1
|
Yin F, Zhou Y, Xie D, Liang Y, Luo X. Evaluating the adverse effects and mechanisms of nanomaterial exposure on longevity of C. elegans: A literature meta-analysis and bioinformatics analysis of multi-transcriptome data. ENVIRONMENTAL RESEARCH 2024; 247:118106. [PMID: 38224941 DOI: 10.1016/j.envres.2024.118106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Exposure to large-size particulate air pollution (PM2.5 or PM10) has been reported to increase risks of aging-related diseases and human death, indicating the potential pro-aging effects of airborne nanomaterials with ultra-fine particle size (which have been widely applied in various fields). However, this hypothesis remains inconclusive. Here, a meta-analysis of 99 published literatures collected from electronic databases (PubMed, EMBASE and Cochrane Library; from inception to June 2023) was performed to confirm the effects of nanomaterial exposure on aging-related indicators and molecular mechanisms in model animal C. elegans. The pooled analysis by Stata software showed that compared with the control, nanomaterial exposure significantly shortened the mean lifespan [standardized mean difference (SMD) = -2.30], reduced the survival rate (SMD = -4.57) and increased the death risk (hazard ratio = 1.36) accompanied by upregulation of ced-3, ced-4 and cep-1, while downregulation of ctl-2, ape-1, aak-2 and pmk-1. Furthermore, multi-transcriptome data associated with nanomaterial exposure were retrieved from Gene Expression Omnibus (GSE32521, GSE41486, GSE24847, GSE59470, GSE70509, GSE14932, GSE93187, GSE114881, and GSE122728) and bioinformatics analyses showed that pseudogene prg-2, mRNAs of abu, car-1, gipc-1, gsp-3, kat-1, pod-2, acdh-8, hsp-60 and egrh-2 were downregulated, while R04A9.7 was upregulated after exposure to at least two types of nanomaterials. Resveratrol (abu, hsp-60, pod-2, egrh-2, acdh-8, gsp-3, car-1, kat-1, gipc-1), naringenin (kat-1, egrh-2), coumestrol (egrh-2) or swainsonine/niacin/ferulic acid (R04A9.7) exerted therapeutic effects by reversing the expression levels of target genes. In conclusion, our study demonstrates the necessity to use phytomedicines that target hub genes to delay aging for populations with nanomaterial exposure.
Collapse
Affiliation(s)
- Fei Yin
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Yang Zhou
- School of Textile Science and Engineering/National Engineering Laboratory for Advanced Yarn and Clean Production, Wuhan Textile University, Wuhan, 430200, China.
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Yunxia Liang
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| |
Collapse
|
2
|
Flasz B, Ajay AK, Tarnawska M, Babczyńska A, Majchrzycki Ł, Kędziorski A, Napora-Rutkowski Ł, Świerczek E, Augustyniak M. Multigenerational Effects of Graphene Oxide Nanoparticles on Acheta domesticus DNA Stability. Int J Mol Sci 2023; 24:12826. [PMID: 37629006 PMCID: PMC10454164 DOI: 10.3390/ijms241612826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The use of nanoparticles like graphene oxide (GO) in nanocomposite industries is growing very fast. There is a strong concern that GO can enter the environment and become nanopollutatnt. Environmental pollutants' exposure usually relates to low concentrations but may last for a long time and impact following generations. Attention should be paid to the effects of nanoparticles, especially on the DNA stability passed on to the offspring. We investigated the multigenerational effects on two strains (wild and long-lived) of house cricket intoxicated with low GO concentrations over five generations, followed by one recovery generation. Our investigation focused on oxidative stress parameters, specifically AP sites (apurinic/apyrimidinic sites) and 8-OHdG (8-hydroxy-2'-deoxyguanosine), and examined the global DNA methylation pattern. Five intoxicated generations were able to overcome the oxidative stress, showing that relatively low doses of GO have a moderate effect on the house cricket (8-OHdG and AP sites). The last recovery generation that experienced a transition from contaminated to uncontaminated food presented greater DNA damage. The pattern of DNA methylation was comparable in every generation, suggesting that other epigenetic mechanisms might be involved.
Collapse
Affiliation(s)
- Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| | - Amrendra K. Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| | - Łukasz Majchrzycki
- Center for Advanced Technology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| | - Łukasz Napora-Rutkowski
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520 Chybie, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| |
Collapse
|
3
|
Qu M, Miao L, Chen H, Zhang X, Wang Y. SKN-1/Nrf2-dependent regulation of mitochondrial homeostasis modulates transgenerational toxicity induced by nanoplastics with different surface charges in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131840. [PMID: 37327611 DOI: 10.1016/j.jhazmat.2023.131840] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
The toxic effects of nanoplastics on transgenerational toxicity in environmental organisms and the involved mechanisms remain poorly comprehended. This study aimed to identify the role of SKN-1/Nrf2-dependent regulation of mitochondrial homeostasis in response to transgenerational toxicity caused by changes in nanoplastic surface charges in Caenorhabditis elegans (C. elegans). Our results revealed that compared with the wild-type control and PS exposed groups, exposure to PS-NH2 or PS-SOOOH at environmentally relevant concentrations (ERC) of ≥ 1 μg/L caused transgenerational reproductive toxicity, inhibited mitochondrial unfolded protein responses (UPR) by downregulating the transcription levels of hsp-6, ubl-5, dve-1, atfs-1, haf-1, and clpp-1, membrane potential by downregulating phb-1 and phb-2, and promoted mitochondrial apoptosis by downregulating ced-4 and ced-3 and upregulating ced-9, DNA damage by upregulating hus-1, cep-1, egl-1, reactive oxygen species (ROS) by upregulating nduf-7 and nuo-6, ultimately resulting in mitochondrial homeostasis. Additionally, further study indicated that SKN-1/Nrf2 mediated antioxidant response to alleviate PS-induced toxicity in the P0 generation and dysregulated mitochondrial homeostasis to enhance PS-NH2 or PS-SOOOH-induced transgenerational toxicity. Our study highlights the momentous role of SKN-1/Nrf2 mediated mitochondrial homeostasis in the response to nanoplastics caused transgenerational toxicity in environmental organisms.
Collapse
Affiliation(s)
- Man Qu
- School of Public Health, Yangzhou University, Yangzhou 225000, China.
| | - Long Miao
- School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - He Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230000, China
| | - Xing Zhang
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing 210009, China
| | - Yang Wang
- Yangzhou Hospital of Traditional Chinese Medicine Affiliated to the School of Clinical Chinese Medicine, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
4
|
Zhao Y, Chen J, Wang R, Pu X, Wang D. A review of transgenerational and multigenerational toxicology in the in vivo model animal Caenorhabditis elegans. J Appl Toxicol 2023; 43:122-145. [PMID: 35754092 DOI: 10.1002/jat.4360] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
A large number of pollutants existing in the environment can last for a long time, and their potential toxic effects can transfer from parents to their offspring. Thus, it is necessary to investigate the toxicity of environmental pollutants across multigenerations and the underlying mechanisms in organisms. Due to its short life cycle and sensitivity to environmental exposures, Caenorhabditis elegans is an important animal model for toxicity assessment of environmental pollutants across multigenerations. In this review, we introduced the transgenerational and multigenerational toxicity caused by various environmental pollutants in C. elegans. Moreover, we discussed the underlying mechanisms for the observed transgenerational and multigenerational toxicity of environmental contaminants in C. elegans.
Collapse
Affiliation(s)
- Yunli Zhao
- Medical School, Southeast University, Nanjing, China.,School of Public Health, Bengbu Medical College, Bengbu, China
| | - Jingya Chen
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Rui Wang
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Xiaoxiao Pu
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Li H, Zeng L, Wang C, Shi C, Li Y, Peng Y, Chen H, Zhang J, Cheng B, Chen C, Xiang M, Huang Y. Review of the toxicity and potential molecular mechanisms of parental or successive exposure to environmental pollutants in the model organism Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119927. [PMID: 35970344 DOI: 10.1016/j.envpol.2022.119927] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollutants such as heavy metals, nano/microparticles, and organic compounds have been detected in a wide range of environmental media, causing long-term exposure in various organisms and even humans through breathing, contacting, ingestion, and other routes. Long-term exposure to environmental pollutants in organisms or humans promotes exposure of offspring to parental and environmental pollutants, and subsequently results in multiple biological defects in the offspring. This review dialectically summarizes and discusses the existing studies using Caenorhabditis elegans (C. elegans) as a model organism to explore the multi/transgenerational toxicity and potential underlying molecular mechanisms induced by environmental pollutants following parental or successive exposure patterns. Parental and successive exposure to environmental pollutants induces various biological defects in C. elegans across multiple generations, including multi/transgenerational developmental toxicity, neurotoxicity, reproductive toxicity, and metabolic disturbances, which may be transmitted to progeny through reactive oxygen species-induced damage, epigenetic mechanisms, insulin/insulin-like growth factor-1 signaling pathway. This review aims to arouse researchers' interest in the multi/transgenerational toxicity of pollutants and hopes to explore the possible long-term effects of environmental pollutants on organisms and even humans, as well as to provide constructive suggestions for the safety and management of emerging alternatives.
Collapse
Affiliation(s)
- Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Lingjun Zeng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Chongli Shi
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yeyong Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yi Peng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jin Zhang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Biao Cheng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Minghui Xiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yuan Huang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
6
|
Yao Y, Chen Z, Zhang T, Tang M. Adverse reproductive and developmental consequences of quantum dots. ENVIRONMENTAL RESEARCH 2022; 213:113666. [PMID: 35697086 DOI: 10.1016/j.envres.2022.113666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Quantum dots (QDs), with a size of 1-10 nm, are luminescent semiconductor nanocrystals characterized by a shell-core structure. Notably, QDs have potential application in bioimaging owing to their higher fluorescence performance than conventional fluorescent dyes. To date, QDs has been widely used in photovoltaic devices, supercapacitors, electrocatalysis, photocatalysis. In recent years, scientists have focused on whether the use of QDs can interfere with the reproductive and developmental processes of organisms, resulting in serious population and community problems. In this study, we first analyze the possible reproductive and development toxicity of QDs. Next, we summarize the possible mechanisms underlying QDs' interference with reproduction and development, including oxidative stress, altered gametogenesis and fetal development gene expression, autophagy and apoptosis, and release of metal ions. Thereafter, we highlight some potential aspects that can be used to eliminate or reduce QDs toxicity. Based on QDs' unique physical and chemical properties, a comprehensive range of toxicity test data is urgently needed to build structure-activity relationship to quickly evaluate the ecological safety of each kind of QDs.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Zhaofang Chen
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China.
| |
Collapse
|
7
|
Yao Y, Zhang T, Tang M. A critical review of advances in reproductive toxicity of common nanomaterials to Caenorhabditis elegans and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119270. [PMID: 35398402 DOI: 10.1016/j.envpol.2022.119270] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, nanotechnology has rapidly developed. Therefore, there is growing concern about the potential environmental risks of nanoparticles (NPs). Caenorhabditis elegans (C. elegans) has been used as a powerful tool for studying the potential ecotoxicological impacts of nanomaterials from the whole animal level to single cell level, especially in the area of reproduction. In this review, we discuss the reproductive toxicity of common nanomaterials in C. elegans, such as metal-based nanomaterial (silver nanoparticles (NPs), gold NPs, zinc oxide NPs, copper oxide NPs), carbon-based nanomaterial (graphene oxide, multi-walled carbon nanotubes, fullerene nanoparticles), polymeric NPs, silica NPs, quantum dots, and the potential mechanisms involved. This insights into the toxic effects of existing nanomaterials on the human reproductive system. In addition, we summarize how the physicochemical properties (e.g., size, charge, surface modification, shape) of nanomaterials influence their reproductive toxicity. Overall, using C. elegans as a platform to develop rapid detection techniques and prediction methods for nanomaterial reproductive toxicity is expected to reduce the gap between biosafety evaluation of nanomaterials and their application.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
8
|
Kitisin T, Muangkaew W, Sukphopetch P. Caenorhabditis elegans DAF-16 regulates lifespan and immune responses to Cryptococcus neoformans and Cryptococcus gattii infections. BMC Microbiol 2022; 22:162. [PMID: 35733100 PMCID: PMC9214972 DOI: 10.1186/s12866-022-02579-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Background Cryptococcosis is a life-threatening infection is primarily caused by two sibling species Cryptococcus neoformans and Cryptococcus gattii. Several virulence-related factors of these cryptococci have been widely investigated in Caenorhabditis elegans, representing a facile in vivo model of host–pathogen interaction. While recent studies elucidated cryptococcal virulence factors, intrinsic host factors that affect susceptibility to infections by cryptococci remain unclear and poorly investigated. Results Here, we showed that defects in C. elegans insulin/insulin-like growth factor-1 (IGF-1) signaling (IIS) pathway influenced animal lifespan and mechanisms of host resistance in cryptococcal infections, which required the activation of aging regulator DAF-16/Forkhead box O transcription factor. Moreover, accumulation of lipofuscin, DAF-16 nuclear localization, and expression of superoxide dismutase (SOD-3) were elevated in C. elegans due to host defenses during cryptococcal infections. Conclusion The present study demonstrated the relationship between longevity and immunity, which may provide a possibility for novel therapeutic intervention to improve host resistance against cryptococcal infections.
Collapse
Affiliation(s)
- Thitinan Kitisin
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
9
|
Hu K, Xu Y, Xu S, Cheng L, Zhou T, Xie A, Xu A, Wu L, Chen S. Ecotoxicity Risk of Low-Dose Methylmercury Exposure to Caenorhabditis elegans: Multigenerational Toxicity and Population Discrepancy. Chem Res Toxicol 2021; 34:1114-1123. [PMID: 33739826 DOI: 10.1021/acs.chemrestox.0c00518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylmercury (MeHg) is a common organic form of mercury in water, which has been linked to several forms of biological toxicity. However, studies on the ecotoxicity risk of long-term exposure to low-dose MeHg are insufficient for the assessment of environmental safety. In the present study, the effects of MeHg on multiple generations (P0-F3) and population of Caenorhabditis elegans were investigated under long-term, low-dose exposure. We investigated the multigenerational toxicity of MeHg by analyzing reproductive and developmental indicators. According to our results, exposure to 100 nM MeHg had little effect on the parental generation (P0) but caused serious reproductive toxicity in the offspring (F1-F3), and the effect of MeHg was aggravated with each passing generation. The genes related to apoptosis and DNA damage were upregulated in the F3 generation. Pearson correlation analysis showed that the changes in these genes were closely related to the apoptosis of gonadal cells. Furthermore, chronic exposure to MeHg (from 100 to 1000 nM group) caused a sharp decline in population size and triggered the "bag of worms" phenotype. Genes related to vulvar development were downregulated in the F3 generation after treatment with 100 nM MeHg. These data suggest that long-term low-dose MeHg exposure adversely affected C. elegans and its offspring and triggered multigenerational toxicity and population discrepancy.
Collapse
Affiliation(s)
- Kunyu Hu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yun Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Shengmin Xu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Tong Zhou
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Aidi Xie
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - An Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lijun Wu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,School of Public Health, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|