1
|
Thakur S, Bharti S. Recent progress in metal-organic frameworks based nanocomposites for antibiotic removal from water: An in-depth review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36155-3. [PMID: 40029468 DOI: 10.1007/s11356-025-36155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Antibiotic pollution has emerged as a critical concern due to the widespread use of antibiotics, their persistence in the environment, and their detrimental effects on aquatic ecosystems and human health. Therefore, developing and implementing effective strategies to eliminate these contaminants is essential. Metal-organic frameworks (MOFs) have garnered substantial interest in water purification due to their remarkable potential. This paper provides a comprehensive review of MOFs and related nanocomposites, with a particular emphasis on their effectiveness in removing antibiotics from water sources. MOFs stand out due to their unique characteristics, including high porosity, adjustable structures, and crystalline nature, making them exceptional in adsorbing contaminants and functioning as photocatalysts. The paper delves into the mechanisms of adsorption, which include electrostatic interactions, π-π bonding, van der Waals forces, hydrogen bonding, and surface complexation. It also examines the factors influencing adsorption and photodegradation, comparing these techniques to conventional adsorbents, and highlights the superior performance and cost-effectiveness of MOFs. Additionally, the study discusses the challenges, current trends, and future prospects in the field, offering insights that may inspire new researchers to further explore antibiotic removal using MOFs and develop innovative solutions to existing challenges.
Collapse
Affiliation(s)
- Suman Thakur
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India
| | - Sharda Bharti
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India.
| |
Collapse
|
2
|
Qiu J, Xu Z, Dong B, Wang M. Co-occurrence of cadmium and ciprofloxacin in environmental media decreases ciprofloxacin degradation by biogenic manganese oxides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125488. [PMID: 39644959 DOI: 10.1016/j.envpol.2024.125488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The coexistence of antibiotics with heavy metals is detrimental to humans and the environment. In urban water environments, Cadmium (Cd) and ciprofloxacin (CIP) frequently co-occur. Biogenic manganese oxides (BMOs) are a promising environmental bioremediation material due to their remarkable adsorption and oxidation properties. However, BMOs' removal mechanism in an environment where Cd and CIP co-occur is not yet unknown. We identified a manganese (Mn)-oxidising bacterium, Bacillus sp. XM02, with a strong ability for Mn (II) oxidation (85.23%) and BMOs production, and investigated its competitive removal mechanism in an environment with Cd and CIP co-occurrence. The BMOs exhibited a glorious CIP degradation ability and led to a marked decrease in the toxicity of CIP following oxidative degradation in Escherichia coli experiments. In contrast, in the co-existence of Cd and CIP, Cd hindered CIP removal by BMOs, but CIP did not affect Cd removal. Kinetic experiments combined with XPS characterisation revealed that the k value of Cd (297.39 h-1) was much higher than that of CIP (5.53 h-1), demonstrating that Cd was immediately adsorbed onto the surface of BMOs through a Cd-O bond. The surface potentials of BMOs carrying Cd alone and both Cd and CIP on the surface were similar, revealing that the electronegativity of Cd-carrying BMOs was greatly weakened (from -34.8 mV to -21 mV/-23 mV), which further reduced the BMOs' electrostatic interaction with CIP. Moreover, the concentration of dissolved Mn (III) in the co-existence group was lower than that in the CIP alone, indicating that the presence of Cd reduced the transformation of Mn (IV) to Mn (III) by BMOs. Consequently, Cd attenuated the effect of active Mn (IV) sites of BMOs on CIP's piperazine ring oxidative degradation. These results offer a theoretical direction for the use of BMOs to reduce the risk posed by antibiotics and heavy metals pollution in co-occurrence environments.
Collapse
Affiliation(s)
- Jingjing Qiu
- College of Environmental Science and Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China
| | - Zuxin Xu
- College of Environmental Science and Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China.
| | - Bin Dong
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China.
| | - Mei Wang
- College of Environmental Science and Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China
| |
Collapse
|
3
|
Yang R, Li Z, Pitakrattanawong C, Zhu L, Li B, Fang L, Fan L, Song C, Meng S. Magnetic nanoparticle modified moss Biochar: A novel solution for effective removal of enrofloxacin from aquaculture water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123956. [PMID: 39754798 DOI: 10.1016/j.jenvman.2024.123956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
The presence of residual antibiotics in water constitutes a potential threat to aquatic environments. Therefore, designing environmentally friendly and efficient biochar adsorbents is crucial. Aquaculture by-product moss (bryophyte) was transformed into biochar, which can eliminate antibiotics from wastewater through adsorption. This study successfully fabricated moss biochar (BC) and magnetically modified moss biochar (MBC), and explored their adsorption performance for enrofloxacin (ENR). Characterization analyses revealed that the specific surface area, total pore volume, and the quantity of functional groups of the MBC were significantly larger than those of the BC. The Langmuir isotherm model suggests that the maximum adsorption capacities of BC and MBC for ENR are 7.24 mg g⁻1 and 11.62 mg g⁻1. The adsorption process conforms to a pseudo-second-order kinetic model. Studies carried out at different temperatures disclose the spontaneous and endothermic thermodynamic characteristics of the system. Under neutral conditions, the adsorption efficiency attains its peak. The existence of various coexisting ions in water exerts a negligible influence on the adsorption process; furthermore, when the concentration of humic acid (HA) ranges from 0 to 20 mg/L, the removal rate remains above 90%. In actual water samples, the antibiotic removal rate can be as high as 96.84%. After three cycles of reuse, the structure of MBC remains unchanged while maintaining a high removal efficiency. The primary mechanisms for antibiotic adsorption by MBC involve electrostatic interactions, hydrophobic interactions, pore-filling effects, hydrogen bonding, and π-π interactions. This reusable magnetic moss biochar provides a promising research direction for effectively eliminating antibiotics from water sources.
Collapse
Affiliation(s)
- Ruonan Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Zhonghua Li
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China.
| | | | - Lei Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China.
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Longxiang Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China.
| | - Limin Fan
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China.
| | - Chao Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China; Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China.
| | - Shunlong Meng
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China.
| |
Collapse
|
4
|
Tripathi A, Ekanayake A, Tyagi VK, Vithanage M, Singh R, Rao YRS. Emerging contaminants in polluted waters: Harnessing Biochar's potential for effective treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123778. [PMID: 39721395 DOI: 10.1016/j.jenvman.2024.123778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/23/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Biochar is a carbon-rich, sponge-like material with intricate functionalities, making it suitable for various environmental remediation applications, including water treatment, soil amendment and, additives in construction materials, anaerobic digesters, and electrodes, among others. Its easy adaptability and low cost make it particularly attractive. This review highlights a range of biochar and surface-modified biochar exhibiting high uptake and degradation efficiencies for a broad spectrum of contaminants, including humic acid, disinfection by-products (DBPs), radioactive materials, dyes, heavy metals, antibiotics, microplastics, pathogens, Per- and polyfluoroalkyl substances (PFAS), and cytotoxins. The study provides a detailed discussion on different classes of pollutants and their removal mechanisms using biochar, covering processes like physical and chemical adsorption, electrostatic interactions, π-π interactions, hydrogen bonding, as well as surface complexation, chelation, among others. This review article stands out for its comprehensive exploration of biochar's effectiveness in removing a wide range of emerging contaminants, as well as recent advancements in the removal of conventional pollutants like heavy metals and antibiotics.
Collapse
Affiliation(s)
- Abhilasha Tripathi
- Department of Civil Engineering, Indian Institute of Technology Kanpur, 208016, India
| | - Anusha Ekanayake
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India.
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, 248007, India; Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia
| | - Rajesh Singh
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| | - Y R S Rao
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| |
Collapse
|
5
|
Hu S, Lu H, Xie W, Cao S, Shi J, Guo Y, Zhu X, Xu Z, Gao H. Oxidative degradation of sulfamethazine by manganese oxide supported biochar activated periodate: Effect and mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117700. [PMID: 39793289 DOI: 10.1016/j.ecoenv.2025.117700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/26/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
In this study, manganese oxide supported biochar (MBC) was used as a catalyst of periodate (PI) for the oxidative degradation of sulfonamide antibiotic sulfamethazine (SMZ). The degradation rate of 10 mg/L SMZ reached 99 % in 60 min in the MBC/PI system, and the optimal condition was pH 3.5, 0.12 g/L of MBC, and 0.17 mM of PI. Combined with quenching experiment and electron paramagnetic resonance (EPR) characterization, it was determined that the reactive oxygen species (ROS) participating in the reaction include iodate radical (IO3∙), singlet oxygen (1O2), and hydroxyl radical (∙OH). ROS, Mn(III) and electron transfer are three crucial SMZ removal mechanisms in MBC activated PI system, and the conversion process of reactive species was deduced. The manganese redox cycles, oxygen-containing functional groups on MBC surface, and BC-O-Mn(II) complex participated in reactive species production. The loading of manganese oxide increases the number of oxygen-containing functional group on the surface of BC, and BC-O-Mn(II) complex formation resulted in the higher catalytic activity compared with BC. Ten SMZ oxidative products and four transformation pathways was identified. This study provided an efficient and practical method to remove sulfonamide antibiotics and revealed its theoretical mechanism.
Collapse
Affiliation(s)
- Shuheng Hu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Hao Lu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, 210042, China
| | - Wenyi Xie
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, 210042, China
| | - Shaohua Cao
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, 210042, China
| | - Jiaqi Shi
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, 210042, China.
| | - Yang Guo
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, 210042, China
| | - Xin Zhu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, 210042, China
| | - Zimu Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Han Gao
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, 210042, China.
| |
Collapse
|
6
|
Ferfera-Harrar H, Sadi A, Benhalima T. Magnetic recyclable carboxymethyl cellulose/gelatin/citrate@Fe 3O 4 photo-nanocomposite beads for ciprofloxacin removal via hybrid adsorption/photocatalysis process under solar light as a renewable energy source. Int J Biol Macromol 2024; 282:136854. [PMID: 39454901 DOI: 10.1016/j.ijbiomac.2024.136854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/30/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Magnetically separable cross-linked carboxymethyl cellulose/gelatin/citrate-functionalized magnetite nanoparticles (Cit-Fe3O4) photo-nanocomposite beads (mCMC/Ge) were synthesized and applied in synergistic adsorption/photocatalytic degradation of ciprofloxacin (Cipro) pharmaceutical pollutant under sunlight irradiation. Various analytical techniques were employed to characterize their structural, textural, magnetic, thermal, and optical properties. The removal efficiency of mCMC/Ge beads was investigated considering different influencing parameters (pH, beads dosage, contact time, Cipro concentration, and temperature). Experimental data modeling indicated that the adsorption process followed pseudo-second-order kinetics and Langmuir isotherm models, with a maximum Langmuir adsorption capacity (qm) of 50 mg g-1 for mCMC/Ge, twice that of the matrix. Photocatalytic activity results showed prominent enhancement in Cipro removal using 1 g L-1 of mCMC/Ge at pH 7, as compared to Cit-Fe3O4, reaching 96 %, 85 %, and 63 % after 180 min of adsorption and 120 min of irradiation for initial pollutant concentrations of 10, 20, and 60 mg L-1, respectively. Furthermore, mCMC/Ge demonstrated efficient removal even in real water sample. The excellent removal performance of mCMC/Ge highlighted the synergy between polymeric matrix template and encapsulated Cit-Fe3O4 in improving Cipro adsorption and photodegradation. Furthermore, facile recyclability and sustained activity over five cycles identify mCMC/Ge photo-nanocomposite as a promising material for removing organic pollutants from contaminated waters.
Collapse
Affiliation(s)
- Hafida Ferfera-Harrar
- Materials Polymer Laboratory, Macromolecular Chemistry Department, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, B.P. 32 El-Alia, 16111 Algiers, Algeria.
| | - Amina Sadi
- Materials Polymer Laboratory, Macromolecular Chemistry Department, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, B.P. 32 El-Alia, 16111 Algiers, Algeria
| | - Tayeb Benhalima
- Materials Polymer Laboratory, Macromolecular Chemistry Department, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, B.P. 32 El-Alia, 16111 Algiers, Algeria; Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Zone Industrielle, BP 384 Bou-Ismail, Tipaza, Algeria; Unité de Recherche en Analyses Physico-Chimiques des Milieux Fluides et Sols - (URAPC-MFS/CRAPC), 11, Chemin Doudou Mokhtar, Ben Aknoun, Alger, Algeria
| |
Collapse
|
7
|
Huang J, Zimmerman AR, Wan Y, Bai X, Chen H, Zheng Y, Zhang Y, Yang Y, Fan Y, Gao B. Removal of Sulfamethoxazole Using Fe-Mn Biochar Filtration Columns: Influence of Co-existing Polystyrene Microplastics. JOURNAL OF CLEANER PRODUCTION 2024; 477:143877. [PMID: 40018068 PMCID: PMC11864291 DOI: 10.1016/j.jclepro.2024.143877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Emerging contaminants, particularly antibiotics and microplastics (MPs), present significant challenges in wastewater treatment and pose large ecological risks. This study investigates the removal efficiency of sulfamethoxazole (SMX) using Fe-Mn modified biochar (BFM) in fixed bed filtration columns, emphasizing the effect of the presence of polystyrene microplastics (PS-MPs) on SMX behavior in both water (pH≈5.6) and selected wastewater (pH≈8) systems. Batch sorption results show that 10 mg/L SMX in 50 mL water can be completely removed by 100 mg BFM sorbent. The Bed Depth Service Time model indicated the BFM column is feasible for SMX removal in scaled-up continuous wastewater flow operations, while the Yan model best elucidates SMX filtration behavior and suggests the dominant adsorption mechanisms include external mass transfer and intraparticle diffusion. The present of both 20 mg/L and 100 mg/L PS-MPs (pH≈5.6) significantly reduced SMX retention due to competitive sorption. However, at pH 3.2, competitive sorption became negligible due to electrostatic interactions driving the PS-MPs sorption, while neutral charged SMX bound through hydrogen-bonds or π-π EDA interactions. Elevated pH shifted both PS-MPs and SMX sorption to non-electrostatic thus intensifying sorption competition, highlighting the influence of pH on their interaction dynamics. In wastewater, SMX filtration was slightly inhibited by 100 mg/L PS-MPs in BFM columns, whereas PS-MPs removal remained unaffected due to the high ionic strength and alkaline pH. These findings highlight the impact of MPs on pollution removal efficiency in filtration system, essential for enhancing biochar-based wastewater treatment strategies.
Collapse
Affiliation(s)
- Jinsheng Huang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Andrew R. Zimmerman
- Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Yongshan Wan
- Center for Environmental Measurement and Modeling, US EPA, Gulf Breeze, FL 32561, USA
| | - Xue Bai
- Soil, Water, and Ecosystem Sciences, Everglades Research and Education Center, University of Florida, Belle Glade, FL 33430, USA
| | - Hao Chen
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, US
- Department of Agriculture, Landscape, and Environment, University of Vermont, Burlington, VT 05405 USA
| | - Yulin Zheng
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Yue Zhang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Yicheng Yang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Yuchuan Fan
- Mississippi State University, Geosystems Research Institute, Starkville, MS, 39759, USA
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
8
|
Gong X, Chen R, Shi G, Sun H, Yang Y, Liang Y, Qin P, Yang H, Wu Z. Differential effects of polystyrene microplastics on the adsorption of cadmium and ciprofloxacin by tea leaf litter-derived magnetic biochar: Influencing factors and mechanisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11117. [PMID: 39234890 DOI: 10.1002/wer.11117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
Water pollution involves the coexistence of microplastics (MPs) and traditional pollutants, and how can MPs influence the adsorption of other pollutants by biochar during the treatment process remains unclear. This study aimed to investigate the influence of polystyrene microplastics (PS MPs) on the adsorption of cadmium (Cd) and ciprofloxacin (CIP) by magnetic biochar (MTBC) in the single and binary systems. MTBC was prepared using tea leaf litter; the effects of time, pH, and salt ions on the adsorption behaviors were investigated; and X-ray photoelectronic spectroscopy (XPS) and density flooding theory analysis were conducted to elucidate the influence mechanisms. Results indicated that PS MPs reduced the pollutants adsorption by MTBC due to the heterogeneous aggregation between PS MPs and MTBC and the surface charge change of MTBC induced by PS MPs. The effects of PS MPs on heavy metals and antibiotics adsorption were distinctly different. PS MPs reduced Cd adsorption on MTBC, which were significantly influenced by the solution pH and salt ions contents, suggesting the participation of electrostatic interaction and ion exchange in the adsorption, whereas the effects of PS MPs on CIP adsorption were inconspicuous. In the hybrid system, PS MPs reduced pollutants adsorption by MTBC with 66.3% decrease for Cd and 12.8% decrease for CIP, and the more remarkable reduction for Cd was due to the predominated physical adsorption, and CIP adsorption was mainly a stable chemisorption. The influence of PS MPs could be resulted from the interaction between PS MPs and MTBC with changing the functional groups and electrostatic potential of MTBC. This study demonstrated that when using biochar to decontaminate wastewater, it is imperative to consider the antagonistic action of MPs, especially for heavy metal removal. PRACTITIONER POINTS: Magnetic biochar (MTBC) was prepared successfully using tea leaf litter. MTBC could be used for cadmium (Cd) and ciprofloxacin (CIP) removal. Polystyrene microplastics (Ps MPs) reduced Cd/CIP adsorption by MTBC. Ps MPs effects on Cd adsorption were more obvious than that of CIP. Ps MPs changed the functional groups and electrostatic potential of MTBC, thus influencing MTBC adsorption.
Collapse
Affiliation(s)
- Xiaoming Gong
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Ranran Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Guanwei Shi
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Haibo Sun
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Yang Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Yunshan Liang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Pufeng Qin
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Huilin Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| |
Collapse
|
9
|
Li Y, Zhang J, Cheng D, Guo W, Liu H, Guo A, Chen X, Wang Y, Ngo HH. Magnetic biochar serves as adsorbents and catalyst supports for the removal of antibiotics from wastewater: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121872. [PMID: 39018848 DOI: 10.1016/j.jenvman.2024.121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Numerous antibiotics are being released into the natural environment through wastewater. As antibiotic usage increases annually, its detrimental impact on the environment is escalating. Addressing environmental sustainability and human health requires significant attention towards antibiotic removal. In recent years, magnetic biochar (MBC) has gained widespread application in water treatment due to its exceptional adsorption and catalytic degradation capabilities. Antibiotics such as sulfamethoxazole (SMX), tetracycline (TC), ciprofloxacin (CIP), and others commonly exhibit an adsorption capacity by MBC ranging from 5 mg/g to 900 mg/g. Moreover, MBC typically removes over 90% of these antibiotics within 60 min. The effectiveness of antibiotic removal is significantly influenced by various preparation and modification methods. Furthermore, the incorporation of magnetism enables the material to be recycled and reused multiple times, thereby reducing consumption costs. This article discusses recent studies on antibiotic removal using MBC. It has been observed that variations in the selection of raw material and preparation procedures significantly affect antibiotic removal, while the mechanisms involved in antibiotic removal remain ambiguous. Additionally, it has been noted that the removal process may lead to secondary pollution and high preparation costs. Therefore, this review comprehensively outlines the utilization of MBC in the removal of antibiotics from wastewater, including aspects such as modification, preparation, removal mechanism, and factors influencing removal, and providing recommendations for antibiotic development. The aim is to offer researchers a clear understanding to advance the field of MBC materials.
Collapse
Affiliation(s)
- Yudong Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia
| | - Huaqing Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Aiyun Guo
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xinhan Chen
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yanlong Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia.
| |
Collapse
|
10
|
Haider MIS, Liu G, Yousaf B, Arif M, Aziz K, Ashraf A, Safeer R, Ijaz S, Pikon K. Synergistic interactions and reaction mechanisms of biochar surface functionalities in antibiotics removal from industrial wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124365. [PMID: 38871166 DOI: 10.1016/j.envpol.2024.124365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Biochar, a carbon-rich material with a unique surface chemistry (high abundance of surface functional groups, large surface area, and well-distributed), has shown great potential as a sustainable solution for industrial wastewater treatment as compared to conventional industrial wastewater treatment techniques demand substantial energy consumption and generate detrimental byproducts. This critical review emphasizes the surface functionalities formation and development in biochar to enhance its physiochemical properties, for utilization in antibiotics removal. Factors affecting the formation of functionalities, including carbonization processes, feedstock materials, operating parameters, and the influence of pre-post treatments, are thoroughly highlighted to understand the crucial role of factors influencing biochar properties for optimal antibiotics removal. Furthermore, the research explores the removal mechanisms and interactions of biochar-based surface functionalities, hydrogen bonding, encompassing electrostatic interactions, hydrophobic interactions, π-π interactions, and electron donor and acceptor interactions, to provide insights into the adsorption/removal behavior of antibiotics on biochar surfaces. The review also explains the mechanism of factors influencing the removal of antibiotics in industrial wastewater treatment, including particle size and pore structure, nature and types of surface functional groups, pH and surface charge, temperature, surface modification strategies, hydrophobicity/hydrophilicity, biochar dose, pollutant concentration, contact time, and the presence of coexisting ions and other substances. Finally, the study offers reusability and regeneration, challenges and future perspectives on the development of biochar-based adsorbents and their applications in addressing antibiotics. It concludes by summarizing the key findings and emphasizing the significance of biochar as a sustainable and effective solution for mitigating antibiotics contamination in industrial wastewater.
Collapse
Affiliation(s)
- Muhammad Irtaza Sajjad Haider
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Balal Yousaf
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| | - Muhammad Arif
- Department of Soil and Environmental Sciences, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Kiran Aziz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; Department of Botany, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Rabia Safeer
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Samra Ijaz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Krzysztof Pikon
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| |
Collapse
|
11
|
Zhou Y, Wang Z, Hu W, Zhou Q, Chen J. Norfloxacin adsorption by urban green waste biochar: characterization, kinetics, and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29088-29100. [PMID: 38568303 DOI: 10.1007/s11356-024-33085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/21/2024] [Indexed: 05/01/2024]
Abstract
Biochar, as a potential adsorbent, has been widely employed to remove pollutants from sewage. In this study, a lignin-based biochar (CB-800) was prepared by a simple high-temperature pyrolysis using urban green waste (Cinnamomum camphora leaves) as a feedstock to remove norfloxacin (NOR) from water. Batch adsorption test results indicated that CB-800 had a strong removal capacity for NOR at a wide range of pH values. The maximum adsorption achieved in the study was 50.90 ± 0.64 mg/g at 298 K. The pseudo-first and second-order kinetic models and the Dubinin-Radushkevich isotherm fitted the experimental data well, indicating that NOR adsorption by CB-800 was a complex process involving both physi-sorption and chemi-sorption. The physical properties of CB-800 were characterized by SEM and BET. The mesoporous structures were formed hierarchically on the surface of CB-800 (with an average pore size of 2.760 nm), and the spatial structure of NOR molecules was more easily adsorbed by mesoporous structures. Combined with Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis, it was showed that the main NOR adsorption mechanisms by CB-800 included ion exchange, π-electron coordination, hydrogen bonding, and electrostatic adsorption. Meanwhile, the reduction of C = O and pyridine nitrogen, and the presence of C-F2, also indicated the occurrence of substitution, addition, and redox. This study not only determined the reaction mechanism between biochar and NOR, but also provides guidance to waste managers for the removal of NOR from water by biochar. It is envisaged that the results will broaden the utilization of urban green waste.
Collapse
Affiliation(s)
- Yu Zhou
- School of Biological Recourse and Environmental Science, Jishou University, Jishou, 416000, People's Republic of China.
| | - Ziyan Wang
- School of Biological Recourse and Environmental Science, Jishou University, Jishou, 416000, People's Republic of China
| | - Wenyong Hu
- School of Biological Recourse and Environmental Science, Jishou University, Jishou, 416000, People's Republic of China
| | - Qiang Zhou
- School of Biological Recourse and Environmental Science, Jishou University, Jishou, 416000, People's Republic of China
- Hunan Engineering Laboratory of Control and Remediation of Heavy Metal Pollution From Mn-Zn Mining, Jishou, Hunan, China
| | - Jiao Chen
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| |
Collapse
|
12
|
Khan P, Saha R, Halder G. Towards sorptive eradication of pharmaceutical micro-pollutant ciprofloxacin from aquatic environment: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170723. [PMID: 38340867 DOI: 10.1016/j.scitotenv.2024.170723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Antibiotics are widely prioritized pharmaceuticals frequently adopted in medication for addressing numerous ailments of humans and animals. However, the non-judicious disposal of ciprofloxacin (CIP) with concentration levels exceeding threshold limit in an aqueous environment has been the matter of growing concern nowadays. CIP is found in various waterways with appreciable mobility due to its limited decay in solidified form. Hence, the effective eradication strategy of this non-steroidal anti-inflammatory antibiotic from aqueous media is pivotal for preventing the users and the biosphere from their hazardous impacts. Reportedly several customary techniques like reverse osmosis, precipitation, cross-filtration, nano-filtration, ion exchange, microbial remediation, and adsorption have been employed to eliminate CIP from water. Out of them, adsorption is ascertained to be a potential method because of lesser preliminary investment costs, ease of operation, greater efficiency, less energy usage, reduced chemical and biological slurry production, and ready availability of precursor materials. Towards remediation of ciprofloxacin-laden water, plenty of researchers have used different adsorbents. However, the present-day challenge is opting the promising sorbent and its application towards industrial scale-up which is vital to get reviewed. In this article, adsorbents of diverse origins are reviewed in terms of their performances in CIP removal. The review stresses the impact of various factors on sorptive assimilation of CIP, adsorption kinetics, isotherms, mechanism of ionic interaction, contrivances for CIP detection, cost estimation and reusability assessments of adsorbents also that may endorse the next-generation investigators to decide the efficacious, environmental appealing and cost-competitive adsorbents for effective riddance of CIP from wastewater.
Collapse
Affiliation(s)
- Priyanka Khan
- Centre for Research on Environment and Water, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India; Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India; Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Rajnarayan Saha
- Centre for Research on Environment and Water, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India; Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Gopinath Halder
- Centre for Research on Environment and Water, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India; Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India.
| |
Collapse
|
13
|
Kang K, Hu Y, Khan I, He S, Fetahi P. Recent advances in the synthesis and application of magnetic biochar for wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 390:129786. [PMID: 37758029 DOI: 10.1016/j.biortech.2023.129786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Magnetic biochar (MBC) is a novel bio-carbon material with both desired properties as adsorbent and magnetic characteristics. This review provides an up-to-date summary and discussion on the latest development of MBC, which covers the progress on its synthesis, application, and techno-economic analysis. The review indicates that the direct hydrothermal synthesis has been catching more research attention to produce MBC due to its mild reaction conditions. Instead of the Fe-loaded MBC, there is a trend of using Mn for the magnetization. For the MBC application, how to improve its adsorption performance for water decontamination, ideally to match that of the biochar (BC) or activated carbon, is important. In addition, more studies on the environmental impacts of MBC and life-cycle assessment decoding the process optimization options are necessary. This review will provide valuable references for the development of MBC and MBC-based materials for wastewater treatment.
Collapse
Affiliation(s)
- Kang Kang
- Biorefining Research Institute (BRI) and Chemical Engineering Department, Lakehead University, Thunder Bay, Ontario, P7B 5E1, 955 Oliver Road, Canada
| | - Yulin Hu
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown PE C1A 4P3, Prince Edward Island, Canada
| | - Iltaf Khan
- Biorefining Research Institute (BRI) and Chemical Engineering Department, Lakehead University, Thunder Bay, Ontario, P7B 5E1, 955 Oliver Road, Canada
| | - Sophie He
- Department of Engineering, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Pedram Fetahi
- Biorefining Research Institute (BRI) and Chemical Engineering Department, Lakehead University, Thunder Bay, Ontario, P7B 5E1, 955 Oliver Road, Canada.
| |
Collapse
|
14
|
Azzam AB, Tokhy YA, Dars FME, Younes AA. Heterogeneous porous biochar-supported nano NiFe 2O 4 for efficient removal of hazardous antibiotic from pharmaceutical wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119473-119490. [PMID: 37926801 DOI: 10.1007/s11356-023-30587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Due to the dual issues of antibiotic resistance and bioaccumulation toxicity, antibiotics are ubiquitously present in aquatic environments, and this is causing serious concern. Herein, novel nickel ferrite (NiFe2O4) nanoparticles were successfully loaded onto activated biochar (BC) derived from banana peel (BP) to obtain magnetic nanocomposite (BC-NiFe2O4) as an effective biosorbent for the ciprofloxacin antibiotic (CIP) elimination from pharmaceutical effluent. A facile co-precipitation approach was utilized to construct the heterogeneous BC-NiFe2O4. The synthesized materials were systematically characterized using techniques such as XRD, FE-SEM, EDX, HR-TEM, BET, FTIR, and XPS. In addition, the magnetic measurements indicated the ferromagnetic behavior of the BC-NiFe2O4 sample. The influencing factors (i.e., pH, contact time, initial concentration, dose of adsorbent, ions interference, and solution temperature) of the adsorption process were also well studied. The adsorption capacity of the BC-NiFe2O4 heterostructure was 68.79 mg g-1 compared to the BC sample (35.71 mg g-1), confirming that the loading of magnetically NiFe2O4 nanoparticles onto the surface of porous biochar enhanced its stability and adsorption performance for CIP removal, wherein the metal-antibiotic complex has a significant effect for the removal of CIP. Moreover, the Langmuir adsorption isotherm and the pseudo-second-order model displayed a good fit for the experimental data. The values of △H° and △G° revealed that the adsorption process was endothermic and spontaneous. The coordination affinities, π-π stacking, and H-bonding interactions play a more critical role in the adsorption mechanism that confirmed by FTIR and XPS analysis. To study the stability of BC-NiFe2O4 nanocomposites, desorption and recycling studies were investigated. The results revealed that after three cycles, no significant loss in removal efficiency was detected, reflecting the stability and reusability of the prepared BC-NiFe2O4 nanocomposite.
Collapse
Affiliation(s)
- Ahmed B Azzam
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt.
| | - Yousif A Tokhy
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Farida M El Dars
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Ahmed A Younes
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| |
Collapse
|
15
|
Fan Y, Su J, Xu L, Liu S, Hou C, Liu Y, Cao S. Removal of oxytetracycline from wastewater by biochar modified with biosynthesized iron oxide nanoparticles and carbon nanotubes: Modification performance and adsorption mechanism. ENVIRONMENTAL RESEARCH 2023; 231:116307. [PMID: 37268205 DOI: 10.1016/j.envres.2023.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
The pollution problem of oxytetracycline (OTC) from wastewater becomes more serious, so an efficient, economical, and green adsorption material is urgently explored. In this study, the multilayer porous biochar (OBC) was prepared by coupling carbon nanotubes with iron oxide nanoparticles synthesized by Aquabacterium sp. XL4 to modify corncobs under medium temperature (600 °C) conditions. The adsorption capacity of OBC could reach 72.59 mg g-1 after preparation and operation parameters were optimized. In addition, various adsorption models suggested that OTC removal resulted from the combined effect of chemisorption, multilayer interaction, and disordered diffusion. Meanwhile, the OBC was fully characterized and exhibited a large specific surface area (237.51 m2 g-1), abundant functional groups, stable crystal structure, high graphitization, and mild magnetic properties (0.8 emu g-1). The OTC removal mechanisms mainly included electrostatic interactions, ligand exchange, π-π bonding reactions, hydrogen bonds, and complexation. pH and coexistence substance experiments revealed that the OBC possesses a wide pH adaptation range and excellent anti-interference ability. Finally, the safety and reusability of OBC were confirmed by repeated experiments. In summary, OBC as a biosynthetic material shows considerable potential for application in the field of purifying new pollution from wastewater.
Collapse
Affiliation(s)
- Yong Fan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shuyu Liu
- School of Environment and Chemistry Engineering, Shanghai University, Shanghai, 200444, China.
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shumiao Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
16
|
Orimolade BO, Oladipo AO, Idris AO, Usisipho F, Azizi S, Maaza M, Lebelo SL, Mamba BB. Advancements in electrochemical technologies for the removal of fluoroquinolone antibiotics in wastewater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163522. [PMID: 37068672 DOI: 10.1016/j.scitotenv.2023.163522] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
In recent times, the need to make water safer and cleaner through the elimination of recalcitrant pharmaceutical residues has been the aim of many studies. Fluoroquinolone antibiotics such as ciprofloxacin, norfloxacin, enrofloxacin, and levofloxacin are among the commonly detected pharmaceuticals in wastewater. Since the presence of these pharmaceuticals in water bodies poses serious risks to living organisms, it is vital to adopt effective wastewater treatment techniques for their complete removal. Electrochemical technologies such as photoelectrocatalysis, electro-Fenton, electrocoagulation, and electrochemical oxidation have been established as techniques capable of the complete removal of organics including pharmaceuticals from wastewater. Hence, this review presents discussions on the recent progress (literature within 2018-2022) in the applications of common electrochemical processes for the degradation of fluoroquinolone antibiotics from wastewater. The fundamentals of these processes are highlighted while the results obtained using the processes are critically discussed. Furthermore, the inherent advantages and limitations of these processes in the mineralization of fluoroquinolone antibiotics are clearly emphasized. Additionally, appropriate recommendations are made toward improving electrochemical technologies for the complete removal of these pharmaceuticals with minimal energy consumption. Therefore, this review will serve as a bedrock for future researchers concerned with wastewater treatments to make informed decisions in the selection of suitable electrochemical techniques for the removal of pharmaceuticals from wastewater.
Collapse
Affiliation(s)
- Benjamin O Orimolade
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709 Johannesburg, South Africa.
| | - Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Azeez O Idris
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, Western Cape, South Africa
| | - Feleni Usisipho
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709 Johannesburg, South Africa
| | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, Western Cape, South Africa
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, Western Cape, South Africa
| | - Sogolo L Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709 Johannesburg, South Africa
| |
Collapse
|
17
|
Singh A, Chaurasia D, Khan N, Singh E, Chaturvedi Bhargava P. Efficient mitigation of emerging antibiotics residues from water matrix: Integrated approaches and sustainable technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121552. [PMID: 37075921 DOI: 10.1016/j.envpol.2023.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
The prevalence of antibiotic traces in the aquatic matrices is a concern due to the emanation of antibiotic resistance which requires a multifaceted approach. One of the potential sources is the wastewater treatment plants with a lack of advance infrastructure leading to the dissemination of contaminants. Continuous advancements in economic globalization have facilitated the application of several conventional, advanced, and hybrid techniques for the mitigation of rising antibiotic traces in the aquatic matrices that have been thoroughly scrutinized in the current paper. Although the implementation of existing mitigation techniques is associated with several limiting factors and barriers which require further research to enhance their removal efficiency. The review further summarizes the application of the microbial processes to combat antibiotic persistence in wastewater establishing a sustainable approach. However, hybrid technologies are considered as most efficient and environmental-benign due to their higher removal efficacy, energy-efficiency, and cost-effectiveness. A brief elucidation has been provided for the mechanism responsible for lowering antibiotic concentration in wastewater through biodegradation and biotransformation. Overall, the current review presents a comprehensive approach for antibiotic mitigation using existing methods however, policies and measures should be implemented for continuous monitoring and surveillance of antibiotic persistence in aquatic matrices to reduce their potential risk to humans and the environment.
Collapse
Affiliation(s)
- Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ekta Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
18
|
Ji M, Giangeri G, Yu F, Sessa F, Liu C, Sang W, Canu P, Li F, Treu L, Campanaro S. An integrated metagenomic model to uncover the cooperation between microbes and magnetic biochar during microplastics degradation in paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131950. [PMID: 37421863 DOI: 10.1016/j.jhazmat.2023.131950] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
The free radicals released from the advanced oxidation processes can enhance microplastics degradation, however, the existence of microbes acting synergistically in this process is still uncertain. In this study, magnetic biochar was used to initiate the advanced oxidation process in flooded soil. paddy soil was contaminated with polyethylene and polyvinyl chloride microplastics in a long-term incubation experiment, and subsequently subjected to bioremediation with biochar or magnetic biochar. After incubation, the total organic matter present in the samples containing polyvinyl chloride or polyethylene, and treated with magnetic biochar, significantly increased compared to the control. In the same samples there was an accumulation of "UVA humic" and "protein/phenol-like" substances. The integrated metagenomic investigation revealed that the relative abundance of some key genes involved in fatty acids degradation and in dehalogenation changed in different treatments. Results from genome-centric investigation suggest that a Nocardioides species can cooperate with magnetic biochar in the degradation of microplastics. In addition, a species assigned to the Rhizobium taxon was identified as a candidate in the dehalogenation and in the benzoate metabolism. Overall, our results suggest that cooperation between magnetic biochar and some microbial species involved in microplastic degradation is relevant in determining the fate of microplastics in soil.
Collapse
Affiliation(s)
- Mengyuan Ji
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Ginevra Giangeri
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Fengbo Yu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Filippo Sessa
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Chao Liu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Paolo Canu
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Laura Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy.
| |
Collapse
|
19
|
Li P, Zhao T, Zhao Z, Tang H, Feng W, Zhang Z. Biochar Derived from Chinese Herb Medicine Residues for Rhodamine B Dye Adsorption. ACS OMEGA 2023; 8:4813-4825. [PMID: 36777604 PMCID: PMC9909799 DOI: 10.1021/acsomega.2c06968] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
In this study, one well-known CHM residue (Atropa belladonna L., ABL) was used to prepare biochar capable of adsorbing rhodamine B (RhB) with an ultrahigh surface area for the first time. Three micropore-rich ABL biochars including ABL@ZnCl2 (1866 m2/g), ABL@H3PO4 (1488 m2/g), and ABL@KOH (590 m2/g) were obtained using the one-step carbonization method with activation agents (ZnCl2, H3PO4, and KOH) via chemical activation and carbonization at 500 °C, and their adsorption performance for RhB was systematically studied with adsorption kinetics, isotherms, and thermodynamics. Through pore diffusion, π-π interaction, and hydrogen bonding, ABL biochar had excellent adsorption performance for RhB. Moreover, when C 0 was 200 mg/L, biochar dosage was 1 g/L, and the contact time was 120 min; the maximum RhB adsorption capacity and removal efficiency on ABL@ZnCl2 and ABL@H3PO4 were 190.63 mg/g, 95% and 184.70 mg/g, 92%, respectively, indicating that it was feasible to prepare biochar from the ABL residue for RhB adsorption. The theoretical maximum adsorption capacities of ABL@ZnCl2 and ABL@H3PO4 for RhB were 263.19 mg/g and 309.11 mg/g at 25 °C, respectively. Furthermore, the prepared biochar showed good economic applicability, with pay back of USD 972/t (ABL@ZnCl2) and USD 987/t (ABL@H3PO4), respectively. More importantly, even after five cycles, ABL@H3PO4 biochar still showed great RhB removal efficiency, suggesting that it had a good application prospect and provided a new method for the resource utilization of traditional CHM residues. Additionally, pore diffusion, π-π interactions, and hydrogen bonding all play roles in the physical adsorption of RhB on ABL biochar. π-π interactions dominated in the early stage of RhB adsorption on ABL@H3PO4, while pore diffusion played a crucial role in the whole adsorption process on both adsorbents.
Collapse
Affiliation(s)
- Pengwei Li
- College
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou450046, China
| | - Ting Zhao
- College
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou450046, China
| | - Ziheng Zhao
- College
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou450046, China
| | - Hanxiao Tang
- College
of Chinese Medical Sciences, Henan University
of Chinese Medicine, Zhengzhou450046, China
| | - Weisheng Feng
- College
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou450046, China
| | - Zhijuan Zhang
- College
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou450046, China
- Institute
of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou510632, China
| |
Collapse
|
20
|
Hacıosmanoğlu GG, Arenas M, Mejías C, Martín J, Santos JL, Aparicio I, Alonso E. Adsorption of Fluoroquinolone Antibiotics from Water and Wastewater by Colemanite. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2646. [PMID: 36768024 PMCID: PMC9915184 DOI: 10.3390/ijerph20032646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Pharmaceutical residues in water and wastewater have become a worldwide problem with environmental and public health consequences. Antibiotics are of special importance because of the emergence of antibiotic-resistant genes. This study evaluates the adsorptive removal of four common fluoroquinolone antibiotics by using natural colemanite as an alternative adsorbent for the first time. Batch adsorption experiments were conducted for the mixture of fluoroquinolones as well as for individual compounds during the isotherm studies. Adsorption kinetic results indicated that the process followed the pseudo-second-order (PSO) model, while the Langmuir model described the sorption isotherms. The effects of pH and temperature on adsorption performance were determined, and the results indicated that the adsorption was endothermic and spontaneous, with increasing randomness at the solid-liquid interface. The effects of real water and wastewater matrices were tested by using tap water, surface water, and wastewater samples. Reusability experiments based on five adsorption-desorption cycles indicated that the adsorption performance was mostly retained after five cycles. The adsorption mechanism was elucidated based the material characterization before and after adsorption. The results indicate that colemanite can be used as an effective and reusable adsorbent for fluoroquinolone antibiotics as well as for other pollutants with similar physicochemical properties.
Collapse
Affiliation(s)
- Gül Gülenay Hacıosmanoğlu
- Environmental Engineering Department, Faculty of Engineering, Marmara University, Uyanık Cd. No: 6, Istanbul 34840, Turkey
| | - Marina Arenas
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Seville, Spain
| | - Carmen Mejías
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Seville, Spain
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Seville, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Seville, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Seville, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Seville, Spain
| |
Collapse
|
21
|
Ohale PE, Igwegbe CA, Iwuozor KO, Emenike EC, Obi CC, Białowiec A. A review of the adsorption method for norfloxacin reduction from aqueous media. MethodsX 2023; 10:102180. [PMID: 37122364 PMCID: PMC10133760 DOI: 10.1016/j.mex.2023.102180] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Norfloxacin (NRFX) is one of a class of antibiotics known as broad-spectrum fluoroquinolone antibiotic that is frequently used to treat infectious disorders in both animals and humans. NRFX is considered an emergent pharmaceutical contaminate. This review's objective is to evaluate empirical data on NRFX's removal from aqueous medium. The environmental danger of NRFX in the aquatic environment was validated by an initial ecotoxicological study. Graphene oxide/Metal Organic Framework (MOF) based composite, followed by Magnesium oxide/Chitosan/Graphene oxide composite gave the highest NRFX adsorption capacities (Qmax) of 1114.8 and 1000 mg/g, respectively. The main adsorption mechanisms for NRFX uptake include electrostatic interactions, H-bonds, π-π interactions, electron donor-acceptor interactions, hydrophobic interactions, and pore diffusion. The adsorptive uptake of NRFX were most suitably described by Langmuir isotherm and pseudo-second order implying adsorbate-to-adsorbent electron transfer on a monolayer surface. The thermodynamics of NRFX uptake is heavily dependent on the makeup of the adsorbent, and the selection of the eluent for desorption from the solid phase is equally important. There were detected knowledge gaps in column studies and adsorbent disposal method. There's great interest in scale-up and industrial applications of research results that will aid in management of water resources for sustainability.
Collapse
Affiliation(s)
| | - Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
- Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, Poland
- Corresponding authors. @chinenyeigwegbe
| | - Kingsley O. Iwuozor
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
- Nigeria Sugar Institute, Ilorin, Nigeria
- Corresponding authors. @chinenyeigwegbe
| | - Ebuka Chizitere Emenike
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Christopher Chiedozie Obi
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
- Department of Polymer Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka 420218, Nigeria
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, Poland
| |
Collapse
|
22
|
Qiu B, Shao Q, Shi J, Yang C, Chu H. Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Huang J, Zimmerman AR, Chen H, Wan Y, Zheng Y, Yang Y, Zhang Y, Gao B. Fixed bed column performance of Al-modified biochar for the removal of sulfamethoxazole and sulfapyridine antibiotics from wastewater. CHEMOSPHERE 2022; 305:135475. [PMID: 35760137 PMCID: PMC9811972 DOI: 10.1016/j.chemosphere.2022.135475] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
In this study, biochar derived from bamboo pretreated with aluminum salt was synthesized for the removal of two sulfonamide antibiotics, sulfamethoxazole (SMX) and sulfapyridine (SPY), from wastewater. Batch sorption experiments showed that Al-modified bamboo biochar (Al-BB-600) removed both sulfonamides effectively with the maximum sorption capacity of 1200-2200 mg/kg. The sorption mechanism was mainly controlled by hydrophobic, π-π, and electrostatic interactions. Fixed bed column experiments with Al-modified biochar packed in different dosages (250, 500 and 1000 mg) and flow rates (1, 2 and 4 mL/min) showed the dosage of 1000 mg and flow rate of 1 mL/min performed the best for the removal of both SMX and SPY from wastewater. Among the breakthrough (BT) models used to evaluate the fixed bed filtration performance of Al-BB-600, the Yan model best described the BT behavior of the two sulfonamides, suggesting that the adsorption process involved multiple rate-liming factors such as mass transfer at the solid surface and diffusion Additionally, the Bed Depth Service Time (BDST) model results indicated that Al-BB-600 can be efficiently used in fixed bed column for the removal of both SMX and SPY in scaled-up continuous wastewater flow operations. Therefore, Al-modified biochar can be considered a reliable sorbent in real-world application for the removal of SMX and SPY from wastewater.
Collapse
Affiliation(s)
- Jinsheng Huang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Andrew R Zimmerman
- Department of Geological Sciences, University of Florida, Gainesville, FL, USA
| | - Hao Chen
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR, 71601, USA
| | - Yongshan Wan
- Center for Environmental Measurement and Modeling, US EPA, Gulf Breeze, FL, 32561, USA
| | - Yulin Zheng
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Yicheng Yang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Yue Zhang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
24
|
Zhou H, Ou L. Adsorption of ammonia nitrogen in wastewater by tailing loaded manganese oxide material. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Tang J, Ma Y, Cui S, Ding Y, Zhu J, Chen X, Zhang Z. Insights on ball milling enhanced iron magnesium layered double oxides bagasse biochar composite for ciprofloxacin adsorptive removal from water. BIORESOURCE TECHNOLOGY 2022; 359:127468. [PMID: 35710050 DOI: 10.1016/j.biortech.2022.127468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Both ciprofloxacin (CIP) and sugarcane bagasse have brought enormous pressure on environmental safety. Here, an innovative technique combining Fe-Mg-layered double oxides and ball milling was presented for the first time to convert bagasse-waste into a new biochar adsorbent (BM-LDOs-BC) for aqueous CIP removal. The maximum theoretical adsorption capacity of BM-LDOs-BC reached up to 213.1 mg g-1 due to abundant adsorption sites provided by well-developed pores characteristics and enhanced functional groups. The results of characterization, data fitting and environmental parameter revealed that pore filling, electrostatic interactions, H-bonding, complexation and π-π conjugation were the key mechanisms for CIP adsorptive removal. BM-LDOs-BC exhibited satisfactory environmental safety and outstanding adsorption capacity under various environmental situations (pH, inorganic salts, humic acid). Moreover, BM-LDOs-BC possessed excellent reusability. These superiorities illustrated that BM-LDOs-BC was a promising adsorbent and created a new avenue for rational placement of biowaste and high-efficiency synthesis of biochar for antibiotic removal.
Collapse
Affiliation(s)
- Jiayi Tang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Song Cui
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jinyao Zhu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Xi Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
26
|
Weidner E, Karbassiyazdi E, Altaee A, Jesionowski T, Ciesielczyk F. Hybrid Metal Oxide/Biochar Materials for Wastewater Treatment Technology: A Review. ACS OMEGA 2022; 7:27062-27078. [PMID: 35967031 PMCID: PMC9366942 DOI: 10.1021/acsomega.2c02909] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/21/2022] [Indexed: 05/27/2023]
Abstract
This paper discusses the properties of metal oxide/biochar systems for use in wastewater treatment. Titanium, zinc, and iron compounds are most often combined with biochar; therefore, combinations of their oxides with biochar are the focus of this review. The first part of this paper presents the most important information about biochar, including its advantages, disadvantages, and possible modification, emphasizing the incorporation of inorganic oxides into its structure. In the next four sections, systems of biochar combined with TiO2, ZnO, Fe3O4, and other metal oxides are discussed in detail. In the next to last section probable degradation mechanisms are discussed. Literature studies revealed that the dispersion of a metal oxide in a carbonaceous matrix causes the creation or enhancement of surface properties and catalytic or, in some cases, magnetic activity. Addition of metallic species into biochars increases their weight, facilitating their separation by enabling the sedimentation process and thus facilitating the recovery of the materials from the water medium after the purification process. Therefore, materials based on the combination of inorganic oxide and biochar reveal a wide range of possibilities for environmental applications in aquatic media purification.
Collapse
Affiliation(s)
- Ewelina Weidner
- Poznan
University of Technology, Faculty of Chemical
Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| | - Elika Karbassiyazdi
- University
of Technology Sydney, School of Civil
and Environmental Engineering, Centre of Green Technology, 15 Broadway, Ultimo
NSW Sydney, New South Wales 2007, Australia
| | - Ali Altaee
- University
of Technology Sydney, School of Civil
and Environmental Engineering, Centre of Green Technology, 15 Broadway, Ultimo
NSW Sydney, New South Wales 2007, Australia
| | - Teofil Jesionowski
- Poznan
University of Technology, Faculty of Chemical
Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| | - Filip Ciesielczyk
- Poznan
University of Technology, Faculty of Chemical
Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| |
Collapse
|
27
|
Alegbeleye O, Daramola OB, Adetunji AT, Ore OT, Ayantunji YJ, Omole RK, Ajagbe D, Adekoya SO. Efficient removal of antibiotics from water resources is a public health priority: a critical assessment of the efficacy of some remediation strategies for antibiotics in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56948-57020. [PMID: 35716301 DOI: 10.1007/s11356-022-21252-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/30/2022] [Indexed: 05/27/2023]
Abstract
This review discusses the fundamental principles and mechanism of antibiotic removal from water of some commonly applied treatment techniques including chlorination, ozonation, UV-irradiation, Fenton processes, photocatalysis, electrochemical-oxidation, plasma, biochar, anaerobicdigestion, activated carbon and nanomaterials. Some experimental shortfalls identified by researchers such as certain characteristics of degradation agent applied and the strategies explored to override the identified limitations are briefly discussed. Depending on interactions of a range of factors including the type of antibiotic compound, operational parameters applied such as pH, temperature and treatment time, among other factors, all reviewed techniques can eliminate or reduce the levels of antibiotic compounds in water to varying extents. Some of the reviewed techniques such as anaerobic digestion generally require longer treatment times (up to 360, 193 and 170 days, according to some studies), while others such as photocatalysis achieved degradation within short contact time (within a minimum of 30, but up to 60, 240, 300 and 1880 minutes, in some cases). For some treatment techniques such as ozonation and Fenton, it is apparent that subjecting compounds to longer treatment times may improve elimination efficiency, whereas for some other techniques such as nanotechnology, application of longer treatment time generally meant comparatively minimal elimination efficiency. Based on the findings of experimental studies summarized, it is apparent that operational parameters such as pH and treatment time, while critical, do not exert sole or primary influence on the elimination percentage(s) achieved. Elimination efficiency achieved rather seems to be due more to the force of a combination of several factors.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil.
| | | | - Adewole Tomiwa Adetunji
- Department of Agriculture, Faculty of Applied Sciences, Cape Peninsula University of Technology, Wellington, Western Cape, 7654, South Africa
| | - Odunayo T Ore
- Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Yemisi Juliet Ayantunji
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
- Advanced Space Technology Applications Laboratory, Cooperative Information Network, National Space Research and Development Agency, Ile-Ife, P.M.B. 022, Nigeria
| | - Richard Kolade Omole
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
- Microbiology Unit, Department of Applied Sciences, Osun State College of Technology, Esa-Oke, Nigeria
| | - Damilare Ajagbe
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Oklahoma, USA
| | | |
Collapse
|
28
|
Huang Z, Yi Y, Zhang N, Tsang PE, Fang Z. Removal of fluconazole from aqueous solution by magnetic biochar treated by ball milling: adsorption performance and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33335-33344. [PMID: 35022965 DOI: 10.1007/s11356-021-17964-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
The problem of low adsorption capacity of pristine magnetic biochar for organic pollutants always occurs. It is of great significance to select a suitable method to improve the adsorption performance of magnetic biochar. In this study, magnetic biochar was treated by ball milling and tested for its fluconazole adsorption capacity. The maximum adsorption capacity of ball-milled magnetic biochar (BMBC) for fluconazole reached nearly 15.90 mg/g, which was approximately five times higher than that of pristine magnetic biochar (MBC). Fluconazole adsorption by BMBC was mainly attributed to π-π interactions, hydrogen bonding, and surface complexation with oxygen-containing functional groups. The enhancement in fluconazole adsorption by BMBC was attributed to an increase in oxygen-containing functional groups. Batch adsorption experiments also illustrated that BMBC could be successfully applied in a wide range of pH values. The high efficiency of fluconazole removal confirmed that ball milling was an effective strategy to enhance the adsorptive performance of magnetic biochar.
Collapse
Affiliation(s)
- Zhexi Huang
- School of Environment, South China Normal University, Guangzhou, 510006, China
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Chemical Pollution & Environmental Safety, Guangzhou, 510006, China
| | - Yunqiang Yi
- School of Environment, South China Normal University, Guangzhou, 510006, China.
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Chemical Pollution & Environmental Safety, Guangzhou, 510006, China.
| | - Nuanqin Zhang
- School of Environment, South China Normal University, Guangzhou, 510006, China
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China
| | - Pokeung Eric Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, 00852, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou, 510006, China
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Chemical Pollution & Environmental Safety, Guangzhou, 510006, China
| |
Collapse
|
29
|
Neogi S, Sharma V, Khan N, Chaurasia D, Ahmad A, Chauhan S, Singh A, You S, Pandey A, Bhargava PC. Sustainable biochar: A facile strategy for soil and environmental restoration, energy generation, mitigation of global climate change and circular bioeconomy. CHEMOSPHERE 2022; 293:133474. [PMID: 34979200 DOI: 10.1016/j.chemosphere.2021.133474] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The increasing agro-demands with the burgeoning population lead to the accumulation of lignocellulosic residues. The practice of burning agri-residues has consequences viz. Release of soot and smoke, nutrient depletion, loss of soil microbial diversity, air pollution and hazardous effects on human health. The utilization of agricultural waste as biomass to synthesize biochar and biofuels, is the pertinent approach for attaining sustainable development goals. Biochar contributes in the improvement of soil properties, carbon sequestration, reducing greenhouse gases (GHG) emission, removal of organic and heavy metal pollutants, production of biofuels, synthesis of useful chemicals and building cementitious materials. The biochar characteristics including surface area, porosity and functional groups vary with the type of biomass consumed in pyrolysis and the control of parameters during the process. The major adsorption mechanisms of biochar involve physical-adsorption, ion-exchange interactions, electrostatic attraction, surface complexation and precipitation. The recent trend of engineered biochar can enhance its surface properties, pH buffering capacity and presence of desired functional groups. This review focuses on the contribution of biochar in attaining sustainable development goals. Hence, it provides a thorough understanding of biochar's importance in enhancing soil productivity, bioremediation of environmental pollutants, carbon negative concretes, mitigation of climate change and generation of bioenergy that amplifies circular bioeconomy, and concomitantly facilitates the fulfilment of the United Nation Sustainable Development Goals. The application of biochar as seen is primarily targeting four important SDGs including clean water and sanitation (SGD6), affordable and clean energy (SDG7), responsible consumption and production (SDG12) and climate action (SDG13).
Collapse
Affiliation(s)
- Suvadip Neogi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Vikas Sharma
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Anees Ahmad
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Shraddha Chauhan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ashok Pandey
- Centre for Innovation and Transnational Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.
| |
Collapse
|
30
|
Saya L, Malik V, Gautam D, Gambhir G, Singh WR, Hooda S. A comprehensive review on recent advances toward sequestration of levofloxacin antibiotic from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152529. [PMID: 34953830 DOI: 10.1016/j.scitotenv.2021.152529] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Among various classes of antibiotics, fluoroquinolones, especially Levofloxacin, are being administered on a large scale for numerous purposes. Being highly stable to be completely metabolized, residual quantities of Levofloxacin get accumulated into the food chain proving a great global threat for aquatic as well as terrestrial ecosystems. Various removal techniques including both conventional and advanced methods have been reported for this purpose. This review is a novel attempt to make a critical analysis of the recent advances made exclusively toward the sequestration of Levofloxacin from wastewater through an extensive literature survey (2015-2021). Adsorption and advanced oxidation processes especially photocatalytic degradation are the most tested techniques in which assorted nanomaterials play a significant role. Several photocatalysts exhibited up to 100% degradation of LEV which makes photocatalytic degradation the best method among other tested methods. However, the degraded products need to be further monitored in terms of their toxicity. Biological degradation may prove to be the most environment-friendly with the least toxicity, unfortunately, not much research is reported in the field. With these key findings and knowledge gaps, authors suggest the scope of hybrid techniques, which have been experimented on other antibiotics. These can potentially minimize the disadvantages of the individual techniques concurrently improving the efficiency of LEV removal. Besides, techniques like column adsorption, membrane treatment, and ozonation, being least reported, reserve good perspectives for future research. With these implications, the review will certainly serve as a breakthrough for researchers working in this field to aid their future findings.
Collapse
Affiliation(s)
- Laishram Saya
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Dhaula Kuan, New Delhi 110021, India; Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India; Department of Chemistry, Manipur University, Canchipur, Imphal 795003, Manipur, India
| | - Vipin Malik
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - Drashya Gautam
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - Geetu Gambhir
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - W Rameshwor Singh
- Department of Chemistry, Manipur University, Canchipur, Imphal 795003, Manipur, India.
| | - Sunita Hooda
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India.
| |
Collapse
|
31
|
Shaheen SM, Mosa A, El-Naggar A, Faysal Hossain M, Abdelrahman H, Khan Niazi N, Shahid M, Zhang T, Fai Tsang Y, Trakal L, Wang S, Rinklebe J. Manganese oxide-modified biochar: production, characterization and applications for the removal of pollutants from aqueous environments - a review. BIORESOURCE TECHNOLOGY 2022; 346:126581. [PMID: 34923078 DOI: 10.1016/j.biortech.2021.126581] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
The development of manganese (Mn) oxides (MnOx) modified biochar (MnOBC) for the removal of pollutants from water has received significant attention. However, a comprehensive review focusing on the use of MnOBC for the removal of organic and inorganic pollutants from water is missing. Therefore, the preparation and characterization of MnOBC, and its capacity for the removal of inorganic (e.g., toxic elements) and organic (e.g., antibiotics and dyes) from water have been discussed in relation to feedstock properties, pyrolysis temperature, modification ratio, and environmental conditions here. The removal mechanisms of pollutants by MnOBC and the fate of the sorbed pollutants onto MnOBC have been reviewed. The impregnation of biochar with MnOx improved its surface morphology, functional group modification, and elemental composition, and thus increased its sorption capacity. This review establishes a comprehensive understanding of synthesizing and using MnOBC as an effective biosorbent for remediation of contaminated aqueous environments.
Collapse
Affiliation(s)
- Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Ali El-Naggar
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, PR China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt; Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Md Faysal Hossain
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong, PR China
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613 Egypt
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong, PR China
| | - Lukáš Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6 Suchdol, Czech Republic
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, 196 W Huayang Rd, Yangzhou, Jiangsu, PR China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, Guangjin-Gu, Seoul 05006, Republic of Korea.
| |
Collapse
|
32
|
Nouri SMM, Khadem AR, Hosseini SA, Nouri S. Co-Cu oxide nano-flake adsorbent for tetracycline removal from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2965-2973. [PMID: 34382172 DOI: 10.1007/s11356-021-15685-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
In this study, a new adsorbent based on Co-Cu oxide nano-flakes was investigated to remove tetracycline from aqueous systems. Ultrasonic-assisted co-precipitation method has been used to synthesize the adsorbent nanoparticles with different precursor concentration of Cu2+/Co2+. The properties of the adsorbents have been investigated using BET, FESEM/EDS, XRD, and FTIR techniques. The removal experiment results show that the maximum tetracycline adsorption (qmax=195mg·gr-1) was obtained for the adsorbent synthesized by Cu2+:Co2+ molar ratio of 1:5. The adsorbent nanoparticles have a Co3O4 spinel crystal structure and a flake-shape morphology with thickness of 20 nm. Incorporation of copper atoms in the spinel structure was confirmed by XRD and FTIR results and hence, effectively promotes the removal of the tetracycline. The effect of various parameters such as adsorbent weight, pH, and time on the kinetics of adsorption was investigated. The results showed that the Langmuir isotherm was in better agreement with the experimental data of tetracycline adsorption. The overall rate of adsorption follows the first-order kinetic model, although the results of intraparticle diffusion model showed that diffusion mechanism is one of the controlling steps during the adsorption process.
Collapse
Affiliation(s)
| | - Amir Reza Khadem
- Chemical Engineering Department, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran
| | - Seyyed Alireza Hosseini
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran
| | | |
Collapse
|
33
|
Natarajan R, Saikia K, Ponnusamy SK, Rathankumar AK, Rajendran DS, Venkataraman S, Tannani DB, Arvind V, Somanna T, Banerjee K, Mohideen N, Vaidyanathan VK. Understanding the factors affecting adsorption of pharmaceuticals on different adsorbents - A critical literature update. CHEMOSPHERE 2022; 287:131958. [PMID: 34454222 DOI: 10.1016/j.chemosphere.2021.131958] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Remediation of emerging pharmaceutically active compounds (PhACs) as micropollutants in wastewater is of foremost importance as they can cause extremely detrimental effects on life upon bioaccumulation and generation of drug-resistance microorganisms. Presently used physicochemical treatments, such as electrochemical oxidation, nanofiltration and reverse osmosis, are not feasible owing to high operating costs, incomplete removal of contaminants along with toxic by-products formation. Adsorption with the utilization of facile and efficient nanoparticulate adsorbents having distinctive properties of high surface area, excellent adsorption capacity, ability to undergo surface engineering and good regeneration displays great potential in this aspect along with the incorporation of nanotechnology for effective treatment. The application of such nanosorbents provides optimal performance under a wide range of physicochemical conditions, decreased secondary pollution with reduced mechanical stress along with excellent organic compound sequestration capacity, which in turn improves the quality of potable water in a sustainable way compared to current treatments. The present review intends to consolidate the range of factors that affect the process of adsorption of different PhACs on to various nanosorbents and also highlights the adsorption mechanism aiding in the retrieval.
Collapse
Affiliation(s)
- Ramesh Natarajan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Kongkona Saikia
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Abiram Karanam Rathankumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Diya Bharat Tannani
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Varshni Arvind
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Tanya Somanna
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Koyena Banerjee
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Nizar Mohideen
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India.
| |
Collapse
|
34
|
Li X, Hou Y, Li Q, Gu W, Li Y. Molecular design of high-efficacy and high drug safety Fluoroquinolones suitable for a variety of aerobic biodegradation bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113628. [PMID: 34461464 DOI: 10.1016/j.jenvman.2021.113628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The present study attempted to improve the biodegradation removal rate of Fluoroquinolones (FQs) in sewage treatment plants. The similarity index analysis (CoMSIA) model for combined biodegradability was constructed, and 33 kinds of molecular derivatives of FQs suitable for a variety of aerobic biodegradation microorganisms were designed. Further, derivative-20 and derivative-28, with high drug efficiency, drug safety, and environmental friendliness were selected through pharmacokinetics (ADMET), toxicokinetics (TOPKAT), FQs functional characteristics, and environmental friendliness evaluations. Compared with the target molecules, the combined biodegradability of the above two FQ-derivative molecules were increased by 193.57 % and 205.07 %, respectively, while their environment-friendly characteristics were improved to a certain degree. Through molecular docking and molecular dynamic simulation analysis, it showed that van der Waals force (decreased by 2.73 %-61.74 %) was the main factor influencing the binding ability of the modified FQ molecules to the receptor proteins. In addition, the relationship among the non-bonding interaction resultant force, the binding effect of the FQ-derivative molecules, and the receptor protein-related amino acid residues were studied for the first time. It was observed that the higher the value of the non-bonding interaction resultant force, the better was the binding effect, which demonstrating the significantly improved biodegradability of the designed FQ-derivative molecules.
Collapse
Affiliation(s)
- Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yilin Hou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Wenwen Gu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
35
|
Cui F, Li H, Chen C, Wang Z, Liu X, Jiang G, Cheng T, Bai R, Song L. Cattail fibers as source of cellulose to prepare a novel type of composite aerogel adsorbent for the removal of enrofloxacin in wastewater. Int J Biol Macromol 2021; 191:171-181. [PMID: 34509521 DOI: 10.1016/j.ijbiomac.2021.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/19/2021] [Accepted: 09/04/2021] [Indexed: 12/26/2022]
Abstract
In this study, cattail was researched as a natural cellulose source to extract cellulose. Dewaxing, alkali and bleaching treatments were carried out for the cattail fibers (CFs). The FTIR, SEM and XRD results indicated that hemicellulose and lignin were successfully removed from the CFs, and the content of cattail cellulose increased from 41.66 ± 1.11% to 89.72 ± 1.07%. Subsequently, cellulose aerogel was prepared by the extracted cattail cellulose. The Zeolitic imidazolate framework-8 (ZIF-8) was uniformly loaded onto the surface of cellulose aerogel by the in situ growth, and ZIF-8 Cattail Cellulose Aerogel (ZCCA) was finally prepared. The SEM, FTIR, XRD and TGA results further confirmed the successful preparation of ZCCA. Additionally, the results of the adsorption experiment showed that ZCCA had excellent adsorption performance for enrofloxacin, and the maximum adsorption capacity of enrofloxacin reached 172.09 mg·g-1 while showing good reusability. The adsorption process followed the pseudo-second-order kinetic model and the Langmuir isotherm model. Thermodynamic studies showed that the adsorption of enrofloxacin was a spontaneous endothermic reaction and that the adsorption mechanism involves the interaction of hydrogen bonds, electrostatic and π-π stacking.
Collapse
Affiliation(s)
- Fengjiao Cui
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Huidong Li
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China.
| | - Chen Chen
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Zhixia Wang
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Xinxin Liu
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Gang Jiang
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Tianjia Cheng
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Runying Bai
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Lei Song
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| |
Collapse
|
36
|
Engineered Magnetic Carbon-Based Adsorbents for the Removal of Water Priority Pollutants: An Overview. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/9917444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This review covers the preparation, characterization, and application of magnetic adsorbents obtained from carbon-based sources and their application in the adsorption of both inorganic and organic pollutants from water. Different preparation routes to obtain magnetic adsorbents from activated carbon, biochar, hydrochar, graphene, carbon dots, carbon nanotubes, and carbon nanocages, including the magnetic phase incorporated on the solid surface, are described and discussed. The performance of these adsorbents is analyzed for the removal of fluoride, arsenic, heavy metals, dyes, pesticides, pharmaceuticals, and other emerging and relevant water pollutants. Properties of these adsorbents and the corresponding adsorption mechanisms have been included in this review. Overall, this type of magnetic adsorbents offers an alternative for facing the operational problems associated to adsorption process in water treatment. However, some gaps have been identified in the proper physicochemical characterization of these adsorbents, the development of green and low-cost preparation methods for their industrial production and commercialization, the regeneration and final disposal of spent adsorbents, and their application in the multicomponent adsorption of water pollutants.
Collapse
|
37
|
|
38
|
Functional CoFe2O4‐modified biochar derived from banana pseudostem as an efficient adsorbent for the removal of amoxicillin from water. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118592] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Hu B, Tang Y, Wang X, Wu L, Nong J, Yang X, Guo J. Cobalt-gadolinium modified biochar as an adsorbent for antibiotics in single and binary systems. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Du C, Zhang Z, Yu G, Wu H, Chen H, Zhou L, Zhang Y, Su Y, Tan S, Yang L, Song J, Wang S. A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis. CHEMOSPHERE 2021; 272:129501. [PMID: 33486457 DOI: 10.1016/j.chemosphere.2020.129501] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 05/24/2023]
Abstract
Antibiotic abuse has led to serious water pollution and severe harm to human health; therefore, there is an urgent need for antibiotic removal from water sources. Adsorption and photodegradation are two ideal water treatment methods because they are cheap, simple to operate, and reusable. Metal organic frameworks (MOFs) are excellent adsorbents and photocatalysts because of their high porosity, adaptability, and good crystal form. The aim of this study is to suggest ways to overcome the limitations of adsorption and photocatalysis treatment methods by reviewing previous applications of MOFs to antibiotic adsorption and photocatalysis. The different factors influencing these processes are also discussed, as well as the various adsorption and photocatalysis mechanisms. This study provides a valuable resource for researchers intending to use MOFs to remove antibiotics from water bodies.
Collapse
Affiliation(s)
- Chunyan Du
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China
| | - Zhuo Zhang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Guanlong Yu
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China.
| | - Haipeng Wu
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China
| | - Hong Chen
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China
| | - Lu Zhou
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China
| | - Yin Zhang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Yihai Su
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Shiyang Tan
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Lu Yang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Jiahao Song
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Shitao Wang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| |
Collapse
|
41
|
Liu T, Chen Z, Li Z, Fu H, Chen G, Feng T, Chen Z. Preparation of magnetic hydrochar derived from iron-rich Phytolacca acinosa Roxb. for Cd removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145159. [PMID: 33482558 DOI: 10.1016/j.scitotenv.2021.145159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 05/28/2023]
Abstract
Considering that hyperaccumulators can accumulate high concentrations of iron salt, they can successfully obtain magnetic hydrochar from iron-rich hyperaccumulators. In this study, iron-rich biomass was obtained by irrigating Phytolacca acinosa Roxb. using iron salt. Magnetic nano-Fe3O4 hydrochar was prepared from iron-rich Phytolacca acinosa Roxb. via hydrothermal carbonization to remove Cd. The characterization results showed that the synthesized magnetic nanoparticles had an average size of 2.62 ± 0.56 nm and N elements were doped into magnetic nano-Fe3O4 hydrochar with abundant oxygenic groups. Cd adsorption on magnetic nano-Fe3O4 hydrochar was better fitted using the Langmuir isotherm and the pseudo-second-order kinetic model. The maximum adsorption capacity was 246.6 mg g-1 of Cd. The research confirmed that Cd adsorption was controlled by multiple mechanisms from the jar test, transmission electron microscopy mapping, scanning electron microscopy-energy dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. CdCO3 crystals can be formed after adsorption, indicating that surface precipitation played an important role in Cd adsorption. The abundance of O atoms and the doping of N atoms on the hydrochar surface were conducive to Cd adsorption, indicating that the mechanisms were related to surface complexation and electrostatic attraction. In addition, the significant decrease in Na+ content after Cd adsorption illustrated that ion exchange had a non-negligible effect on Cd adsorption. This study not only provides a strategy for preparing magnetic nano-Fe3O4 hydrochar derived from iron-rich plants but also verifies multiple Cd adsorption mechanisms using magnetic nano-Fe3O4 hydrochar.
Collapse
Affiliation(s)
- Tao Liu
- Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Zhenshan Chen
- Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Zhixian Li
- Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Hao Fu
- School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Guoliang Chen
- Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Tao Feng
- Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Zhang Chen
- Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| |
Collapse
|
42
|
Madadi R, Bester K. Fungi and biochar applications in bioremediation of organic micropollutants from aquatic media. MARINE POLLUTION BULLETIN 2021; 166:112247. [PMID: 33735702 DOI: 10.1016/j.marpolbul.2021.112247] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The conventional wastewater treatment system such as bacteria, is not able to remove recalcitrant micropollutants effectively. While, fungi have shown high capacity in degradation of recalcitrant compounds. Biochar, on the other hand, has gained attention in water and wastewater treatment as a low cost and sustainable adsorbent. This paper aims to review the recent applications of three major fungal divisions including Basidiomycota, Ascomycota, and Mucoromycotina, in organic micropollutants removal from wastewater. Moreover, it presents an insight into fungal bioreactors, fungal biofilm and immobilization system. Biochar adsorption capacities for organic micropollutants removal under different operating conditions are summarized. Finally, few recommendations for further research are established in the context of the combination of fungal biofilm with the technologies relying on the adsorption by porous carbonaceous materials.
Collapse
Affiliation(s)
- Rozita Madadi
- Department of agricultural biotechnology, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark
| |
Collapse
|
43
|
Wang Q, Zhang Z, Xu G, Li G. Magnetic porous biochar with nanostructure surface derived from penicillin fermentation dregs pyrolysis with K 2FeO 4 activation: Characterization and application in penicillin adsorption. BIORESOURCE TECHNOLOGY 2021; 327:124818. [PMID: 33581375 DOI: 10.1016/j.biortech.2021.124818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 05/27/2023]
Abstract
Magnetic porous biochars (MCHCl, MCHAc) with nanostructure on surfaces were prepared from penicillin fermentation dregs by pyrolysis with K2FeO4 activation and used in penicillin adsorption. MCHCl and MCHAc had high BET surface areas of 672 and 735 m2/g, respectively; mainly be attributed to the activation of K2FeO4 as well as acid pickling. Saturation magnetizations of MCHCl and MCHAc were 75.29 and 42.45 emu/g, respectively; the magnetism was mainly derived from the Fe3O4 and Fe3C in magnetic biochars. MCHCl had nano sticks of ~ 80 nm and MCHAc had petal-like slice of ~ 30 nm on surfaces. The maximum adsorption capacities of penicillin on MCHCl and MCHAc were 196 and 322 mg/g at 308 K, respectively. The adsorptions of penicillin on MCHCl and MCHAc were consistent with pseudo primary kinetics and the Langmuir adsorption isotherm model, and thermodynamic analysis indicated that the adsorption mechanism included physical and chemical adsorption.
Collapse
Affiliation(s)
- Qiuju Wang
- School of Environment, Harbin Institute of Technology, P.O. Box 2602, Harbin 150090, China
| | - Zhao Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Guoren Xu
- School of Environment, Harbin Institute of Technology, P.O. Box 2602, Harbin 150090, China; College of Resources and Environment, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| | - Guibai Li
- School of Environment, Harbin Institute of Technology, P.O. Box 2602, Harbin 150090, China
| |
Collapse
|
44
|
Zhao C, Wang B, Theng BKG, Wu P, Liu F, Wang S, Lee X, Chen M, Li L, Zhang X. Formation and mechanisms of nano-metal oxide-biochar composites for pollutants removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:145305. [PMID: 33636788 DOI: 10.1016/j.scitotenv.2021.145305] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Biochar, a carbon-rich material, has been widely used to adsorb a range of pollutants because of its low cost, large specific surface area (SSA), and high ion exchange capacity. The adsorption capacity of biochar, however, is limited by its small porosity and low content of surface functional groups. Nano-metal oxides have a large SSA and high surface energy but tend to aggregate and passivate because of their fine-grained nature. In combining the positive qualities of both biochar and nano-metal oxides, nano-metal oxide-biochar composites (NMOBCs) have emerged as a group of effective and novel adsorbents. NMOBCs improve the dispersity and stability of nano-metal oxides, rich in adsorption sites and surface functional groups, maximize the adsorption capacity of biochar and nano-metal oxides respectively. Since the adsorption capacity and mechanisms of NMOBCs vary greatly amongst different preparations and application conditions, there is a need for a review of NMOBCs. Herein we firstly summarize the recent methods of preparing NMOBCs, the factors influencing their efficacy in the removal of several pollutants, mechanisms underlying the adsorption of different pollutants, and their potential applications for pollution control. Recommendations and suggestions for future studies on NMOBCs are also proposed.
Collapse
Affiliation(s)
- Chenxi Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Benny K G Theng
- Manaaki Whenua-Landcare Research, Palmerston North 4442, New Zealand
| | - Pan Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Fang Liu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Miao Chen
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Ling Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xueyang Zhang
- School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou 221018, China
| |
Collapse
|
45
|
Chen J, Wan J, Gong Y, Xu K, Zhang H, Chen L, Liu J, Liu C. Effective electro-Fenton-like process for phenol degradation on cerium oxide hollow spheres encapsulated in porous carbon cathode derived from skimmed cotton. CHEMOSPHERE 2021; 270:128661. [PMID: 33109361 DOI: 10.1016/j.chemosphere.2020.128661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
The uniform size cerium dioxide hollow spheres which were prepared by the SiO2 hard template method were loaded on microporous porous carbon obtained by carbonization derived from skimmed cotton (CSC) for electro-Fenton-like degradation of phenol. The microstructures of CSC/CeO2 composite materials were characterized utilizing XRD, BET, XPS, SEM, and TEM. The electrochemical performance of the CSC/CeO2 cathodes was studied through cyclic voltammetry and electrochemical impedance spectroscopy. The prepared CSC has a hollow tubular structure, and cerium dioxide is evenly loaded on the surface of the CSC in the form of uniform-sized hollow spheres. The CSC/CeO2 materials have a great specific surface area (287.73 m2 g-1) and a uniform poresize. The electrochemical performance analysis demonstrated that the redox ability of the material greatly was improved by loading CeO2 on the porous carbon surface of the skimmed cotton. The load ratio of cerium dioxide hollow spheres affects the structure and properties of CSC/CeO2 materials. Ce3+ and Ce4+ were co-existed in CSC/CeO2, which promoted the generation of H2O2 and .OH, and improved the catalytic activity of composite materials. The degradation efficiency of phenol reached 97.6% in 120 min, and the CSC/CeO2 cathode manifested excellent stability after being experimented 20 times. CSC/CeO2 composite material has great practical value in the treatment of phenolic wastewater and has promise for further application.
Collapse
Affiliation(s)
- Jie Chen
- School of Chemistry and Material Science, Heilongjiang University, Xuefu Road 74, Harbin, 150080, China
| | - Jiafeng Wan
- School of Chemistry and Material Science, Heilongjiang University, Xuefu Road 74, Harbin, 150080, China.
| | - Yuguo Gong
- School of Chemistry and Material Science, Heilongjiang University, Xuefu Road 74, Harbin, 150080, China
| | - Ke Xu
- School of Chemistry and Material Science, Heilongjiang University, Xuefu Road 74, Harbin, 150080, China
| | - Huidi Zhang
- School of Chemistry and Material Science, Heilongjiang University, Xuefu Road 74, Harbin, 150080, China
| | - Lina Chen
- School of Chemistry and Material Science, Heilongjiang University, Xuefu Road 74, Harbin, 150080, China
| | - Jinqiao Liu
- School of Chemistry and Material Science, Heilongjiang University, Xuefu Road 74, Harbin, 150080, China
| | - Chuntao Liu
- School of Chemistry and Material Science, Heilongjiang University, Xuefu Road 74, Harbin, 150080, China.
| |
Collapse
|
46
|
Wang J, Chen W, Zhang M, Zhou R, Li J, Zhao W, Wang L. Optimize the preparation of Fe 3O 4-modified magnetic mesoporous biochar and its removal of methyl orange in wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:179. [PMID: 33751269 DOI: 10.1007/s10661-021-08971-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
In this paper, Eichhornia Crassipes stems were used as biomass feedstock, and Fe2+ was used as the precursor solution to prepare Fe3O4-modified magnetic mesoporous biochar (Fe3O4@BC). By using Box-Behnken design (BBD) response surface methodology, the influences of three preparation parameters (X1 = Fe2+ concentration, X2 = pyrolysis temperature and X3 = pyrolysis time) on the adsorption of methyl orange (MO) by Fe3O4@BC were investigated, and a reliable response surface model was constructed. The results show that X1X2 and X1X3 have a significant influence on the adsorption of MO by Fe3O4@BC. The surface area and pore volume of Fe3O4@BC are controlled by all preparation parameters. The increase of pyrolysis time will significantly reduce the -OH on the surface of Fe3O4@BC and weaken its MO adsorption capacity. Through the numerical optimization of the constructed model, the optimal preparation parameters of Fe3O4@BC can be obtained as follows: Fe2+ concentration = 0.27 mol/L, pyrolysis temperature = 405 °C, and pyrolysis time = 3.2 h. The adsorption experiment shows that the adsorption of Fe3O4@BC to MO is a spontaneous exothermic process, and the adsorption capacity is maximum when pH = 4. The adsorption kinetics and adsorption isotherms of Fe3O4@BC to MO conform to the pseudo-second-order kinetics and Sips model, respectively. Mechanism analysis shows that electrostatic interaction and H bond formation are the main forces for Fe3O4@BC to adsorb MO. This research not only realizes a new way of resource utilization of Eichhornia Crassipes biomass but also enriches the preparation research of magnetic biochar.
Collapse
Affiliation(s)
- Jinpeng Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Wenyuan Chen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Ming Zhang
- School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu, 241000, China.
| | - Runjuan Zhou
- School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Jiyuan Li
- School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Wei Zhao
- School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Lixian Wang
- School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| |
Collapse
|
47
|
Yang C, Li R, Wang Q, Wang W, Gao P, Hu B. Synthesis of alkyl-functionalized magnetic for fluoroquinolones removal: Adsorption performance and mechanism studies in single and binary systems. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Sha NQ, Wang GH, Li YH, Bai SY. Removal of abamectin and conventional pollutants in vertical flow constructed wetlands with Fe-modified biochar. RSC Adv 2020; 10:44171-44182. [PMID: 35517164 PMCID: PMC9058508 DOI: 10.1039/d0ra08265a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/01/2020] [Indexed: 01/15/2023] Open
Abstract
To improve the ability of constructed wetlands to remove abamectin (ABM) and nutrients, the influence of four different substrates on constructed wetlands was studied. Four vertical up-flow constructed wetlands (UVCWs) were established to treat simulated agricultural wastewater: CW1 (quartz sand + pebbles), CW2 (pebbles + coke), CW3 (Fe-modified biochar + pebbles + coke), and CW4 (unmodified biochar + pebbles + coke). Under different combinations of hydraulic loading and organic loading, CW3 was extremely effective at removing nitrogen compared with CW1, CW2 and CW4. We found that CW3 was the most effective at treating ABM and conventional pollutants. The highest efficiency of removal of abamectin (99%), COD (98%), NH4 +-N (65%), and TP (80%) was obtained in CW3. These results were directly verified by microbiological tests and microbial community analysis. The microbial diversity of CW3 and CW4 was significantly higher than those of CW1 and CW2. Fe-modified biochar provides a feasible and effective amendment for constructed wetlands to improve the nitrogen removal for C/N (2.5 : 1-5 : 1) wastewater by the ability of microbes to remove nitrogen. Fe-modified bamboo charcoal can be used in engineering as a new type of green environmental protection constructed wetland filler in the future.
Collapse
Affiliation(s)
- Nai-Qing Sha
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology Guilin 541004 China
| | - Guo-Hao Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology Guilin 541004 China
| | - Yan-Hong Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology Guilin 541004 China .,Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology Guilin 541004 China
| | - Shao-Yuan Bai
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology Guilin 541004 China .,Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology Guilin 541004 China
| |
Collapse
|
49
|
Phoon BL, Ong CC, Mohamed Saheed MS, Show PL, Chang JS, Ling TC, Lam SS, Juan JC. Conventional and emerging technologies for removal of antibiotics from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:122961. [PMID: 32947727 DOI: 10.1016/j.jhazmat.2020.122961] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 05/27/2023]
Abstract
Antibiotics and pharmaceuticals related products are used to enhance public health and quality of life. The wastewater that is produced from pharmaceutical industries still contains noticeable amount of antibiotics, and this has remained one of the major environmental problems facing public health. The conventional wastewater remediation approach employed by the pharmaceutical industries for the antibiotics wastewater removal is unable to remove the antibiotics completely. Besides, municipal and livestock wastewater also contain unmetabolized antibiotics released by human and animal, respectively. The antibiotic found in wastewater leads to antibiotic resistance challenges, also emergence of superbugs. Currently, numerous technological approaches have been developed to remove antibiotics from the wastewater. Therefore, it was imperative to critically review the weakness and strength of these current advanced technological approaches in use. Besides, the conventional methods for removal of antibiotics such as Klavaroti et al., Homem and Santos also discussed. Although, membrane treatment is discovered as the ultimate choice of approach, to completely remove the antibiotics, while the filtered antibiotics are still retained on the membrane. This study found, hybrid processes to be the best solution antibiotics removal from wastewater. Nevertheless, real-time monitoring system is also recommended to ascertain that, wastewater is cleared of antibiotics.
Collapse
Affiliation(s)
- Bao Lee Phoon
- Nanotechnology & Catalysis Research Centre (NANOCAT), Level 3 Block A, Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chong Cheen Ong
- Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Mohamed Shuaib Mohamed Saheed
- Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Center for Nanotechnology, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP) & Institute of Tropical Biodiversity and Sustainable Development (Bio-D Tropika), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Joon Ching Juan
- Nanotechnology & Catalysis Research Centre (NANOCAT), Level 3 Block A, Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia; School of Science, Monash University, Sunway Campus, Jalan Lagoon Selatan, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
50
|
Liang G, Hu Z, Wang Z, Yang X, Xie X, Zhao J. Effective removal of carbamazepine and diclofenac by CuO/Cu 2O/Cu-biochar composite with different adsorption mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45435-45446. [PMID: 32789636 DOI: 10.1007/s11356-020-10284-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
In this study, the CuO/Cu2O/Cu-biochar composite (CBC) was fabricated by calcining Cu2+-loaded cauliflower root at 500 °C. The CBC displayed the higher specific surface area and total pore volume than raw biochar, which attributed to Cu2+ acting as a pore-forming agent in the synthesis process. The adsorption experiments indicated that CBC could remove 88.96% diclofenac and 93.02% carbamazepine, which was nearly double higher than the raw biochar. The film diffusion mainly controlled the adsorption rate. Meanwhile, the common adsorption mechanisms for two pollutants were deemed to hydrogen-bonding interaction, π-π interaction and micropore filling effect, and copper oxide particles providing more adsorption sites. In addition, the adsorption of diclofenac involved electrostatic attraction. Lastly, the higher adsorption capacity of carbamazepine than diclofenac on CBC was mainly attributed to two mechanisms: Lewis acid-base interaction enhancing the adsorption of carbamazepine and size exclusion effect reducing the adsorption of diclofenac. Therefore, the study provided a possible method that Cu-contaminated biomass converted to CuO/Cu2O/Cu-biochar, which could achieve win-win results.
Collapse
Affiliation(s)
- Guiwei Liang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhongzheng Hu
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhaowei Wang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
- College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, Gansu, China.
| | - Xing Yang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyun Xie
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jing Zhao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|