1
|
Fučík J, Jarošová R, Baumeister A, Rexroth S, Navrkalová J, Sedlář M, Gargošová HZ, Mravcová L. Assessing earthworm exposure to a multi-pharmaceutical mixture in soil: unveiling insights through LC-MS and MALDI-MS analyses, and impact of biochar on pharmaceutical bioavailability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48351-48368. [PMID: 39028457 PMCID: PMC11297825 DOI: 10.1007/s11356-024-34389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
In the European circular economy, agricultural practices introduce pharmaceutical (PhAC) residues into the terrestrial environment, posing a potential risk to earthworms. This study aimed to assess earthworm bioaccumulation factors (BAFs), the ecotoxicological effects of PhACs, the impact of biochar on PhAC bioavailability to earthworms, and their persistence in soil and investigate earthworm uptake mechanisms along with the spatial distribution of PhACs. Therefore, earthworms were exposed to contaminated soil for 21 days. The results revealed that BAFs ranged from 0.0216 to 0.329, with no significant ecotoxicological effects on earthworm weight or mortality (p > 0.05). Biochar significantly influenced the uptake of 14 PhACs on the first day (p < 0.05), with diminishing effects over time, and affected significantly the soil-degradation kinetics of 16 PhACs. Moreover, MALDI-MS analysis revealed that PhAC uptake occurs through both the dermal and oral pathways, as pharmaceuticals were distributed throughout the entire earthworm tissue without specific localization. In conclusion, this study suggests ineffective PhAC accumulation in earthworms, highlights the influence of biochar on PhAC degradation rates in soil, and suggests that uptake can occur through both earthworm skin and oral ingestion.
Collapse
Affiliation(s)
- Jan Fučík
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| | - Rea Jarošová
- Veterinary Research Institute Brno, Hudcova 296/70, 621 00, Brno, Czech Republic
| | | | - Sascha Rexroth
- Shimadzu Europa GmbH, Albert-Hahn-Straße 6, 472 69, Duisburg, Germany
| | - Jitka Navrkalová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Marian Sedlář
- CEITEC Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Helena Zlámalová Gargošová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Ludmila Mravcová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
2
|
Hu X, Qu Y, Yao L, Zhang Z, Tan G, Bai C. Boosted simultaneous removal of chlortetracycline and Cu (II) by Litchi Leaves Biochar: Influence of pH, ionic strength, and background electrolyte ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10430-10442. [PMID: 38196041 DOI: 10.1007/s11356-023-31770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/25/2023] [Indexed: 01/11/2024]
Abstract
The coexistence of heavy metals and antibiotics in the environment always results in greater toxicity compared to the individual precursors. Therefore, efficient and economic technology for the simultaneous removal of antibiotics and heavy metals is essential. Herein, litchi leaves biochar carbonized at 550 °C (L550) demonstrated high efficiency in co-removal of CTC (1838.1 mmol/kg) and Cu (II) (1212.9 mmol/kg) within wide range of pH (pH 4-7). Ionic strength obviously enhanced the Cu (II) removal but showed no significant effect on CTC removal. Although Al3+ and HPO42- decreased the adsorption capacities of CTC and Cu (II) on L550, the coexistence of Na+, K+, Mg2+, Cl-, NO3-, CO32- and SO42- showed a negligible effect on the simultaneous removal of CTC and Cu (II). Moreover, the adsorption capacities of CTC and Cu (II) on L550 were excellent in the river water, tap water, and lake water. In addition to electrostatic interactions, ion exchange governed Cu (II) adsorption, while surface complexation played a key role in CTC adsorption on L550. Our results demonstrated that litchi leaves biochar could be a promising adsorbent for remediating multi-contaminated environments.
Collapse
Affiliation(s)
- Xian Hu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510642, China
| | - Yifan Qu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510642, China
| | - Lixian Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510642, China
| | - Zhilin Zhang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Guangcai Tan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Cuihua Bai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Andrade L, P Ryan M, P Burke L, Hynds P, Weatherill J, O'Dwyer J. Assessing antimicrobial and metal resistance genes in Escherichia coli from domestic groundwater supplies in rural Ireland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121970. [PMID: 37343911 DOI: 10.1016/j.envpol.2023.121970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Natural ecosystems can become significant reservoirs and/or pathways for antimicrobial resistance (AMR) dissemination, with the potential to affect nearby microbiological, animal, and ultimately human communities. This is further accentuated in environments that provide direct human exposure, such as drinking water. To date, however, few studies have investigated AMR dissemination potential and the presence of co-selective stressors (e.g., metals/metalloids) in groundwater environments of human health significance. Accordingly, the present study analysed samples from rural (drinking) groundwater supplies (i.e., private wells) in the Republic of Ireland, where land use is dominated by livestock grazing activities. In total, 48 Escherichia coli isolates tested phenotypically for antimicrobial susceptibility in an earlier study were further subject to whole genome sequencing (WGS) and corresponding water samples were further analysed for trace metal/metalloid concentrations. Eight isolates (i.e., 16.7%) were genotypically resistant to antimicrobials, confirming prior phenotypic results through the identification of ten antimicrobial resistance genes (ARGs); namely: aph(3″)-lb (strA; n=7), aph(6)-Id (strA; n = 6), blaTEM (n = 6), sul2 (n = 6), tetA (n = 4), floR (n = 2), dfrA5 (n = 1), tetB (n = 1), and tetY (n = 1). Additional bioinformatic analysis revealed that all ARGs were plasmid-borne, except for two of the six sul2 genes, and that 31.2% of all tested isolates (n = 15) and 37.5% of resistant ones (n = 3) carried virulence genes. Study results also found no significant relationships between metal concentrations and ARG abundance. Additionally, just one genetic linkage was identified between ARGs and a metal resistance gene (MRG), namely merA, a mercury-resistant gene found on the same plasmid as blaTEM, dfrA5, strA, strB, and sul2 in the only isolate of inferred porcine (as opposed to bovine) origin. Overall, findings suggest that ARG (and MRG) acquisition may be occurring prior to groundwater ingress, and are likely a legacy issue arising from agricultural practices.
Collapse
Affiliation(s)
- Luisa Andrade
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland.
| | - Michael P Ryan
- Department of Applied Sciences, Technological University of the Shannon Midwest, Moylish, Ireland
| | - Liam P Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Paul Hynds
- Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin, Dublin 7, Ireland
| | - John Weatherill
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Jean O'Dwyer
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Shen C, He M, Zhang J, Liu J, Su J, Dai J. Effects of the coexistence of antibiotics and heavy metals on the fate of antibiotic resistance genes in chicken manure and surrounding soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115367. [PMID: 37586197 DOI: 10.1016/j.ecoenv.2023.115367] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/09/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Both heavy metals and antibiotics exert selection pressure on bacterial resistance, and as they are commonly co-contaminated in the environment, they may play a larger role in bacterial resistance. This study examined how breeding cycles affect antibiotic resistance genes (ARGs) in chicken manure and the surrounding topsoils at 20, 50, 100, 200, and 300 m from twelve typical laying hen farms in the Ningxia Hui Autonomous Region of northwest China. Six antibiotics, seven heavy metals, ten mobile genetic elements (MGEs), and microbial community affected the ARGs profile in chicken dung and soil samples. Tetracycline antibiotic residues were prevalent in chicken manure, as were relatively high content of aureomycin during each culture period. Zinc (Zn) content was highest among the seven heavy metals in chicken feces. Chicken dung also enriched aminoglycosides, MLSB, and tetracycline ARGs, notably during brooding and high production. The farm had a minimal influence on antibiotics in the surrounding soil, but its effect on ARGs and MGEs closer to the farm (50 m) was stronger, and several ARGs and MGEs increased with distance. Manure microbial composition differed dramatically throughout breeding cycles and sampling distances. ARGs were more strongly related with antibiotics and heavy metals in manure than soil, whereas MGEs were the reverse. Antibiotics, heavy metals, MGEs, and bacteria in manure accounted 12.28%, 22.25%, 0.74%, and 0.19% of ARGs composition variance, respectively, according to RDA and VPA. Bacteria (2.89%) and MGEs (2.82%) only affected soil ARGs composition. These findings showed that heavy metals and antibiotics are the main factors affecting faecal ARGs and bacteria and MGEs soil ARGs. This paper includes antibiotic resistance data for large-scale laying hen husbandry in northwest China and a theoretical framework for decreasing antibiotic resistance.
Collapse
Affiliation(s)
- Cong Shen
- School of Life Sciences, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Mengyuan He
- School of Life Sciences, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Junhua Zhang
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, Ningxia, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Yinchuan 750021, Ningxia, China; Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Yinchuan 750021, Ningxia, China.
| | - Jili Liu
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, Ningxia, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Yinchuan 750021, Ningxia, China; Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Yinchuan 750021, Ningxia, China
| | - Jianyu Su
- School of Life Sciences, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Jinxia Dai
- School of Life Sciences, Ningxia University, Yinchuan, 750021, Ningxia, China
| |
Collapse
|
5
|
Zhao J, Li X, Xu Y, Li Y, Zheng L, Luan T. Toxic effects of long-term dual or single exposure to oxytetracycline and arsenic on Xenopus tropicalis living in duck wastewater. J Environ Sci (China) 2023; 127:431-440. [PMID: 36522075 DOI: 10.1016/j.jes.2022.05.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 06/17/2023]
Abstract
Direct discharge of aquaculture wastewater may have toxic effects, due to the presence of heavy metals, antibiotics, and even resistant pathogens, but little attention has been given. Here, tanks simulating a wild ecosystem were built to study the effects of long-term exposure to duck wastewater containing oxytetracycline (OTC) and/or arsenic (As) on the growth, physiological function, and gut microbiota evolution of Xenopus tropicalis. The results showed that duck wastewater had no apparent impact on X. tropicalis, but the impact increased significantly (P < 0.05) with exposure to OTC and/or As, especially the impact on body weight and growth rate. Biochemical indicators revealed varying degrees of oxidative stress damage, hepatotoxicity (inflammation, necrosis, and sinusoids), and collagen fibrosis of X. tropicalis in all treated groups after 72 days of exposure, which indirectly inhibited X. tropicalis growth. Moreover, 16S rDNA amplicon sequencing results showed that the gut microbiota structure and metabolic function were perturbed after chronic exposure, which might be the leading cause of growth inhibition. Interestingly, the abundance of intestinal resistance genes (RGs) increased with exposure time owing to the combined direct and indirect effects of stress factors in duck wastewater. Moreover, once the RGs were expressed, the resistance persisted for at least 24 days, especially that conferred by tetA. These results provide evidence of the toxic effects of DW containing OTC (0.1-4.0 mg/L) and/or As (0.3-3.5 µg/L) on amphibians and indicate that it is vital to limit the usage of heavy metals and antibiotics on farms to control the biotoxicity of wastewater.
Collapse
Affiliation(s)
- Jianbin Zhao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyan Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yuxin Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
6
|
Huang L, Yao SM, Jin Y, Xue W, Yu FH. Co-contamination by heavy metal and organic pollutant alters impacts of genotypic richness on soil nutrients. FRONTIERS IN PLANT SCIENCE 2023; 14:1124585. [PMID: 36778695 PMCID: PMC9909551 DOI: 10.3389/fpls.2023.1124585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Co-contamination by heavy metal and organic pollutant may negatively influence plant performance, and increasing the number of genotypes for a plant population may reduce this negative effect. To test this hypothesis, we constructed experimental populations of Hydrocotyle vulgaris consisting of single, four or eight genotypes in soils contaminated by cadmium, cypermethrin or both. Biomass, leaf area and stem internode length of H. vulgaris were significantly lower in the soil contaminated by cypermethrin and by both cadmium and cypermethrin than in the soil contaminated by cadmium only. A reverse pattern was found for specific internode length and specific leaf area. In general, genotypic richness or its interaction with soil contamination did not influence plant growth or morphology. However, soil nutrients varied in response to soil contamination and genotypic richness. Moreover, plant population growth was positively correlated to soil total nitrogen, but negatively correlated to total potassium and organic matter. We conclude that co-contamination by cadmium and cypermethrin may suppress the growth of H. vulgaris population compared to contamination by cadmium only, but genotypic richness may play little role in regulating these effects.
Collapse
Affiliation(s)
- Lin Huang
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation/Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
| | - Si-Mei Yao
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation/Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Yu Jin
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation/Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Wei Xue
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation/Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
| | - Fei-Hai Yu
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation/Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
| |
Collapse
|
7
|
Wang H, Yu B, Li B, Zhao T, Cai Y, Luo Y, Zhang H. A contrasting alteration of sulfamethoxazole bioaccessibility in two different soils amended with polyethylene microplastic: In-situ measurement using diffusive gradients in thin films. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152187. [PMID: 34890670 DOI: 10.1016/j.scitotenv.2021.152187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Microplastics and veterinary antibiotics are both emerging environmental contaminants that could be co-occurrence in agricultural soils. However, it's still unclear how the microplastics affect the bioaccessibility of antibiotics in a real soil environment. An in-situ measurement using diffusive gradients in thin-films devices suitable for polar organic compounds (o-DGT) coupled with soil moisture sampling were used to reveal such effects. Sulfamethoxazole (SMX) that was selected as a representative antibiotic and polyethylene (PE) microplastic with an average diameter of 35 μm were amended to the paddy soil and saline soil for the study. The result indicated that SMX degradation in the paddy soil was higher than that in the saline soil, meanwhile, PE microplastic addition promoted SMX degradation in both soils. In the paddy soil, PE microplastic addition enhanced release of SMX from soil solid to soil solution but no effects on the bioaccessibile SMX. However, in the saline soil, the PE microplastic addition reduced both SMX in soil solution and bioaccessibile SMX significantly (p < 0.05). The potential resupply ability of the labile SMX from soil solid to soil solution which was expressed as R value enhanced significantly in saline soil, while such a change was negligible in the paddy soil. This implied that long-term release risk of SMX in the PE microplastic contaminated saline soil could not be neglected. Therefore, co-occurrence of PE microplastic and SMX in the soils might increase uptake of SMX by biotas and such effects depended on soil properties.
Collapse
Affiliation(s)
- Han Wang
- Zhejiang Provincial Key laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ben Yu
- Zhejiang Provincial Key laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Baochen Li
- Zhejiang Provincial Key laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ting Zhao
- Zhejiang Provincial Key laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yimin Cai
- Zhejiang Provincial Key laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yongming Luo
- Nanjing Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Haibo Zhang
- Zhejiang Provincial Key laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
8
|
Liu L, He S, Tang M, Zhang M, Wang C, Wang Z, Sun F, Yan Y, Li H, Lin K. Pseudo toxicity abatement effect of norfloxacin and copper combined exposure on Caenorhabditis elegans. CHEMOSPHERE 2022; 287:132019. [PMID: 34450372 DOI: 10.1016/j.chemosphere.2021.132019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The coexistence of antibiotics and heavy metals may result in complex ecotoxicological effects on living organisms. In this work, the combined toxic effects of norfloxacin (NOR) and copper (Cu) on Caenorhabditis elegans (C. elegans) were investigated due to the highly possible co-pollution tendency. The results indicated that locomotion behaviors (frequency of head thrash and body bend) of C. elegans were more sensitive as the exposure time of NOR or Cu prolonged. Meanwhile, the physiological indexes (locomotion behaviors, body length) of C. elegans were more sensitive to the combined pollution that with lower Cu dosage (0.0125 μM), in prolonged exposure experiments. In addition, the toxic effects of NOR-Cu on physiological indexes of C. elegans seemed to be alleviated during prolonged exposure when Cu was 1.25 μM. Similarly, the ROS production and apoptosis level almost unchanged with the addition of NOR compared with Cu (1.25 μM) exposure groups, but both significantly higher than the control groups. Furthermore, compared with Cu (0.0125 μM and 1.25 μM) exposure experiments, the addition of NOR had resulted in the genetic expression decrease of hsp-16.1, hsp-16.2, hsp-16.48, and the oxidative stress in C. elegans seems to be alleviated. However, the significantly decreased of ape-1 and sod-3 expression indicated the disruption of ROS defense mechanism. The irregular change in ace-1 and ace-2 gene expressions in NOR-Cu (0.0125 μM) would result in the locomotion behaviors disorders of C. elegans, and this also explains why C. elegans are more sensitive to the combination of NOR and lower concentration of Cu.
Collapse
Affiliation(s)
- Lili Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Siqi He
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mingqi Tang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhiping Wang
- School of Environment Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feifei Sun
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
9
|
Xu Z, Huang W, Xie H, Feng X, Wang S, Song H, Xiong J, Mailhot G. Co-adsorption and interaction mechanism of cadmium and sulfamethazine onto activated carbon surface. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126540] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Song M, Song D, Jiang L, Zhang D, Sun Y, Chen G, Xu H, Mei W, Li Y, Luo C, Zhang G. Large-scale biogeographical patterns of antibiotic resistome in the forest soils across China. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123990. [PMID: 33265028 DOI: 10.1016/j.jhazmat.2020.123990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/14/2020] [Accepted: 09/12/2020] [Indexed: 05/26/2023]
Abstract
Soil is a reservoir of environmental resistomes. Information about their distribution, profiles, and driving forces in undisturbed environments is essential for understanding and managing modern antibiotic resistance genes (ARGs) in human disturbed environments. However, knowledge about the resistomes in pristine soils is limited, particularly at national scale. Here, we conducted a national-scale investigation of soil resistomes in pristine forests across China. Although the antibiotics content was low and ranged from below limit of detection (LOD) to 0.290 μg/kg, numerous detected ARGs conferring resistance to major classes of modern antibiotics were identified and indicated forest soils as a potential source of resistance traits. ARGs ranged from 6.20 × 10-7 to 2.52 × 10-3 copies/16S-rRNA and were predominated by those resisting aminoglycoside and encoding deactivation mechanisms. Low abundance of mobile genetic elements (MGEs) and its scarcely positive connections with ARGs suggest the low potential of horizontal gene transfer. The geographic patterns of ARGs and ARG-hosts in pristine forest soils were mainly driven by soil physiochemical variables and followed a distance-decay relationship. This work focusing on pristine soils can provide valuably new information for our understanding of the ARGs in human disturbed environments.
Collapse
Affiliation(s)
- Mengke Song
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Song
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yingtao Sun
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guoen Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huijuan Xu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China
| | - Weiping Mei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
11
|
Xu Y, Yu X, Xu B, Peng D, Guo X. Sorption of pharmaceuticals and personal care products on soil and soil components: Influencing factors and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141891. [PMID: 32890871 DOI: 10.1016/j.scitotenv.2020.141891] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/01/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
The sorption of pharmaceuticals and personal care products (PPCPs) on soil and soil components makes an important contribution to the fate, migration and bioavailability of PPCPs. Previous reviews have mostly focused on the sorption of PPCPs on single soil components (e.g., minerals and soil organic matter). However, the sorption of PPCPs within the whole soil system has not been systematically analyzed. This paper reviews the recent progress on PPCP sorption on soil and soil components. We have evaluated the sorption of a wide range of PPCPs in research fields that are usually considered in isolation (e.g., humic acids (HAs), montmorillonite, kaolinite, and goethite), and established a bridge between PPCPs and sorbent. The sorption mechanisms of PPCPs, e.g., cation exchange, surface complexation, electrostatic interaction and hydrogen bonding, are discussed and critically evaluated. We also assessed the influence of environmental factors (pH, ionic strength, organic matter and temperature) on sorption. This review summarizes the knowledge of PPCPs sorption on soil gained in recent years, which can provide new strategies for solving the problem of antibiotic pollution.
Collapse
Affiliation(s)
- Yibo Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqin Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baile Xu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Dan Peng
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518172, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
12
|
Huang F, An Z, Moran MJ, Liu F. Recognition of typical antibiotic residues in environmental media related to groundwater in China (2009-2019). JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122813. [PMID: 32937691 DOI: 10.1016/j.jhazmat.2020.122813] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
The potential adverse environmental and health-related impacts of antibiotics are becoming more and more concerning. China is globally the largest antibiotic producer and consumer, possibly resulting in the ubiquity and high detection levels of antibiotics in environmental compartments. Clear status on the concentration levels and spatial distribution of antibiotic contamination in China's environment is necessary to gain insight into the establishment of legal and regulatory frameworks. This study collects information from over 170 papers reporting the occurrence and distribution of antibiotics in China's environment. A total of 110 antibiotics were detected, and 28 priority antibiotics were ubiquitous in China in almost all compartments of the environment, excluding the atmosphere. Seven dominant antibiotics in all environment compartments were identified by cluster analysis, including tetracycline, oxytetracycline, chlortetracycline, ofloxacin, enrofloxacin, norfloxacin, and ciprofloxacin. Meanwhile, sulfamethoxazole, sulfadiazine, and sulfamethazine were also frequently found in aqueous phases. Among the main basins where antibiotics were detected, the Haihe River Basin had higher median antibiotic concentrations in surface water compared to other basins, while the Huaihe River Basin had higher median concentrations in sediment. The median values of antibiotic concentrations in the sources were as follows: animal manure, 39 μg/kg (microgram per kilogram); WWTP (wastewater treatment plant) sludge, 39 μg/kg; animal wastewater, 156 ng/L (nanogram per liter); WWTP effluent: 15 ng/L. These concentrations are 1 - 2 orders of magnitude higher than that of the receptors (soil, 2.1 μg/kg; sediment, 4.7 μg/kg; surface water, 8.1 ng/L; groundwater, 2.9 ng/L), whether in solid or aqueous phases. Based on the number of detected antibiotics in various environmental compartments, animal farms and WWTPs are the main sources of antibiotics, and surface water and sediment are the main receptors of antibiotics. Hierarchical clustering identified the two main pathways of antibiotic transfer in various environmental compartments, which are from animal wastewater/WWTP effluent to surface water/sediment and from animal manure/WWTP sludge to soil/groundwater.
Collapse
Affiliation(s)
- Fuyang Huang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, PR China
| | - Ziyi An
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, PR China; National Research Center for Geoanalysis, Beijing, PR China
| | - Michael J Moran
- U.S. Geological Survey, Southwest Biological Science Center, Grand Canyon Monitoring and Research Center, Flagstaff, Arizona, USA.
| | - Fei Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, PR China.
| |
Collapse
|
13
|
Guo X, Liu M, Zhong H, Li P, Zhang C, Wei D, Zhao T. Potential of Myriophyllum aquaticum for phytoremediation of water contaminated with tetracycline antibiotics and copper. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110867. [PMID: 32507744 DOI: 10.1016/j.jenvman.2020.110867] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Water pollution caused by antibiotics and heavy metals has attracted considerable concern, and efficient approaches are urgently needed for their removal. The objective of this study was to investigate the potential of Myriophyllum aquaticum for long-term phytoremediation of wastewater containing tetracycline (TC) antibiotics and copper. Seven hydroponic microcosms were constructed, spiked with tetracycline, oxytetracycline (OTC) and chlortetracycline (CTC) (300-30,000 μg/L), alone or simultaneously with Cu (II), and operated for 12 weeks. The TC removal efficiencies using the hydroponic microcosms here were commensurate or higher than those in previous studies. However, the Cu/TC ratio greatly affected the removal, accumulation of TCs by M. aquaticum, and plant growth. Low levels of Cu (II) (<1000 μg/L) promoted TC removal, but excessive Cu (II) (>10,000 μg/L) impeded it. Mass balance analysis showed that most TCs (45%-64% on average) accumulated in the roots of M. aquaticum. Plant biomass was correlated with the removal of COD, TN, TP, and NH4+-N (p ≤ 0.05) but not with removal of the TCs. Proteobacteria, Bacteroidetes, and Fusobacteria were dominant in the microbial communities, but they showed little correlation with the TC removal. M. aquaticum can be employed as an effective means of TC removal from water. The co-existence of heavy metals should be considered when evaluating the removal potential of TCs in phytoremediation.
Collapse
Affiliation(s)
- Xuan Guo
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China
| | - Mingming Liu
- Beijing Beike Environmental Engineering Co., Ltd., Beijing, 100080, China
| | - Hua Zhong
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China
| | - Peng Li
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China.
| | - Chengjun Zhang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China.
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China
| | - Tongke Zhao
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China
| |
Collapse
|
14
|
Zhang Y, Chen H, Jing L, Teng Y. Ecotoxicological risk assessment and source apportionment of antibiotics in the waters and sediments of a peri-urban river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139128. [PMID: 32413658 DOI: 10.1016/j.scitotenv.2020.139128] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Antibiotics have been widely used in the past decades and caused global public health concerns due to the growing problems of antimicrobial resistance. The peri-urban rivers are always receiving massive wastes containing antibiotics and appear to be a reservoir of antibiotics and antibiotic resistance genes in the environment. To prevent and control the pollution of antibiotics, it is essential to correctly identify the potential sources of antibiotics in peri-urban rivers. Currently, systematic knowledge on risk characteristics and source apportionment of antibiotics in peri-urban rivers is still lacking. In the study, we addressed this problem and focused on exploring the ecotoxicological risk and potential sources of antibiotics in a peri-urban river in Beijing (Chaobai River). To this end, the waters and sediments were collected from the river, as well as the potential source types including domestic sewage, WWTP effluent, chicken manure, pig manure and cattle manure. The occurrence and concentration levels of 16 antibiotics in the waters and sediments of the river were comprehensively characterized, as well as the correlation of antibiotics with environmental factors. Then, risk quotients and mixture risk quotients were used to assess the ecotoxicological risk of single compound and the mixture toxicity of antibiotics, respectively. The synergistic effects of antibiotic mixtures were also analyzed. Further, positive matrix factorization was employed to apportion the potential sources of antibiotics based on the multilinear engine (ME-2) algorithm. The target antibiotics were widely detected in the peri-urban river and several antibiotics posed moderate ecotoxicological risks on aquatic organisms. Apportionment analysis identified four potential sources of antibiotics in the waters of Chaobai River, including domestic sewage (31.5%), chicken waste (26.4%), WWTP effluent (22.2%) and a mix source (20.0%). Additionally, WWTP effluent (~58%) and sewage effluent (41%) were apportioned as the main contributors of antibiotics in the sediments.
Collapse
Affiliation(s)
- Yuxin Zhang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Haiyang Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China.
| | - Lijun Jing
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
15
|
Rong H, Wang C, Liu H, Zhang M, Yuan Y, Pu Y, Huang J, Yu J. Biochemical Toxicity and Potential Detoxification Mechanisms in Earthworms Eisenia fetida Exposed to Sulfamethazine and Copper. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:255-260. [PMID: 32632463 DOI: 10.1007/s00128-020-02927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
The present study investigated the biochemical toxicity and potential detoxification mechanisms in earthworms Eisenia fetida exposed to sulfamethazine (SMZ) (7.5, 15 and 30 mg kg-1) either alone or in combination with Copper (Cu) (100 mg kg-1) in soil. The results showed that increasing concentrations of SMZ in soil activated superoxide dismutase, catalase and glutathione peroxidase isozymes, suggesting reactive oxygen species (ROS) burst in earthworms. Treatment with SMZ and Cu separately or in combination caused protein oxidation and damage, elevating the synthesis of ubiquitin, the 20S proteasome, cytochrome P450 (CYP450), and heat shock protein 70 (HSP70). Such treatments also induced the activities of proteases, endoproteinase (EP) and glutathione S-transferases (GSTs). The results suggested that the ubiquitin-20S proteasome, proteases, EP and HSP70 were involved in degradation or remediation of oxidatively damaged proteins. Elevated levels of CYP450 and GSTs also participated in the detoxification of the earthworms.
Collapse
Affiliation(s)
- Hong Rong
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Chengrun Wang
- School of Biological Engineering, Huainan Normal University, Huainan, China.
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China.
| | - Haitao Liu
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Min Zhang
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Yueting Yuan
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Yanjie Pu
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Jin Huang
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Jinyu Yu
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| |
Collapse
|
16
|
Hong X, Zhao Y, Zhuang R, Liu J, Guo G, Chen J, Yao Y. Bioremediation of tetracycline antibiotics-contaminated soil by bioaugmentation. RSC Adv 2020; 10:33086-33102. [PMID: 35694106 PMCID: PMC9122622 DOI: 10.1039/d0ra04705h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/16/2020] [Indexed: 12/03/2022] Open
Abstract
Bioaugmentation using specific microbial strains or consortia was deemed to be a useful bioremediation technology for increasing bioremediation efficiency. The present study confirmed the effectiveness and feasibility of bioaugmentation capability of the bacterium BC immobilized on sugarcane bagasse (SCB) for degradation of tetracycline antibiotics (TCAs) in soil. It was found that an inoculation dose of 15% (v/w), 28–43 °C, slightly acidic pH (4.5–6.5), and the addition of oxytetracycline (OTC, from 80 mg kg−1 to 160 mg kg−1) favored the bioaugmentation capability of the bacterium BC, indicating its strong tolerance to high temperature, pH, and high substrate concentrations. Moreover, SCB-immobilized bacterium BC system exhibited strong tolerance to heavy metal ions, such as Pb2+ and Cd2+, and could fit into the simulated soil environment very well. In addition, the bioaugmentation and metabolism of the co-culture with various microbes was a complicated process, and was closely related to various species of bacteria. Finally, in the dual-substrate co-biodegradation system, the presence of TC at low concentrations contributed to substantial biomass growth but simultaneously led to a decline in OTC biodegradation efficiency by the SCB-immobilized bacterium BC. As the total antibiotic concentration was increased, the OTC degradation efficiency decreased gradually, while the TC degradation efficiency still exhibited a slow rise tendency. Moreover, the TC was preferentially consumed and degraded by continuous introduction of OTC into the system during the bioremediation treatment. Therefore, we propose that the SCB-immobilized bacterium BC exhibits great potential in the bioremediation of TCAs-contaminated environments. Bioaugmentation using specific microbial strains or consortia was deemed to be a useful bioremediation technology for increasing bioremediation efficiency.![]()
Collapse
Affiliation(s)
- Xiaxiao Hong
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Yuechun Zhao
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Rudong Zhuang
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Jiaying Liu
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Guantian Guo
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Jinman Chen
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Yingming Yao
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| |
Collapse
|
17
|
Zhao F, Yang L, Chen L, Xiang Q, Li S, Sun L, Yu X, Fang L. Soil contamination with antibiotics in a typical peri-urban area in eastern China: Seasonal variation, risk assessment, and microbial responses. J Environ Sci (China) 2019; 79:200-212. [PMID: 30784443 DOI: 10.1016/j.jes.2018.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 05/11/2023]
Abstract
The prevalence and persistence of antibiotics in soils has become an emerging environmental issue and an increasing threat to soil security and global public health. The problem is more severe in areas undergoing rapid urbanization; however, the ecological risks of antibiotics, seasonal variability, and associated soil microbial responses in peri-urban soils have not been well-explored. The seasonal soil sampling campaigns were conducted in a typical peri-urban watershed in eastern China to investigate distribution of antibiotics. The results demonstrated higher mean concentrations of most antibiotic compounds in winter than in summer in peri-urban soils. The seasonal variations of norfloxacin, enrofloxacin, and ciprofloxacin were more significant than those of other antibiotics, due to their higher migration ability and bioavailability. An ecological risk assessment demonstrated that chlortetracycline, ciprofloxacin, doxycycline, and ofloxacin can pose high risks to soil microorganisms. Furthermore, the coexistence of multiple antibiotics obviously poses higher risks than individual compounds. A redundancy analysis demonstrated that tetracyclines mainly showed negative correlations with Firmicutes and Chloroflexi, and quinolones showed obviously negative correlations with Acidobacteria, Gemmatimonadetes, and Nitrospirae, suggesting potential inhibition from antibiotics on biological activities or biodegradation processes. However, the persistence of antibiotics in soil results in a significant decrease in bacterial diversity and a change in dominant species. Our results provide an overview of the seasonal variability of antibiotics and the associated effects on bacterial communities in peri-urban soils. The results can provide scientific guidance on decreasing soil contamination with antibiotics to enhance soil security in similar areas.
Collapse
Affiliation(s)
- Fangkai Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China..
| | - Liding Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Xiang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shoujuan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xinwei Yu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center For Disease Control and Prevention, Zhoushan 316021, China
| | - Li Fang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center For Disease Control and Prevention, Zhoushan 316021, China
| |
Collapse
|
18
|
Zhao F, Yang L, Chen L, Li S, Sun L. Bioaccumulation of antibiotics in crops under long-term manure application: Occurrence, biomass response and human exposure. CHEMOSPHERE 2019; 219:882-895. [PMID: 30572238 DOI: 10.1016/j.chemosphere.2018.12.076] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/05/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Long-term manure application gives rise to the uptake of antibiotics by plants and antibiotics subsequent entry into the food chain, representing an important alternative pathway for human exposure to antibiotics. The antibiotics can cause negative effects on crop growth and productivity. The bioaccumulation and translocation of 14 target antibiotics in peanuts (Arachis hypogaea L.) and their effects on peanut relative biomass in fields with long-term (≥15 years) manure application were studied. The results showed that all the target antibiotics were found in manures and rhizosphere soils, and most of them were found in all peanut tissues (roots, shells, kernels, stem, and leaves). The antibiotic concentrations in peanut tissues were varied with the characteristics of antibiotics in soils. Tetracyclines were the dominating antibiotic compounds in all peanut tissues, accounting for 61%-80% of total antibiotics due to their relatively high concentration in rhizosphere soil. Most tetracyclines and quinolones preferentially accumulated in the roots and translocated to other peanut tissues than sulfonamides and macrolides. Furthermore, the influence of antibiotics in soil and crops on relative biomass of crop tissues varied with tissues and antibiotic types. Antibiotics significantly inhibited the tissue relative biomass in most cases, although stimulation of some antibiotics to crop biomass was also observed. We found that 18.3% of the variance of the peanut relative biomass was explained by antibiotics in soils and tissues. The estimated threshold of daily intake values suggests that the consumption of peanut kernels grown in field conditions with long-term manure application presents a moderate risk to human health.
Collapse
Affiliation(s)
- Fangkai Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Liding Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shoujuan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
19
|
Rok J, Rzepka Z, Respondek M, Beberok A, Wrześniok D. Chlortetracycline and melanin biopolymer - The risk of accumulation and implications for phototoxicity: An in vitro study on normal human melanocytes. Chem Biol Interact 2019; 303:27-34. [PMID: 30768968 DOI: 10.1016/j.cbi.2019.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
Tetracyclines belong to antimicrobial classes with the highest consumption in veterinary medicine and agriculture, which leads to the contamination of the environment and food products, as well as to antibiotic resistance and adverse drug reactions. Chloro-derivatives of tetracyclines are thought to be relatively more phototoxic than others and belong to the most frequently cited drugs as photosensitizers. Melanins are heterogenous biopolymers determining skin, hair and eye colour. They are biosynthesized in a multistep process in melanocytes. Melanins, besides photoprotective and antioxidant properties, may also contribute to adverse skin drug reactions, which involve e.g. hyperpigmentation disorders and phototoxic reactions. Furthermore, they have the ability to form a drug-melanin complex, which leads to deposition of the drug or its metabolites in pigmented tissues. The aim of the study was to examine the ability of chlortetracycline to form a complex with melanin, as well as the effect of the drug on viability, antioxidant defence system and melanogenesis in normal human epidermal melanocytes exposed to the UVA radiation. The obtained results show for the first time that chlortetracycline forms a complex with melanin polymers, which creates a possibility of the drug accumulation in pigmented tissues. A simultaneous exposition of normal melanocytes to chlortetracycline and to the UVA radiation decreases cell viability, proportionally to the drug concentration and the irradiation time. The phototoxic effect appears to be related to the induction of oxidative stress in melanocytes, mainly through an increase of SOD and a decrease of the CAT activity. Chlortetracycline itself does not influence the melanin content or the activity of tyrosinase. The UVA radiation appeared to be a conditioning factor stimulating melanogenesis, whereas the presence of the drug augmented this effect.
Collapse
Affiliation(s)
- Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200, Sosnowiec, Poland.
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200, Sosnowiec, Poland
| | - Michalina Respondek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200, Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200, Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200, Sosnowiec, Poland
| |
Collapse
|