-M4S6 treatment significantly improved the lodging resistance of soybean and weakened the negative impact of intercropping on soybean yield. Therefore, based on the planting pattern of narrow-wide row maize‒soybean intercropping planting pattern, four rows of maize and six rows of soybean were more effective at improving the lodging resistance of soybean in the semiarid region of western China.
Collapse
Affiliation(s)
- Yan Gu
- Jilin Agricultural University, Changchun, 131008, China
| | - Haoyuan Zheng
- Jilin Agricultural University, Changchun, 131008, China
| | - Shuang Li
- Jilin Agricultural University, Changchun, 131008, China
| | - Wantong Wang
- Jilin Agricultural University, Changchun, 131008, China
| | - Zheyun Guan
- Jilin Academy of Agricultural Sciences, Changchun, 130124, China
| | - Jizhu Li
- Jilin Agricultural University, Changchun, 131008, China
| | - Nan Mei
- Jilin Agricultural University, Changchun, 131008, China.
| | - Wenhe Hu
- Jilin Agricultural University, Changchun, 131008, China.
| |
Collapse
|
5
|
Wang T, Jin Y, Deng L, Li F, Wang Z, Zhu Y, Wu Y, Qu H, Zhang S, Liu Y, Mei H, Luo L, Yan M, Gu M, Xu G. The transcription factor MYB110 regulates plant height, lodging resistance, and grain yield in rice. THE PLANT CELL 2024; 36:298-323. [PMID: 37847093 PMCID: PMC10827323 DOI: 10.1093/plcell/koad268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
The high-yielding Green Revolution varieties of cereal crops are characterized by a semidwarf architecture and lodging resistance. Plant height is tightly regulated by the availability of phosphate (Pi), yet the underlying mechanism remains obscure. Here, we report that rice (Oryza sativa) R2R3-type Myeloblastosis (MYB) transcription factor MYB110 is a Pi-dependent negative regulator of plant height. MYB110 is a direct target of PHOSPHATE STARVATION RESPONSE 2 (OsPHR2) and regulates OsPHR2-mediated inhibition of rice height. Inactivation of MYB110 increased culm diameter and bending resistance, leading to enhanced lodging resistance despite increased plant height. Strikingly, the grain yield of myb110 mutants was elevated under both high- and low-Pi regimes. Two divergent haplotypes based on single nucleotide polymorphisms in the putative promoter of MYB110 corresponded with its transcript levels and plant height in response to Pi availability. Thus, fine-tuning MYB110 expression may be a potent strategy for further increasing the yield of Green Revolution cereal crop varieties.
Collapse
Affiliation(s)
- Tingting Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Jin
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiao Deng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufeng Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongye Qu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Shunan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hanwei Mei
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Lijun Luo
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Ming Yan
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Mian Gu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Guohua Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
6
|
Fan Y, Wan X, Zhang X, Zhang J, Zheng C, Yang Q, Yang L, Li X, Feng L, Zou L, Xiang D. GRAS gene family in rye (Secale cereale L.): genome-wide identification, phylogeny, evolutionary expansion and expression analyses. BMC PLANT BIOLOGY 2024; 24:46. [PMID: 38216860 PMCID: PMC10787399 DOI: 10.1186/s12870-023-04674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND The GRAS transcription factor family plays a crucial role in various biological processes in different plants, such as tissue development, fruit maturation, and environmental stress. However, the GRAS family in rye has not been systematically analyzed yet. RESULTS In this study, 67 GRAS genes in S. cereale were identified and named based on the chromosomal location. The gene structures, conserved motifs, cis-acting elements, gene replications, and expression patterns were further analyzed. These 67 ScGRAS members are divided into 13 subfamilies. All members include the LHR I, VHIID, LHR II, PFYRE, and SAW domains, and some nonpolar hydrophobic amino acid residues may undergo cross-substitution in the VHIID region. Interested, tandem duplications may have a more important contribution, which distinguishes them from other monocotyledonous plants. To further investigate the evolutionary relationship of the GRAS family, we constructed six comparative genomic maps of homologous genes between rye and different representative monocotyledonous and dicotyledonous plants. The response characteristics of 19 ScGRAS members from different subfamilies to different tissues, grains at filling stages, and different abiotic stresses of rye were systematically analyzed. Paclobutrazol, a triazole-based plant growth regulator, controls plant tissue and grain development by inhibiting gibberellic acid (GA) biosynthesis through the regulation of DELLA proteins. Exogenous spraying of paclobutrazol significantly reduced the plant height but was beneficial for increasing the weight of 1000 grains of rye. Treatment with paclobutrazol, significantly reduced gibberellin levels in grain in the filling period, caused significant alteration in the expression of the DELLA subfamily gene members. Furthermore, our findings with respect to genes, ScGRAS46 and ScGRAS60, suggest that these two family members could be further used for functional characterization studies in basic research and in breeding programmes for crop improvement. CONCLUSIONS We identified 67 ScGRAS genes in rye and further analysed the evolution and expression patterns of the encoded proteins. This study will be helpful for further analysing the functional characteristics of ScGRAS genes.
Collapse
Affiliation(s)
- Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xianqi Wan
- Sichuan Academy of Agricultural Machinery Science, Chengdu, 610011, P.R. China
| | - Xin Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Jieyu Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Chunyu Zheng
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, P.R. China
| | - Qiaohui Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Li Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xiaolong Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Liang Feng
- Chengdu Institute of Food Inspection, Chengdu, 610000, P.R. China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China.
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China.
| |
Collapse
|
7
|
Wang Y, Pan Y, Zhao F, Meng X, Li Q, Huang Y, Ye Y. Changes in the lodging resistance of winter wheat from 1950s to the 2020s in Henan Province of China. BMC PLANT BIOLOGY 2023; 23:442. [PMID: 37726651 PMCID: PMC10510142 DOI: 10.1186/s12870-023-04452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Lodging is a major factor contributing to yield loss and constraining the mechanical harvesting of wheat crops. Genetic improvement through breeding effectively reduced the lodging and improved the grain yield, however, the physiological mechanisms involved in providing resistance to lodging are different in the breeding stage and are not clearly understood. The purpose of this study was to compare the differences in the lodging resistance (LR) of the wheat varieties released during the different decades and to explore the effect of the application of nitrogen (N) fertilizer on the plasticity of LR. RESULTS A field study was conducted during the cultivation seasons of 2019-2020 and 2020-2021, in soil supplemented with three N levels: N0 (0 kg ha-1), N180 (200 kg ha-1), and N360 (360 kg ha-1) using eight varieties of wheat released for commercial cultivation from 1950 to date. The results obtained showed that genetic improvement had significantly enhanced the LR and grain yield in wheat. In the first breeding stage (from 1950 to 1980s) the lodging resistant index increased by 15.0%, which was primarily attributed to a reduced plant height and increased contents of cellulose, Si, and Zn. In the second breeding stage (the 1990s-2020s) it increased by 172.8%, which was mainly attributed to an increase in the stem diameter, wall thickness, and the contents of K, Ca, Fe, Mn, and Cu. The application of N fertilizer improved the grain yield but reduced the LR in wheat. This was mainly due to an increase in plant height resulting in an elevation of the plant center of gravity, a decrease in the contents of cellulose, and a reduction in the area of large-sized vascular bundles in the stems, even if N supplementation increased the concentrations of K, Ca, and Si. CONCLUSION Although breeding strategies improved the stem strength, the trade-off between the grain yield and LR was more significantly influenced by the addition of N. Overcoming this peculiar situation will serve as a breakthrough in improving the seed yield in wheat crops in the future.
Collapse
Affiliation(s)
- Yang Wang
- Agricultural Green Development Engineering Technology Research Center, College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yonghui Pan
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Fulin Zhao
- Agricultural Green Development Engineering Technology Research Center, College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiangping Meng
- Agricultural Green Development Engineering Technology Research Center, College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qun Li
- Agricultural Green Development Engineering Technology Research Center, College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yudfang Huang
- Agricultural Green Development Engineering Technology Research Center, College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Youliang Ye
- Agricultural Green Development Engineering Technology Research Center, College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
8
|
Li Y, Shi S, Zhang Y, Zhang A, Wang Z, Yang Y. Copper stress-induced phytotoxicity associated with photosynthetic characteristics and lignin metabolism in wheat seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114739. [PMID: 36893694 DOI: 10.1016/j.ecoenv.2023.114739] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Copper (Cu) pollution is one of environmental problems that adversely affects the growth and development of plants. However, knowledge of lignin metabolism associated with Cu-induced phytotoxicity mechanism is insufficient. The objective of this study was to reveal the mechanisms underlying Cu-induced phytotoxicity by evaluating changes in the photosynthetic characteristics and lignin metabolism in the seedlings of wheat cultivar 'Longchun 30'. Treatment with varying concentrations of Cu clearly retarded seedling growth, as demonstrated by a reduction in the growth parameters. Cu exposure reduced the photosynthetic pigment content, gas exchange parameters, and chlorophyll fluorescence parameters, including the maximum photosynthetic efficiency, potential efficiency of photosystem II (PS II), photochemical efficiency of PS II in light, photochemical quenching, actual photochemical efficiency, quantum yield of PS II electron transport, and electron transport rate, but notably increased the nonphotochemical quenching and quantum yield of regulatory energy dissipation. Additionally, a significant increase was observed in the amount of cell wall lignin in wheat leaves and roots under Cu exposure. This increase was positively associated with the up-regulation of enzymes related to lignin synthesis, such as phenylalanine ammonia-lyase, 4-coumarate:CoA ligase, cinnamyl alcohol dehydrogenase, laccase, cell wall bound (CW-bound) guaiacol peroxidase, and CW-bound conifer alcohol peroxidase, and TaPAL, Ta4CL, TaCAD, and TaLAC expression. Correlation analysis revealed that lignin levels in the cell wall were negatively correlated with the growth of wheat leaves and roots. Taken together, Cu exposure inhibited photosynthesis in wheat seedlings, resulting from a reduction in photosynthetic pigment content, light energy conversion, and photosynthetic electron transport in the leaves of Cu-stressed seedlings, and the Cu-inhibitory effect on seedling growth was related to the inhibition of photosynthesis and an increase in cell wall lignification.
Collapse
Affiliation(s)
- Yaping Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Shuqian Shi
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Ya Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Aimei Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Zhaofeng Wang
- College of Bioengineering and Technology, Tianshui Normal University, Tianshui 741000, PR China
| | - Yingli Yang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
9
|
Zhao W, Ding L, Liu J, Zhang X, Li S, Zhao K, Guan Y, Song A, Wang H, Chen S, Jiang J, Chen F. Regulation of lignin biosynthesis by an atypical bHLH protein CmHLB in Chrysanthemum. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2403-2419. [PMID: 35090011 DOI: 10.1093/jxb/erac015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Stem mechanical strength is one of the most important agronomic traits that affects the resistance of plants against insects and lodging, and plays an essential role in the quality and yield of plants. Several transcription factors regulate mechanical strength in crops. However, mechanisms of stem strength formation and regulation remain largely unexplored, especially in ornamental plants. In this study, we identified an atypical bHLH transcription factor CmHLB (HLH PROTEIN INVOLVED IN LIGNIN BIOSYNTHESIS) in chrysanthemum, belonging to a small bHLH sub-family - the PACLOBUTRAZOL RESISTANCE (PRE) family. Overexpression of CmHLB in chrysanthemum significantly increased mechanical strength of the stem, cell wall thickness, and lignin content, compared with the wild type. In contrast, CmHLB RNA interference lines exhibited the opposite phenotypes. RNA-seq analysis indicated that CmHLB promoted the expression of genes involved in lignin biosynthesis. Furthermore, we demonstrated that CmHLB interacted with Chrysanthemum KNOTTED ARABIDOPSIS THALIANA7 (CmKNAT7) through the KNOX2 domain, which has a conserved function, i.e. it negatively regulates secondary cell wall formation of fibres and lignin biosynthesis. Collectively, our results reveal a novel role for CmHLB in regulating lignin biosynthesis by interacting with CmKNAT7 and affecting stem mechanical strength in Chrysanthemum.
Collapse
Affiliation(s)
- Wenqian Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiayou Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Song Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kunkun Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yunxiao Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Haibin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Fan Y, Wei X, Lai D, Yang H, Feng L, Li L, Niu K, Chen L, Xiang D, Ruan J, Yan J, Cheng J. Genome-wide investigation of the GRAS transcription factor family in foxtail millet (Setaria italica L.). BMC PLANT BIOLOGY 2021; 21:508. [PMID: 34732123 PMCID: PMC8565077 DOI: 10.1186/s12870-021-03277-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/18/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND GRAS transcription factors perform indispensable functions in various biological processes, such as plant growth, fruit development, and biotic and abiotic stress responses. The development of whole-genome sequencing has allowed the GRAS gene family to be identified and characterized in many species. However, thorough in-depth identification or systematic analysis of GRAS family genes in foxtail millet has not been conducted. RESULTS In this study, 57 GRAS genes of foxtail millet (SiGRASs) were identified and renamed according to the chromosomal distribution of the SiGRAS genes. Based on the number of conserved domains and gene structure, the SiGRAS genes were divided into 13 subfamilies via phylogenetic tree analysis. The GRAS genes were unevenly distributed on nine chromosomes, and members of the same subfamily had similar gene structures and motif compositions. Genetic structure analysis showed that most SiGRAS genes lacked introns. Some SiGRAS genes were derived from gene duplication events, and segmental duplications may have contributed more to GRAS gene family expansion than tandem duplications. Quantitative polymerase chain reaction showed significant differences in the expression of SiGRAS genes in different tissues and stages of fruits development, which indicated the complexity of the physiological functions of SiGRAS. In addition, exogenous paclobutrazol treatment significantly altered the transcription levels of DELLA subfamily members, downregulated the gibberellin content, and decreased the plant height of foxtail millet, while it increased the fruit weight. In addition, SiGRAS13 and SiGRAS25 may have the potential for genetic improvement and functional gene research in foxtail millet. CONCLUSIONS Collectively, this study will be helpful for further analysing the biological function of SiGRAS. Our results may contribute to improving the genetic breeding of foxtail millet.
Collapse
Affiliation(s)
- Yu Fan
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
- School of Food and Biological engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Xiaobao Wei
- Guizhou provincial Center For Disease Control And Prevention, Guiyang, 550025, People's Republic of China
| | - Dili Lai
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Hao Yang
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Liang Feng
- Chengdu Institute of Food Inspection, Chengdu, 610030, People's Republic of China
| | - Long Li
- Henan university of technology, Zhengzhou, 450001, People's Republic of China
| | - Kexin Niu
- Henan university of technology, Zhengzhou, 450001, People's Republic of China
| | - Long Chen
- Department of Nursing, Sichuan Tianyi College, Mianzhu, 618200, People's Republic of China
| | - Dabing Xiang
- School of Food and Biological engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Jun Yan
- School of Food and Biological engineering, Chengdu University, Chengdu, 610106, People's Republic of China.
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
11
|
Ahmad I, Kamran M, Meng X, Ali S, Ahmad S, Gao Z, Liu T, Han Q. Hormonal changes with uniconazole trigger canopy apparent photosynthesis and grain filling in wheat crop in a semi-arid climate. PROTOPLASMA 2021; 258:139-150. [PMID: 32968872 DOI: 10.1007/s00709-020-01559-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Phytohormones are important for the growth and development of plants. The objective of the experiment was to investigate the effect of foliar application of uniconazole (UCZ) at the four-leaf stage on hormone crosstalk and production of winter wheat. An experiment was carried out during 2015-2016 and 2016-2017 growth season in a semi-arid region, where UCZ at a concentration of 0 (CK, distilled water), 15 (FU15), 30 (FU30), and 45 (FU45) mg L-1 were sprayed on wheat crop at the four-leaf stage at a rate of 138.8 mL m-2. UCZ alters the endogenous hormone contents in flag leaves and in grains. UCZ inhibited gibberellic acid (GA) in flag leaves and in grains where the lower GA with UCZ improved the zeatin + zeatin riboside (Z + ZR) and abscisic acid (ABA) contents. The lower GA and higher Z + ZR and ABA contents with UCZ-treated plants improved the chlorophyll content and canopy apparent photosynthesis (CAP) as well as the grain-filling characteristics. The Z + ZR and ABA in flag leaves were positively correlated with chlorophyll content and CAP value while negatively with GA. Moreover, the Z + ZR and ABA were positively correlated with maximum grain weight, mean grain-filling rate, and maximum grain-filling rate, while negatively with GA level. Treatment FU30 significantly improved the chlorophyll content, CAP value, spike weight, grain-filling characteristics, and hormone contents of Z + ZR and ABA while it decreased the GA level. The hormone crosstalk with UCZ significantly increased the yield of wheat crop, where FU30 treatment performs better.
Collapse
Affiliation(s)
- Irshad Ahmad
- Key Laboratory of Crop Physio-Ecology and Tillage Science in North-Western Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Muhammad Kamran
- Key Laboratory of Crop Physio-Ecology and Tillage Science in North-Western Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiangping Meng
- Key Laboratory of Crop Physio-Ecology and Tillage Science in North-Western Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shahzad Ali
- Key Laboratory of Crop Physio-Ecology and Tillage Science in North-Western Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shakeel Ahmad
- Key Laboratory of Crop Physio-Ecology and Tillage Science in North-Western Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Tiening Liu
- Key Laboratory of Crop Physio-Ecology and Tillage Science in North-Western Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingfang Han
- Key Laboratory of Crop Physio-Ecology and Tillage Science in North-Western Loess Plateau, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Zhao D, Luan Y, Xia X, Shi W, Tang Y, Tao J. Lignin provides mechanical support to herbaceous peony (Paeonia lactiflora Pall.) stems. HORTICULTURE RESEARCH 2020; 7:213. [PMID: 33372177 PMCID: PMC7769982 DOI: 10.1038/s41438-020-00451-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 05/23/2023]
Abstract
Stem bending caused by mechanical failure is a major constraint for high-quality herbaceous peony (Paeonia lactiflora Pall.) cut flowers, but little is known about the underlying factors. In this study, two P. lactiflora cultivars, Xixia Yingxue (bending) and Hong Feng (upright), were used to investigate differences in stem bending. The results showed that the stem mechanical strength of Hong Feng was significantly higher than that of Xixia Yingxue, and the thickening of the secondary cell wall and the number of thickened secondary cell wall layers in Hong Feng were significantly higher than those in Xixia Yingxue. Moreover, compared with Xixia Yingxue, Hong Feng showed greater lignification of the cell wall and lignin deposition in the cell walls of the sclerenchyma, vascular bundle sheath and duct. All three types of lignin monomers were detected. The S-lignin, G-lignin, and total lignin contents and the activities of several lignin biosynthesis-related enzymes were higher in Hong Feng than in the other cultivar, and the S-lignin content was closely correlated with stem mechanical strength. In addition, 113,974 full-length isoforms with an average read length of 2106 bp were obtained from the full-length transcriptome of P. lactiflora stems, and differential expression analysis was performed based on the comparative transcriptomes of these two cultivars. Ten lignin biosynthesis-related genes, including 26 members that were closely associated with lignin content, were identified, and multiple upregulated and downregulated transcription factors were found to positively or negatively regulate lignin biosynthesis. Consequently, lignin was shown to provide mechanical support to P. lactiflora stems, providing useful information for understanding the formation of P. lactiflora stem strength.
Collapse
Affiliation(s)
- Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, P.R. China
| | - Yuting Luan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, P.R. China
| | - Xing Xia
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, P.R. China
| | - Wenbo Shi
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, P.R. China
| | - Yuhan Tang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, P.R. China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, P.R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P.R. China.
| |
Collapse
|
13
|
Raza A, Asghar MA, Ahmad B, Bin C, Iftikhar Hussain M, Li W, Iqbal T, Yaseen M, Shafiq I, Yi Z, Ahmad I, Yang W, Weiguo L. Agro-Techniques for Lodging Stress Management in Maize-Soybean Intercropping System-A Review. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1592. [PMID: 33212960 PMCID: PMC7698466 DOI: 10.3390/plants9111592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 11/24/2022]
Abstract
Lodging is one of the most chronic restraints of the maize-soybean intercropping system, which causes a serious threat to agriculture development and sustainability. In the maize-soybean intercropping system, shade is a major causative agent that is triggered by the higher stem length of a maize plant. Many morphological and anatomical characteristics are involved in the lodging phenomenon, along with the chemical configuration of the stem. Due to maize shading, soybean stem evolves the shade avoidance response and resulting in the stem elongation that leads to severe lodging stress. However, the major agro-techniques that are required to explore the lodging stress in the maize-soybean intercropping system for sustainable agriculture have not been precisely elucidated yet. Therefore, the present review is tempted to compare the conceptual insights with preceding published researches and proposed the important techniques which could be applied to overcome the devastating effects of lodging. We further explored that, lodging stress management is dependent on multiple approaches such as agronomical, chemical and genetics which could be helpful to reduce the lodging threats in the maize-soybean intercropping system. Nonetheless, many queries needed to explicate the complex phenomenon of lodging. Henceforth, the agronomists, physiologists, molecular actors and breeders require further exploration to fix this challenging problem.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (A.R.); (C.B.); (W.L.); (T.I.); (I.S.); (Z.Y.); (I.A.); (W.Y.)
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Ahsan Asghar
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhou 610000, China;
| | - Bushra Ahmad
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Punjab, Pakistan;
| | - Cheng Bin
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (A.R.); (C.B.); (W.L.); (T.I.); (I.S.); (Z.Y.); (I.A.); (W.Y.)
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - M. Iftikhar Hussain
- Department of Plant Biology & Soil Science, Universidad de Vigo, 36310 Vigo, Spain;
| | - Wang Li
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (A.R.); (C.B.); (W.L.); (T.I.); (I.S.); (Z.Y.); (I.A.); (W.Y.)
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Tauseef Iqbal
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (A.R.); (C.B.); (W.L.); (T.I.); (I.S.); (Z.Y.); (I.A.); (W.Y.)
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Yaseen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Institute of Rice Research, Sichuan Agricultural University, Wenjiang, Chengdu 625014, China;
| | - Iram Shafiq
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (A.R.); (C.B.); (W.L.); (T.I.); (I.S.); (Z.Y.); (I.A.); (W.Y.)
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhang Yi
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (A.R.); (C.B.); (W.L.); (T.I.); (I.S.); (Z.Y.); (I.A.); (W.Y.)
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Irshan Ahmad
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (A.R.); (C.B.); (W.L.); (T.I.); (I.S.); (Z.Y.); (I.A.); (W.Y.)
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenyu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (A.R.); (C.B.); (W.L.); (T.I.); (I.S.); (Z.Y.); (I.A.); (W.Y.)
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Liu Weiguo
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (A.R.); (C.B.); (W.L.); (T.I.); (I.S.); (Z.Y.); (I.A.); (W.Y.)
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
14
|
Paclobutrazol Application Favors Yield Improvement of Maize Under Semiarid Regions by Delaying Leaf Senescence and Regulating Photosynthetic Capacity and Antioxidant System During Grain-Filling Stage. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020187] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, we examined the potential role of paclobutrazol in delaying leaf senescence, in causing changes in the activities of antioxidants, and in the maintenance of photosynthetic activity during the senescence process, and, therefore, on the grain yield of maize under semiarid field conditions. Maize seeds were pretreated with 0 (CK), 200 (PS1), 300 (PS2), and 400 (PS3) mg paclobutrazol L−1. Our results indicated that elevated levels of reactive oxygen species (ROS) and higher accumulation of malondialdehyde (MDA) contents were positively associated with accelerated leaf senescence during the grain-filling periods. The leaf senescence resulted in the disintegration of the photosynthetic pigments and reduced the net photosynthetic rate after silking. However, the resultant ROS burst (O2− and H2O2) was lessened and the leaf senescence and chlorophyll degradation were evidently inhibited in leaves of paclobutrazol-treated maize plants, which was strongly linked with upregulated activities of antioxidant enzymes in treated plants. The enhanced chlorophyll contents and availability of a greater photosynthetic active green leaf area during the grain filling period facilitated the maintenance of higher photosynthetic rate, and light-harvesting efficiency of photosynthesis associated with photosystem II (PSII) resulted in higher kernel number ear−1 and thousand kernel weights, and thus increased the final grain yield. The average maize grain yield was increased by 18.8% to 55.6% in paclobutrazol treatments, compared to untreated control. Among the various paclobutrazol treatments, PS2 (300 mg L−1) treatment showed the most promising effects on enhancing the activities of antioxidative enzymes, delaying leaf senescence and improving the yield of maize. Thus, understanding this effect of paclobutrazol on delaying leaf senescence introduces new possibilities for facilitating yield improvement of maize under semiarid conditions.
Collapse
|
15
|
Jiang X, Wang Y, Xie H, Li R, Wei J, Liu Y. Environmental behavior of paclobutrazol in soil and its toxicity on potato and taro plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27385-27395. [PMID: 31325091 DOI: 10.1007/s11356-019-05947-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
The environmental behavior of paclobutrazol in soil and its toxicity were studied by field investigation and an outdoor pot experiment, and the residue of paclobutrazol was detected by gas chromatography-mass spectrometry. Field investigation has found that the residual paclobutrazol in the former succession crop could severely inhibit the growth of succeeding crops of potato; with migration and transformation of residual paclobutrazol in the soil, the stems of potato were thickened with residual amount of 1.23 mg kg-1, the growth was slow, and the height of potato in soil with residual amount of 1.34 mg kg-1 and the control was significantly different. The degradation dynamics of paclobutrazol fits with the first-order degradation kinetics, although T1/2 of paclobutrazol of the taro planting soil was 30.14-46.21 days and the residual paclobutrazol remained detectable even on day 120 after application. Taro leaves were sensitive to the stress of paclobutrazol pollution; the taro leaf thickness increased, the leaf area decreased, the chlorophyll content per area unit of taro leaf showed an obvious increased trend, and SOD and CAT activities and MDA and proline content increased significantly. Paclobutrazol promoted the tillering of taro, and the taro seedlings were dwarfed by 58.01, 63.27, and 75.88% at different concentrations. It indicated that taro had strong stress response ability under paclobutrazol pollution.
Collapse
Affiliation(s)
- Xiulan Jiang
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| | - Yanan Wang
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| | - Hui Xie
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Ruiqi Li
- Nankai University, Tianjin, 300071, China
| | - Jinling Wei
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| | - Yan Liu
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
16
|
Shah L, Yahya M, Shah SMA, Nadeem M, Ali A, Ali A, Wang J, Riaz MW, Rehman S, Wu W, Khan RM, Abbas A, Riaz A, Anis GB, Si H, Jiang H, Ma C. Improving Lodging Resistance: Using Wheat and Rice as Classical Examples. Int J Mol Sci 2019; 20:E4211. [PMID: 31466256 PMCID: PMC6747267 DOI: 10.3390/ijms20174211] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/04/2019] [Accepted: 08/19/2019] [Indexed: 01/07/2023] Open
Abstract
One of the most chronic constraints to crop production is the grain yield reduction near the crop harvest stage by lodging worldwide. This is more prevalent in cereal crops, particularly in wheat and rice. Major factors associated with lodging involve morphological and anatomical traits along with the chemical composition of the stem. These traits have built up the remarkable relationship in wheat and rice genotypes either prone to lodging or displaying lodging resistance. In this review, we have made a comparison of our conceptual perceptions with foregoing published reports and proposed the fundamental controlling techniques that could be practiced to control the devastating effects of lodging stress. The management of lodging stress is, however, reliant on chemical, agronomical, and genetic factors that are reducing the risk of lodging threat in wheat and rice. But, still, there are many questions remain to be answered to elucidate the complex lodging phenomenon, so agronomists, breeders, physiologists, and molecular biologists require further investigation to address this challenging problem.
Collapse
Affiliation(s)
- Liaqat Shah
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Muhammad Yahya
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Syed Mehar Ali Shah
- Department of Plant Breeding and Genetics, University of Agriculture Peshawar, Peshawar 57000, Pakistan
| | - Muhammad Nadeem
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Ahmad Ali
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Asif Ali
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Jing Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Muhammad Waheed Riaz
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Shamsur Rehman
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Weixun Wu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
| | - Riaz Muhammad Khan
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
| | - Adil Abbas
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
| | - Aamir Riaz
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
| | - Galal Bakr Anis
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
- Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Kafrelsheikh 33717, Egypt
| | - Hongqi Si
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China.
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Chuanxi Ma
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|