1
|
Duya CO, Okumu FO, Matoetoe MC. The electrochemical properties of bimetallic silver-gold nanoparticles nano film's. Heliyon 2024; 10:e36974. [PMID: 39286151 PMCID: PMC11402768 DOI: 10.1016/j.heliyon.2024.e36974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Electrode modification has been one of the most active areas of interest in electrochemistry research. Hence, the investigation of the effects of chemically and electrochemically modified GCE nano-films on the NPs electrochemical properties. The electrochemistry of nano-films of Ag NPs, Au NPs and bimetallic Ag-Au (1:2) NPs of chemical citrate reduction synthesis drop coated (DCT) and electro-deposition method (EDP) are reported. The Chemically synthesized NPs were confirmed through FT-IR, UV-visible, XRD and SEM techniques while electro-deposited NPs were ascertained by double-pulsed chrono-amperometry and electrochemical impedance spectroscopy (EIS). The nano films; GCE/Ag NPs, GCE/Au NPs and GCE/Ag-Ag (1:2) NPs in 0.1 M HCl supporting electrolyte were studied via Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) techniques. Generally the DCT nano films were electrochemically superior to the EDP film in terms of current intensities and GCE/Ag-Au (1:2) NPs showed enhanced α (0.019), k s (0.01 s-1), Q (3.6 × 10-9 C), Γ (5.3 × 10-13molescm-2) and D (1.31 × 10-1 cm2s-1), indicating better physicochemical properties for possible sensing applications compared to electro-deposited GCE nano-films.
Collapse
Affiliation(s)
- C O Duya
- Department of Chemistry, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, South Africa
| | - F O Okumu
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210, 40601, Bondo, Kenya
| | - M C Matoetoe
- Department of Chemistry, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, South Africa
| |
Collapse
|
2
|
Ariski RT, Lee KK, Kim Y, Lee CS. The impact of pH and temperature on the green gold nanoparticles preparation using Jeju Hallabong peel extract for biomedical applications. RSC Adv 2024; 14:14582-14592. [PMID: 38708107 PMCID: PMC11066618 DOI: 10.1039/d4ra00614c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
The utilization of gold nanoparticles (AuNPs) has garnered significant attention in recent times, particularly in the field of biomedical research. The utilization of AuNPs in chemical synthesis procedures raises apprehensions regarding their potential toxicity in living organisms, which is inconsistent with their purported eco-friendly and cost-effective aspects. In this investigation, AuNPs were synthesized via the green synthesis approach utilizing Jeju Hallabong peel extract (HPE), a typical fruit variety indigenous to South Korea. The visible-range absorption spectrum of gold nanoparticles from green synthesis (HAuNPs) that are red wine in color occurs at a wavelength of λ = 517 nm. The morphology and particle size distribution were analysed using transmission electron microscopy (TEM) and ImageJ software. The TEM images reveal that the HAuNPs exhibit a high degree of dispersion and uniformity in their spherical shape, with an average size of approximately 7 nm. Moreover, elevating the initial pH level of the mixed solution has an impact on the decrease in particle dimensions, as evidenced by the blue shift observed in the UV-visible spectroscopy absorbance peak. Elevating the reaction temperature may accelerate the synthesis duration. However, it does not exert a substantial impact on the particle dimensions. The outcomes of an avidin-biocytin colorimetric assay provide preliminary analyses of possible sensor tunability using HAuNPs. The cytotoxicity of HAuNPs was evaluated through in vitro studies using the MTT assay on RAW 264.7 cell lines. The results indicated that the HAuNPs exhibited lower cytotoxicity compared to both chemically reduced gold nanoparticles (CAuNPs).
Collapse
Affiliation(s)
- Ridhola Tri Ariski
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon 34141 Republic of Korea
- Department of Biotechnology, University of Science & Technology (UST) Daejeon 34113 Republic of Korea
| | - Kyung Kwan Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon 34141 Republic of Korea
| | - Yongkwan Kim
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention (NIWDC) Gwangju 62407 Republic of Korea
| | - Chang-Soo Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon 34141 Republic of Korea
- Department of Biotechnology, University of Science & Technology (UST) Daejeon 34113 Republic of Korea
| |
Collapse
|
3
|
Rehman KU, Zaman U, Alem A, Khan D, Khattak NS, Alissa M, Aloraini GS, Abdelrahman EA, Alsuwat MA, Alzahrani KJ, Almehmadi M, Allahyani M. Alkaline protease functionalized hydrothermal synthesis of novel gold nanoparticles (ALPs-AuNPs): A new entry in photocatalytic and biological applications. Int J Biol Macromol 2024; 265:131067. [PMID: 38521328 DOI: 10.1016/j.ijbiomac.2024.131067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Researchers are consistently investigating novel and distinctive methods and materials that are compatible for human life and environmental conditions This study aimed to synthesize gold nanoparticles (ALPs-AuNPs) using for the first time an alkaline protease (ALPs) derived from Phalaris minor seed extract. A series of physicochemical techniques were used to inquire the formation, size, shape and crystalline nature of ALPs-AuNPs. The nanoparticles' ability to degrade methylene blue (MB) through photocatalysis under visible light irradiation was assessed. The findings demonstrated that ALPs-AuNPs exhibited remarkable efficacy by destroying 100 % of MB within a mere 30-minute irradiation period. In addition, the ALPs-AuNPs demonstrated remarkable effectiveness in inhibiting the growth of gram-positive (S. aureus) and gram-negative (E. coli) bacteria. The inhibition zones examined against the two bacterial strains were 23(±0.3) mm and 19(±0.4); 13(±0.3) mm and 11(±0.5) mm under light and dark conditions respectively. The ALPs-AuNPs exhibited significant antioxidant activity by effectively scavenging 88 % of stable and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. As a result, the findings demonstrated that the environmentally friendly ALPs-AuNPs showed a strong potential for MB degradation and bacterial pathogen treatment.
Collapse
Affiliation(s)
- Khalil Ur Rehman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan.
| | - Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Ahmad Alem
- Adult Critical Care & Emergency Consultant Emergency Department, King Saud Medical City, Riyadh 12746, Saudi Arabia
| | - Dilfaraz Khan
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Noor Saeed Khattak
- National Center of Excellence in Physical Chemistry University of Peshawar, 25120, Pakistan
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ghfren S Aloraini
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ehab A Abdelrahman
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Meshari A Alsuwat
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Khalid J Alzahrani
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Mazen Almehmadi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Mamdouh Allahyani
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| |
Collapse
|
4
|
El-Ansary AE, Omran AAA, Mohamed HI, El-Mahdy OM. Green synthesized silver nanoparticles mediated by Fusarium nygamai isolate AJTYC1: characterizations, antioxidant, antimicrobial, anticancer, and photocatalytic activities and cytogenetic effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100477-100499. [PMID: 37626196 PMCID: PMC10541848 DOI: 10.1007/s11356-023-29414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Green biosynthesized nanoparticles have a bright future because they can be produced using a method that is more energy-efficient, cost-effective, repeatable, and environmentally friendly than physical or chemical synthesis. In this study, silver nanoparticles (AgNPs) were produced using the Fusarium nygamai isolate AJTYC1. Several techniques were used to characterize the synthesized AgNPs, including UV-Vis spectroscopy, transmission electron microscope, zeta potential analysis, X-ray diffraction analysis, energy dispersive X-ray, and Fourier transform-infrared spectroscopy. AgNPs showed a distinctive surface plasmon resonance (SPR) peak in the UV-visible range at 310 nm. The morphology of the biosynthesized AgNPs was spherical, and the TEM image shows that they ranged in size from 27.3 to 53.1 nm. The notable peaks of the FT-IR results show the different groups for the alkane, alkynes, cyclic alkenes, carboxylic, aromatic amine, esters, and phenolics. Additionally, the results showed that AgNPs had superior antioxidant activity when compared to ascorbic acid and butylated hydroxytoluene, which is a powerful antioxidant. Additionally, AgNPs have antibacterial action utilizing agar diffusion against gram-positive bacteria, gram-negative bacteria, and antifungal activity. AgNPs' anticancer activity varied depending on the type of cancer it was used to treat, including hepatocellular cancer (HepG2), colorectal carcinoma (HCT116), and breast cancer of the mammary gland (MCF7). The viability of the cancer cell lines was reduced with increasing AgNP concentration. AgNPs also demonstrated promising photocatalytic activity by reducing methylene blue, safranin, crystal violet, and green malachite by 88.3%, 81.5%, 76.4%, and 78.2%, respectively. In addition, AgNPs significantly affected the Allium cepa plant's mitotic index and resulted in chromosomal abnormalities as compared to the control. Thus, the synthesized AgNPs demonstrated an efficient, eco-friendly, and sustainable method for decolorizing dyes as well as antioxidant, antibacterial, antifungal, and anticancer activities. This could be a huge victory in the fight against numerous dynamic diseases and lessen wastewater dye contamination.
Collapse
Affiliation(s)
- Abeer E El-Ansary
- Biochemistry Department, Faculty of Agriculture, Cairo University, Gamma St, Giza, 12613, Egypt
| | - Ahmed A A Omran
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| | - Omima M El-Mahdy
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt
| |
Collapse
|
5
|
Azeez L, Lateef A, Olabode O. An overview of biogenic metallic nanoparticles for water treatment and purification: the state of the art. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:851-873. [PMID: 37651325 PMCID: wst_2023_255 DOI: 10.2166/wst.2023.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The environment is fundamental to human existence, and protecting it from dangerous contaminants should be a top priority for all stakeholders. Reducing garbage output has helped, but as the world's population grows, more waste will be generated. Tons of waste inadvertently and advertently received by environmental matrixes adversely affect the sustainable environment. The pollution caused by these activities affects the environment and human health. Conventional remediation processes ranging from chemical, physical, and biological procedures use macroaggregated materials and microorganisms to degrade or remove pollutants. Undesirable limitations of expensiveness, disposal challenges, maintenance, and formation of secondary contaminants abound. Additionally, multiple stages of treatments to remove different contaminants are time-consuming. The need to avoid these limitations and shift towards sustainable approaches brought up nanotechnology options. Currently, nanomaterials are being used for environmental rejuvenation that involves the total degradation of pollutants without secondary pollution. As nanoparticles are primed with vast and modifiable reactive sites for adsorption, photocatalysis, and disinfection, they are more useful in remediating pollutants. Review articles on metallic nanoparticles usually focus on chemically synthesized ones, with a particular focus on their adsorption capacity and toxicities. Therefore, this review evaluates the current status of biogenic metallic nanoparticles for water treatment and purification.
Collapse
Affiliation(s)
- Luqmon Azeez
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria E-mail:
| | - Agbaje Lateef
- Nanotechnology Research Group (NANO+), Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| | - Olalekan Olabode
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria; Department of Chemistry, Mississippi State University, MS 39762-9573, USA
| |
Collapse
|
6
|
Zuhrotun A, Oktaviani DJ, Hasanah AN. Biosynthesis of Gold and Silver Nanoparticles Using Phytochemical Compounds. Molecules 2023; 28:molecules28073240. [PMID: 37050004 PMCID: PMC10096681 DOI: 10.3390/molecules28073240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Gold and silver nanoparticles are nanoparticles that have been widely used in various fields and have shown good benefits. The method of nanoparticle biosynthesis utilizing plant extracts, also known as green synthesis, has become a promising method considering the advantages it has compared to other synthesis methods. This review aims to give an overview of the phytochemical compounds in plants used in the synthesis of gold and silver nanoparticles, the nanoparticle properties produced using plant extracts based on the concentration and structure of phytochemical compounds, and their applications. Phytochemical compounds play an important role as reducing agents and stabilizers in the stages of the synthesis of nanoparticles. Polyphenol compounds, reducing sugars, and proteins are the main phytochemical compounds that are responsible for the synthesis of gold and silver nanoparticles. The concentration of phytochemical compounds affects the physical properties, stability, and activity of nanoparticles. This is important to know to be able to overcome limitations in controlling the physical properties of the nanoparticles produced. Based on structure, the phytochemical compounds that have ortho-substituted hydroxyl result in a smaller size and well-defined shape, which can lead to greater activity and stability. Furthermore, the optimal condition of the biosynthesis process is required to gain a successful reaction that includes setting the metal ion concentration, temperature, reaction time, and pH.
Collapse
Affiliation(s)
- Ade Zuhrotun
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia
| | - Dede Jihan Oktaviani
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia
| |
Collapse
|
7
|
Liu B, Li C, Han J, Chen Y, Zhao Z, Lu H. Biosynthesized gold nanoparticles using leaf extract of Citrus medica inhibit hepatocellular carcinoma through regulation of the Wnt/β-catenin signaling pathway. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
8
|
Gami B, Bloch K, Mohammed SM, Karmakar S, Shukla S, Asok A, Thongmee S, Ghosh S. Leucophyllum frutescens mediated synthesis of silver and gold nanoparticles for catalytic dye degradation. Front Chem 2022; 10:932416. [PMID: 36247678 PMCID: PMC9557002 DOI: 10.3389/fchem.2022.932416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/29/2022] [Indexed: 01/14/2023] Open
Abstract
The application of nanotechnology is gaining worldwide attention due to attractive physico-chemical and opto-electronic properties of nanoparticles that can be also employed for catalytic dye degradation. This study reports a phytogenic approach for fabrication of silver (AgNPs) and gold nanoparticles (AuNPs) using Leucophyllum frutescens (Berl.) I. M. Johnst (Scrophulariaceae) leaf extract (LFLE). Development of intense dark brown and purple color indicated the synthesis of AgNPs and AuNPs, respectively. Further characterization using UV-visible spectroscopy revealed sharp peak at 460 nm and 540 nm for AgNPs and AuNPs, respectively that were associated to their surface plasmon resonance. High resolution transmission electron microscope (HRTEM) revealed the spherical shape of the AgNPs, whereas anisotropic AuNPs were spherical, triangular and blunt ended hexagons. The majority of the spherical AgNPs and AuNPs were ∼50 ± 15 nm and ∼22 ± 20 nm, respectively. Various reaction parameters such as, metal salt concentration, temperature and concentration of the leaf extract were optimized. Maximum synthesis of AgNPs was obtained when 5 mM for AgNO3 reacted with 10% LFLE for 48 h at 50°C. Likewise, AuNPs synthesis was highest when 2 mM HAuCl4 reacted with 10% LFLE for 5 h at 30°C. Energy dispersive spectroscopy (EDS) showed phase purity of both the nanoparticles and confirmed elemental silver and gold in AgNPs and AuNPs, respectively. The average hydrodynamic particles size of AgNPs was 34.8 nm while AuNPs was 140.8 nm as revealed using dynamic light scattering (DLS) that might be due to agglomeration of smaller nanoparticles into larger clusters. ZETA potential of AgNPs and AuNPs were 0.67 mV and 5.70 mV, respectively. X-ray diffraction (XRD) analysis confirmed the crystallinity of the nanoparticles. Fourier transform infrared spectroscopy (FTIR) confirmed that various functional groups from the phytochemicals present in LFLE played a significant role in reduction and stabilization during the biogenic synthesis of the nanoparticles. The bioreduced AgNPs and AuNPs catalytically degraded Rhodamine B dye (RhB) in presence of UV-light with degradation rate constants of 0.0231 s−1 and 0.00831 s−1, respectively. RhB degradation followed a first order rate kinetics with 23.1 % and 31.7% degradation by AgNPs and AuNPs, respectively.
Collapse
Affiliation(s)
- Bansuri Gami
- Department of Microbiology, School of Science, RK University, Rajkot, India
| | - Khalida Bloch
- Department of Microbiology, School of Science, RK University, Rajkot, India
| | - Shahansha M. Mohammed
- Functional Materials Section (FMS), Materials Science and Technology Division (MSTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - Srikanta Karmakar
- Department of Polymer Science and Technology, Calcutta University, Kolkata, India
| | - Satyajit Shukla
- Functional Materials Section (FMS), Materials Science and Technology Division (MSTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Adersh Asok
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Photosciences and Photonics Section, Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - Sirikanjana Thongmee
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- *Correspondence: Sirikanjana Thongmee, ; Sougata Ghosh,
| | - Sougata Ghosh
- Department of Microbiology, School of Science, RK University, Rajkot, India
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- *Correspondence: Sirikanjana Thongmee, ; Sougata Ghosh,
| |
Collapse
|
9
|
Githala CK, Raj S, Dhaka A, Mali SC, Trivedi R. Phyto-fabrication of silver nanoparticles and their catalytic dye degradation and antifungal efficacy. Front Chem 2022; 10:994721. [PMID: 36226117 PMCID: PMC9548708 DOI: 10.3389/fchem.2022.994721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) and their potent application against dye degradation and phytopathogens are attracting many scientists to nanotechnology. An attempt was made to synthesize silver nanoparticles using Plantago ovata leaf extract and test their effectiveness in removing organic dyes and antifungal activity. In the present study, stable AgNPs were synthesized from 0.1 mM AgNO3 and authenticated by observing the color change from yellow to red-brown, which was confirmed with wavelength UV-Vis spectrophotometer detection. The crystalline nature of the particles was characterized by x-ray diffraction (XRD) patterns. Furthermore, the AgNPs were characterized by high-resolution transmission electron microscope and scanning electron microscope investigations. Atomic force microscopy (AFM) and Raman spectra were also used to confirm the size and structure of the synthesized AgNPs. The elemental analysis and functional groups responsible for the reduction of AgNPs were analyzed by electron dispersive spectroscopy and fourier transform infra-red spectroscopy Fourier transforms infrared, respectively. A new biological approach was taken by breaking down organic dyes such as methylene blue and congo red. The AgNPs effectively inhibit the fungal growth of Alternaria alternata. This could be a significant achievement in the fight against many dynamic pathogens and reduce dye contamination from waste water.
Collapse
Affiliation(s)
| | - Shani Raj
- *Correspondence: Shani Raj, ; Rohini Trivedi,
| | | | | | | |
Collapse
|
10
|
Bahadur Singh K, Gautam N, Upadhyay DD, Abbas G, Rizvi M, Pandey G. Morphology Controlled Biogenic Fabrication Of Metal/Metal Oxide Nanostructures Using Plant Extract And Their Application In Organic Transformations. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Biogenic Gold Nanoparticles: Current Applications and Future Prospects. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Narayanan M, Priya S, Natarajan D, Alahmadi TA, Alharbi SA, Krishnan R, Chi NTL, Pugazhendhi A. Phyto-fabrication of Silver nanoparticle using leaf extracts of Aristolochia bracteolata Lam and their mosquito larvicidal potential. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Chang Song W, Kim B, Young Park S, Park G, Oh JW. Biosynthesis of silver and gold nanoparticles using Sargassum horneri extract as catalyst for industrial dye degradation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
14
|
Gao L, Mei S, Ma H, Chen X. Ultrasound-assisted green synthesis of gold nanoparticles using citrus peel extract and their enhanced anti-inflammatory activity. ULTRASONICS SONOCHEMISTRY 2022; 83:105940. [PMID: 35149377 PMCID: PMC8841883 DOI: 10.1016/j.ultsonch.2022.105940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 05/03/2023]
Abstract
Ultrasound and plant extract are two green approaches that have been used to synthesize gold nanoparticles (AuNPs); however, how the combination of ultrasound and citrus peel extract (CPE) affects the structure characteristics and the bioactivity of AuNPs remains unknown. Here we investigated the effects of ultrasound conditions on the particle size, stability, yield, phenolic encapsulation efficacy, and the anti-inflammatory activity of AuNPs. The results showed that temperature was positively correlated to the particle size and the anti-inflammatory activity of synthesized AuNPs. Increasing the power intensity significantly decreased the particle size, while increased the change of total phenolic content (ΔTPC) in the reaction mixture. The increase of ΔTPC caused the enhanced anti-inflammatory activity of AuNPs. The AuNPs synthesized with or without ultrasound treatment were characterized using UV-Vis, DLS, SEM, TEM, EDS, XRD, and FT-IR. The result verified the formation of negatively charged, spherical, stable, and monodispersed AuNPs. AuNPs synthesized with ultrasound (AuNPs-U) has smaller particle size (13.65 nm vs 16.80 nm), greater yield and anti-inflammatory activity (IC50, 82.91 vs 157.71 μg/mL) than its non-ultrasound counterpart (AuNPs-NU). HPLC analysis showed that hesperidin was the key reductant for the synthesis of AuNPs. AuNPs-U also inhibited the mRNA and protein expression of iNOS and COX-2 in the LPS-induced Raw 264.7 cells. Our research elucidates the relationship between the reaction conditions and the structure characteristics and the anti-inflammatory activity of AuNPs synthesized using CPE with the help of ultrasound, thereafter, provides a feasible and economic way to synthesize AuNPs that can be used to ameliorate inflammation.
Collapse
Affiliation(s)
- Ling Gao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China.
| | - Suhuan Mei
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China.
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
15
|
Ogbonna C, Kavaz D. Development of novel silver-apple pectin nanocomposite beads for antioxidant, antimicrobial and anticancer studies. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Labeeb M, Badr A, Haroun SA, Mattar MZ, El-Kholy AS. Ultrastructural and molecular implications of ecofriendly made silver nanoparticles treatments in pea (Pisum sativum L.). JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2022; 20:5. [PMID: 34985579 PMCID: PMC8733074 DOI: 10.1186/s43141-021-00285-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Background Silver nanoparticles (AgNPs) are the most widely used nanomaterial in agricultural and environmental applications. In this study, the impact of AgNPs solutions at 20 mg/L, 40 mg/L, 80 mg/L, and 160 mg/L on cell ultrastructure have been examined in pea (Pisum sativum L) using a transmission electron microscope (TEM). The effect of AgNPs treatments on the α, β esterase (EST), and peroxidase (POX) enzymes expression as well as gain or loss of inter-simple sequence repeats (ISSRs) markers has been described. Results Different structural malformations in the cell wall and mitochondria, as well as plasmolysis and vacuolation were recorded in root cells. Damaged chloroplast and mitochondria were frequently observed in leaves and the osmiophilic plastoglobuli were more observed as AgNPs concentration increased. Starch grains increased by the treatment with 20 mg/L AgNPs. The expressions of α, β EST, and POX were slightly changed but considerable polymorphism in ISSR profiles, using 17 different primers, were scored indicating gain or loss of gene loci as a result of AgNPs treatments. This indicates considerable variations in genomic DNA and point mutations that may be induced by AgNPs as a genotoxic nanomaterial. Conclusion AgNPs may be used to induce genetic variation at low concentrations. However, considerations should be given to the uncontrolled use of nanoparticles and calls for evaluating their impact on plant growth and potential genotoxicity are justified.
Collapse
Affiliation(s)
- May Labeeb
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | - Abdelfattah Badr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Soliman A Haroun
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | - Magdy Z Mattar
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin Elkom, Egypt
| | - Aziza S El-Kholy
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafr Elsheikh, Egypt.
| |
Collapse
|
17
|
Mejía YR, Reddy Bogireddy NK. Reduction of 4-nitrophenol using green-fabricated metal nanoparticles. RSC Adv 2022; 12:18661-18675. [PMID: 35873318 PMCID: PMC9228544 DOI: 10.1039/d2ra02663e] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/30/2022] [Indexed: 01/19/2023] Open
Abstract
Noble metal (silver (Ag), gold (Au), platinum (Pt), and palladium (Pd)) nanoparticles have gained increasing attention due to their importance in several research fields such as environmental and medical research. This review focuses on the basic perceptions of the green synthesis of metal nanoparticles and their supported-catalyst-based reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The mechanisms for the formation of these nanoparticles and the catalytic reduction of 4-NP are discussed. Furthermore, the parameters that need to be considered in the catalytic efficiency calculations and perspectives for future studies are also discussed. Noble metal (silver (Ag), gold (Au), platinum (Pt), and palladium (Pd)) nanoparticles have gained increasing attention due to their importance in several research fields such as environmental and medical research.![]()
Collapse
Affiliation(s)
- Yetzin Rodriguez Mejía
- Facultad de Química, Universidad Autónoma del estado de México, Paseo Colón esq. Paseo Tollocan s/n, Toluca, Estado de México, C.P. 50120, Mexico
| | | |
Collapse
|
18
|
Hosny M, Fawzy M, Abdelfatah AM, Fawzy EE, Eltaweil AS. Comparative study on the potentialities of two halophytic species in the green synthesis of gold nanoparticles and their anticancer, antioxidant and catalytic efficiencies. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Comparative study between Phragmites australis root and rhizome extracts for mediating gold nanoparticles synthesis and their medical and environmental applications. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Antony D, Yadav R. Facile fabrication of green nano pure CeO 2 and Mn-decorated CeO 2 with Cassia angustifolia seed extract in water refinement by optimal photodegradation kinetics of malachite green. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18589-18603. [PMID: 33040285 DOI: 10.1007/s11356-020-11153-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
To eradicate the aquatic pollution caused by dyes, trendily the global researchers provide dedication to dye degradation using nanostructured photocatalyst. This research work is dedicated to explore an advanced, facile, bio-compact green fabricated nanostructure for water refinement. In this regard, plant-mediated syntheses of pure CeO2 and Mn-decorated CeO2 nano-powders have been inspected using seed extract of Cassia angustifolia. Investigations through UV-diffuse reflectance spectroscopy explored the significantly tuned band gap of Mn:CeO2. FT-IR spectroscopy shows the existing functional groups of high-potential phenolic compounds, proteins, and amino acids in Cassia angustifolia act as reducing and capping agents involved in the green fabricated nanostructured samples. X-ray diffraction pattern has been exposed to crystalline cubic fluorite morphology in a single phase and it leads to a regulated optimized amount of Mn on CeO2 nanostructure. The FESEM analysis predicts the morphology of CeO2 in spherical and Mn:CeO2 in flower-like structure. The HRTEM analysis has portrayed particle size of CeO2 is 11 nm and tuned Mn:CeO2 nanostructure is 9 nm. The HRTEM images revealed the average particle size in the range 10-12 nm in CeO2 and 8-9 nm in 5 mol% Mn:CeO2 nanoparticles. It showed a decrease in average particle size with an increase in Mn concentration and the reduction in size may be due to the replacement of Ce(IV) with Mn(II) ions. The elemental composition in nanostructure was predicted using energy-dispersive X-ray analysis. The rapid photocatalytic degradation efficiency of malachite green was effectually performed and compared with the kinetics model of Mn:CeO2 and pure CeO2 nanostructures. From the augmented results, tuned Mn:CeO2 was found to act as the finest green fabricated photocatalyst in the amputation of lethal and carcinogenic dye.
Collapse
Affiliation(s)
- Dhivya Antony
- Department of Chemistry, Madras Christian College, University of Madras, East Tambaram, Chennai, Tamil Nadu, 600 059, India
| | - Rakhi Yadav
- Department of Chemistry, Madras Christian College, University of Madras, East Tambaram, Chennai, Tamil Nadu, 600 059, India.
| |
Collapse
|
21
|
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123401. [PMID: 32763697 PMCID: PMC7606836 DOI: 10.1016/j.jhazmat.2020.123401] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/20/2020] [Accepted: 07/01/2020] [Indexed: 05/18/2023]
Abstract
Numerous hazardous environmental pollutants in water bodies, both organic and inorganic, have become a critical global issue. As greener and bio-synthesized versions of nanoparticles exhibit significant promise for wastewater treatment, this review discusses trends and future prospects exploiting the sustainable applications of green-synthesized nanocatalysts and nanomaterials for the removal of contaminants and metal ions from aqueous solutions. Recent trends and challenges about these nanocatalysts and nanomaterials and their potential applications in wastewater treatment and water purification are highlighted including toxicity and biosafety issues. This review delineates the pros and cons and critical issues pertaining to the deployment of these nanomaterials endowed with their superior surface area, mechanical properties, significant chemical reactivity, and cost-effectiveness with low energy consumption, for removal of hazardous materials and contaminants from water; comprehensive coverage of these materials for industrial wastewater remediation, and their recovery is underscored by recent advancements in nanofabrication, encompassing intelligent and smart nanomaterials.
Collapse
Affiliation(s)
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, USA; Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
22
|
Nayem SMA, Sultana N, Haque MA, Miah B, Hasan MM, Islam T, Hasan MM, Awal A, Uddin J, Aziz MA, Ahammad AJS. Green Synthesis of Gold and Silver Nanoparticles by Using Amorphophallus paeoniifolius Tuber Extract and Evaluation of Their Antibacterial Activity. Molecules 2020; 25:molecules25204773. [PMID: 33080946 PMCID: PMC7587553 DOI: 10.3390/molecules25204773] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 01/25/2023] Open
Abstract
In this report, we discussed rapid, facile one-pot green synthesis of gold and silver nanoparticles (AuNPs and AgNPs) by using tuber extract of Amorphophallus paeoniifolius, and evaluated their antibacterial activity. AuNPs and AgNPs were synthesized by mixing their respective precursors (AgNO3 and HAuCl4) with tuber extract of Amorphophallus paeoniifolius as the bio-reducing agent. Characterization of AuNPs and AgNPs were confirmed by applying UV-vis spectroscopy, field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDS). From UV-vis characterization, surface plasmon resonance spectra were found at 530 nm for AuNPs and 446 nm for AgNPs. XRD data confirmed that both synthesized nanoparticles were face-centered cubic in crystalline nature, and the average crystallite sizes for the assign peaks were 13.3 nm for AuNPs and 22.48 nm for AgNPs. FTIR data evaluated the characteristic peaks of different phytochemical components of tuber extract, which acted as the reducing agent, and possibly as stabilizing agents. The antibacterial activity of synthesized AuNPs and AgNPs were examined in Muller Hinton agar, against two Gram-positive and four Gram-negative bacteria through the disc diffusion method. AuNPs did not show any inhibitory effect, while AgNPs showed good inhibitory effect against both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- S. M. Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (N.S.); (M.A.H.); (B.M.); (M.M.H.); (T.I.); (M.M.H.); (A.A.)
| | - Nasrin Sultana
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (N.S.); (M.A.H.); (B.M.); (M.M.H.); (T.I.); (M.M.H.); (A.A.)
| | - Md. Aminul Haque
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (N.S.); (M.A.H.); (B.M.); (M.M.H.); (T.I.); (M.M.H.); (A.A.)
| | - Billal Miah
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (N.S.); (M.A.H.); (B.M.); (M.M.H.); (T.I.); (M.M.H.); (A.A.)
| | - Md. Mahmodul Hasan
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (N.S.); (M.A.H.); (B.M.); (M.M.H.); (T.I.); (M.M.H.); (A.A.)
| | - Tamanna Islam
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (N.S.); (M.A.H.); (B.M.); (M.M.H.); (T.I.); (M.M.H.); (A.A.)
| | - Md. Mahedi Hasan
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (N.S.); (M.A.H.); (B.M.); (M.M.H.); (T.I.); (M.M.H.); (A.A.)
| | - Abdul Awal
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (N.S.); (M.A.H.); (B.M.); (M.M.H.); (T.I.); (M.M.H.); (A.A.)
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, 2500 W. North Ave, Baltimore, MD 21216, USA
- Correspondence: (J.U.); (M.A.A.); (A.J.S.A.)
| | - Md. Abdul Aziz
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Correspondence: (J.U.); (M.A.A.); (A.J.S.A.)
| | - A. J. Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (N.S.); (M.A.H.); (B.M.); (M.M.H.); (T.I.); (M.M.H.); (A.A.)
- Correspondence: (J.U.); (M.A.A.); (A.J.S.A.)
| |
Collapse
|
23
|
El-Borady OM, Ayat MS, Shabrawy MA, Millet P. Green synthesis of gold nanoparticles using Parsley leaves extract and their applications as an alternative catalytic, antioxidant, anticancer, and antibacterial agents. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.09.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Anjana V, Koshy EP, Mathew B. Facile synthesis of silver nanoparticles using Azolla caroliniana, their cytotoxicity, catalytic, optical and antibacterial activity. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.matpr.2019.12.250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Phyto-Nanocatalysts: Green Synthesis, Characterization, and Applications. Molecules 2019; 24:molecules24193418. [PMID: 31547052 PMCID: PMC6804184 DOI: 10.3390/molecules24193418] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 01/14/2023] Open
Abstract
Catalysis represents the cornerstone of chemistry, since catalytic processes are ubiquitous in almost all chemical processes developed for obtaining consumer goods. Nanocatalysis represents nowadays an innovative approach to obtain better properties for the catalysts: stable activity, good selectivity, easy to recover, and the possibility to be reused. Over the last few years, for the obtaining of new catalysts, classical methods—based on potential hazardous reagents—have been replaced with new methods emerged by replacing those reagents with plant extracts obtained in different conditions. Due to being diversified in morphology and chemical composition, these materials have different properties and applications, representing a promising area of research. In this context, the present review focuses on the metallic nanocatalysts’ importance, different methods of synthesis with emphasis to the natural compounds used as support, characterization techniques, parameters involved in tailoring the composition, size and shape of nanoparticles and applications in catalysis. This review presents some examples of green nanocatalysts, grouped considering their nature (mono- and bi-metallic nanoparticles, metallic oxides, sulfides, chlorides, and other complex catalysts).
Collapse
|
26
|
|
27
|
Wu T, Duan X, Hu C, Wu C, Chen X, Huang J, Liu J, Cui S. Synthesis and characterization of gold nanoparticles from Abies spectabilis extract and its anticancer activity on bladder cancer T24 cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:512-523. [PMID: 30810403 DOI: 10.1080/21691401.2018.1560305] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent times, Gold nanoparticles (AuNPs) synthesized from plant extracts and their anticancer activity have attracted significant attention. We report the green approach for the synthesis of AuNPs using extract from Abies spectabilis plant. In this study, the reaction parameters were optimized to control the size of the nanoparticle, which was confirmed by Transmission Electron microscopy (TEM). Various characterization technique such as SAED pattern, UV visible spectroscopy, EDX, FTIR, and AFM were employed to analyze the synthesized AuNPs obtained from A. spectabilis plant extract. Furthermore, we investigated the anticancer activities using T24 cell lines. Interestingly, the results of extensive screening on the applications of newly synthesized AuNPs were tested for their cytotoxicity effects on anticancer activity against T24 cells by MTT assay. The cell apoptosis was studied using TUNEL, DAPI, caspase activity, cell invasion and migration. Nanoparticles at different concentrations ranging from 1 to 25 μg/ml exhibited a dose dependent cytotoxicity for 24 h. Condensation and DNA fragmentation are characteristic of apoptosis by DAPI, TUNEL staining, and the significant up regulations of Beclin-1, Bax and caspase 3, whereas the expressions of anti-apoptotic Bcl-2 and Bid were down regulated. However, this study, therefore attempts to report the synthesis, characterization, and anticancer activity of gold nanoparticles of A. spectabilis plant extract beneficial for cancer therapeutics.
Collapse
Affiliation(s)
- Tao Wu
- a Department of Urology , Affiliated Hospital of North Sichuan Medical College , Nanchong , Sichuan , China
| | - Xi Duan
- b Department of Dermatovenereology , Affiliated Hospital of North Sichuan Medical College , Nanchong , Sichuan , China
| | - Chunyan Hu
- a Department of Urology , Affiliated Hospital of North Sichuan Medical College , Nanchong , Sichuan , China
| | - Changqiang Wu
- c School of Medical Imaging , North Sichuan Medical College , Nanchong , Sichuan , China
| | - Xiaobin Chen
- a Department of Urology , Affiliated Hospital of North Sichuan Medical College , Nanchong , Sichuan , China
| | - Jing Huang
- a Department of Urology , Affiliated Hospital of North Sichuan Medical College , Nanchong , Sichuan , China
| | - Junbo Liu
- a Department of Urology , Affiliated Hospital of North Sichuan Medical College , Nanchong , Sichuan , China
| | - Shu Cui
- a Department of Urology , Affiliated Hospital of North Sichuan Medical College , Nanchong , Sichuan , China
| |
Collapse
|
28
|
Vo TT, Dang CH, Doan VD, Dang VS, Nguyen TD. Biogenic Synthesis of Silver and Gold Nanoparticles from Lactuca indica Leaf Extract and Their Application in Catalytic Degradation of Toxic Compounds. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01197-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Nasrollahzadeh M, Mahmoudi‐Gom Yek S, Motahharifar N, Ghafori Gorab M. Recent Developments in the Plant‐Mediated Green Synthesis of Ag‐Based Nanoparticles for Environmental and Catalytic Applications. CHEM REC 2019; 19:2436-2479. [DOI: 10.1002/tcr.201800202] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/20/2019] [Indexed: 01/13/2023]
Affiliation(s)
| | | | - Narjes Motahharifar
- Department of ChemistryFaculty of ScienceUniversity of Qom Qom 37185-359 Iran
| | | |
Collapse
|
30
|
Isa N, Lockman Z. Methylene blue dye removal on silver nanoparticles reduced by Kyllinga brevifolia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11482-11495. [PMID: 30806934 DOI: 10.1007/s11356-019-04583-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Silver nanoparticles (AgNPs) were prepared by reacting Kyllinga brevifolia extract (KBE) with AgNO3 aqueous solution at room temperature (22 ± 3 °C). The phytochemical constituents in KBE responsible for the reduction process were identified as carbohydrate, protein, and plant sterols (stigmasterol and campesterol). KBE was also found to function as a capping agent for stabilization of AgNPs. The AgNPs were stable at room temperature and had a quasi-spherical shape with an average particle size 22.3 nm. The use of KBE offers not only eco-friendly and non-pathogenic path for AgNPs formation, it also induced rapid formation of the AgNPs. Methylene blue (MB) removal was then done on the AgNPs in the presence of either KBE or NaBH4. Ninety-three percent removal of MB was achieved with a rate of reaction 0.2663 min-1 in the solution with KBE+AgNPs (pH 2). However, in NaBH4+AgNPs system, 100% MB removal was achieved at pH 8-10. The reaction rate was 2.5715 min-1 indicating a fast removal rate of MB dye. The process of reduction occurs via electron relay effect whereas in KBE+AgNPs system, sedimentation occurred along with the reduction process. Nevertheless, the use of KBE+AgNPs system is preferred as the reducing agent is more benign to the environment.
Collapse
Affiliation(s)
- Norain Isa
- Green Electronics NanoMaterials Group (GEMs), School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Seri Ampangan, Nibong Tebal, Pulau Pinang, Malaysia.
- Sensor and Environmental Research Group (SERG), Department of Applied Sciences, Technology University MARA, Cawangan Pulau Pinang, Kampus Permatang Pauh, 13500, Permatang Pauh, Pulau Pinang, Malaysia.
| | - Zainovia Lockman
- Green Electronics NanoMaterials Group (GEMs), School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Seri Ampangan, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|