1
|
Gu Y, Li C, Jiang Q, Hua R, Wu X, Xue J. Efficient and practical in-jar silicone rubber based passive sampling for simultaneous monitoring of emerging fungicides in water and soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173539. [PMID: 38806130 DOI: 10.1016/j.scitotenv.2024.173539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
The occurrence and ecological impacts of emerging fungicides in the environment has gained increasing attention. This study applied an in-jar passive sampling device based on silicone rubber (SR) film to measuring the freely dissolved concentration (Cfree) of 6 current-use fungicides as a critical index of bioavailability in water and soils. The kinetics parameters including SR-water, soil-water, and organic carbon-water partition coefficients and sampling rates of the target fungicides were first attained and characterized well with their physicochemical properties. The in situ and ex situ field deployment in Hefei City provided the assessment of contaminated levels for these fungicides in rivers and soils. The Cfree of triadimefon and azoxystrobin was estimated at 0.54 ± 0.07-17.4 ± 2.5 ng L-1 in Nanfei River and Chao Lake, while triadimefon was only found in Dongpu Reservoir water with Cfree below 0.66 ± 0.04 ng L-1. The results exhibited that the equilibrium duration of 7 d was suitable for water application but a longer interval of 14 d was recommended for soil sampling. This work demonstrated the advantages of the proposed strategy in terms of fast monitoring within 2 weeks and high sensitivity down to detection limits in 0.5-5 ng L-1. The in-jar passive sampling device can be extrapolated to the evaluation for a wide coverage of organic pollutants in water and soils.
Collapse
Affiliation(s)
- Ying Gu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Ciyun Li
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Qingqing Jiang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Rimao Hua
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Jiaying Xue
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China.
| |
Collapse
|
2
|
Amador P, Vega C, Navarro Pacheco NI, Moratalla-López J, Palacios J, Crettaz Minaglia MC, López I, Díaz M, Rico A. Effects of the fungicide azoxystrobin in two habitats representative of mediterranean coastal wetlands: A mesocosm experiment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106828. [PMID: 38176168 DOI: 10.1016/j.aquatox.2023.106828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
This paper investigates the effects of the fungicide azoxystrobin, a compound widely used in rice farming, on aquatic communities representative of two habitats characteristic of Mediterranean wetland ecosystems: water springs and eutrophic lake waters. The long-term effects of azoxystrobin were evaluated on several structural (phytoplankton, zooplankton, macroinvertebrate populations and communities) and functional (microbial decomposition, macrophyte and periphyton growth) parameters making use of freshwater mesocosms. Azoxystrobin was applied in two pulses of 2, 20, 200 µg/L separated by 14 d using the commercial product ORTIVA (23 % azoxystrobin w/w). The results show that these two habitats responded differently to the fungicide application due to their distinct physico-chemical, functional, and structural characteristics. Although overall sensitivity was found to be similar between the two (lowest NOEC < 2 µg/L), the taxa and processes that were affected differed substantially. In general, the most sensitive species to the fungicide were found in the water spring mesocosms, with some species of phytoplankton (Nitzschia sp.) or macrocrustaceans (Echinogammarus sp. and Dugastella valentina) being significantly affected at 2 µg/L. In the eutrophic lake mesocosms, effects were found on phytoplankton taxa (Desmodesmus sp. and Coelastrum sp.), on numerous zooplankton taxa, on chironomids and on the beetle Colymbetes fuscus, although at higher concentrations. The hemipteran Micronecta scholtzi was affected in both treatments. In addition, functional parameters such as organic matter decomposition or macrophyte growth were also affected at relatively low concentrations (NOEC 2 µg/L). Structural Equation Modelling was used to shed light on the indirect effects caused by azoxystrobin on the ecosystem. These results show that azoxystrobin is likely to pose structural and functional effects on Mediterranean wetland ecosystems at environmentally relevant concentrations. Moreover, it highlights the need to consider habitat-specific features when conducting ecotoxicological research at the population and community levels.
Collapse
Affiliation(s)
- Pablo Amador
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain
| | - Constanza Vega
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares, Madrid 28805, Spain
| | - Natividad Isael Navarro Pacheco
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain
| | - Jesús Moratalla-López
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain
| | - Jose Palacios
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain
| | - Melina Celeste Crettaz Minaglia
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares, Madrid 28805, Spain
| | - Isabel López
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares, Madrid 28805, Spain
| | - Mónica Díaz
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares, Madrid 28805, Spain
| | - Andreu Rico
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain; IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares, Madrid 28805, Spain.
| |
Collapse
|
3
|
Hu Q, Lan L, Li W, Zhou H, Pan H, Yuan J, Ji S, Miao S. Low-Temperature Cleanup Followed by Dispersive Solid-Phase Extraction for Determination of Nine Polar Plant Growth Regulators in Herbal Matrices Using Liquid Chromatography-Tandem Mass Spectrometry. Chromatographia 2023; 86:483-495. [PMID: 37255950 PMCID: PMC10097522 DOI: 10.1007/s10337-023-04254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Polar plant growth regulators, used alone or doped in fertilizers, are most effective and widely utilized plant growth regulators (PGRs) in agriculture, which play important roles in mediating the yield and quality of crops and foodstuffs. The application scope has been extended to herbal medicines in the past 2 decades and relevant study is inadequate. The aim of this study is to establish a QuPPe-based extraction method containing low-temperature and d-SPE cleanup procedure followed by the detection on a selective multiresidue ultrahigh-performance liquid chromatography - triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS) in three herbal matrices. This simple, accurate, versatile and robust method was verified according to the validation criteria of the SANTE/12682/2019 guideline document. The analytical range was from 2.5 to 200 μg/L, and the average recoveries were in the range of 64.6-117.8% (n = 6). The optimized method was applied to 135 herbal medicines thereof. Result showed that the detection frequency of chlormequat was the highest in the investigated PGRs, with the positive rate of 15.6%. Improvement of the detection method for polar PGRs will enrich the coverage of PGRs, which is conducive to safeguard public health and ensure drug safety. Supplementary Information The online version contains supplementary material available at 10.1007/s10337-023-04254-3.
Collapse
Affiliation(s)
- Qing Hu
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203 People’s Republic of China
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Lan Lan
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Wenting Li
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Heng Zhou
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Huiqin Pan
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Jiajia Yuan
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Shen Ji
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203 People’s Republic of China
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| | - Shui Miao
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203 People’s Republic of China
| |
Collapse
|
4
|
Munaron D, Mérigot B, Derolez V, Tapie N, Budzinski H, Fiandrino A. Evaluating pesticide mixture risks in French Mediterranean coastal lagoons waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161303. [PMID: 36592913 DOI: 10.1016/j.scitotenv.2022.161303] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
To assess the risk of pesticide mixtures in lagoon waters, this study adopted a multi-step approach using integrative passive samplers (POCIS) and concentration addition (CA) toxicological models. Two French Mediterranean lagoons (Thau and Or) were monitored for a range of 68 pesticides continuously over a period of a year (2015-16). The findings revealed mixtures of dissolved pesticides with varying composition and levels over the year. The Or site contained more pesticides than Thau site (37 vs 28 different substances), at higher concentrations (0.1-58.6 ng.L-1 at Or vs <0.1-9.9 at Thau) and with overall higher detection frequencies. All samples showed a potential chronic toxicity risk, depending on the composition and concentrations of co-occurring pesticides. In 74 % of the samples, this pesticide risk was driven by a few single substances (ametryn, atrazine, azoxystrobin, carbendazim, chlorotoluron, irgarol, diuron and metolachlor) and certain transformation products (e.g. DPMU and metolachlor OA/ESA). Individually, these were a threat for the three taxa studied (phytoplankton, crustaceans and fish). Yet even a drastic reduction of these drivers alone (up to 5 % of their current concentration) would not eliminate the toxicity risks in 56 % of the Or Lagoon samples, due to pesticide mixtures. The two CA-based approaches used to assess the combined effect of these mixtures, determined chronic potential negative impacts for both lagoons, while no acute risk was highlighted. This risk was seasonal, indicating the importance of monitoring in key periods (summer, winter and spring) to get a more realistic picture of the pesticide threat in lagoon waters. These findings suggest that it is crucial to review the current EU Water Framework Directive's risk-assessment method, as it may incorrectly determine pesticide risk in lagoons.
Collapse
|
5
|
Illatou OEFM, Spinelli S, Avezac M, Bertrand M, Gonzalez C, Vinches M. Occurrences, distribution and risk assessment of polar pesticides in Niger River valley and its tributary the Mekrou River (Niger Republic). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20804-20820. [PMID: 36260229 DOI: 10.1007/s11356-022-23526-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The increase in food needs due to high population growth in Niger has led to the intensification of urban agriculture and the increased use of pesticides. The objective of this study is primarily to assess the polar pesticide contamination (mainly herbicides) of the Niger River and its tributary, the Mekrou River, in Niger, using both grab sampling and POCIS (Polar Organic Chemical Integrative Samplers), and then to evaluate the risk to the aquatic environment. Two water sampling campaigns were carried out during the wet and dry seasons. The polar pesticides were analyzed by liquid chromatography coupled with tandem mass spectrometry, which allowed the identification of compounds with concentrations in the grab samples above the WHO guide values and the EU directive: diuron with 2221 ng/L (EU quality guideline: 200 ng/L), atrazine with 742 ng/L (EU quality guideline: 600 ng/L) and acetochlor with 238 ng/L (EU quality guideline: 100 ng/L). The risk assessment study indicated that diuron and atrazine present a high risk for the aquatic environment during the wet season. The main source of water contamination is the intensive use of pesticides in urban agriculture near the city of Niamey, and the intensive cotton farming in the Benin. Moreover, the surveys (30 producers interviewed) showed that 70% of the pesticides used are not approved by the Interstate Committee for Drought Control in the Sahel (CILSS) and some are prohibited in Niger. The inventory of pesticides sold in the zone showed that active ingredients used by producers are 48% insecticides, 45% herbicides, and 7% fungicides.
Collapse
Affiliation(s)
- Oumar El Farouk Maman Illatou
- Hydrosciences Montpellier, Univ Montpellier, IMT Mines Ales, IRD, CNRS, Ales, France, IMT Mines Alès, 6 av. de Clavières, 30319, Alès cedex, France.
- Département de Géologie, Faculté de Sciences Et Techniques, Université Abdou Moumouni, BP 10662, Niamey, Niger.
| | - Sylvie Spinelli
- Hydrosciences Montpellier, Univ Montpellier, IMT Mines Ales, IRD, CNRS, Ales, France, IMT Mines Alès, 6 av. de Clavières, 30319, Alès cedex, France
| | - Murielle Avezac
- Hydrosciences Montpellier, Univ Montpellier, IMT Mines Ales, IRD, CNRS, Ales, France, IMT Mines Alès, 6 av. de Clavières, 30319, Alès cedex, France
| | - Marine Bertrand
- Hydrosciences Montpellier, Univ Montpellier, IMT Mines Ales, IRD, CNRS, Ales, France, IMT Mines Alès, 6 av. de Clavières, 30319, Alès cedex, France
| | - Catherine Gonzalez
- Hydrosciences Montpellier, Univ Montpellier, IMT Mines Ales, IRD, CNRS, Ales, France, IMT Mines Alès, 6 av. de Clavières, 30319, Alès cedex, France
| | - Marc Vinches
- Hydrosciences Montpellier, Univ Montpellier, IMT Mines Ales, IRD, CNRS, Ales, France, IMT Mines Alès, 6 av. de Clavières, 30319, Alès cedex, France
| |
Collapse
|
6
|
Kamali N, Abbas F, Lehane M, Griew M, Furey A. A Review of In Situ Methods-Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the Collection and Concentration of Marine Biotoxins and Pharmaceuticals in Environmental Waters. Molecules 2022; 27:7898. [PMID: 36431996 PMCID: PMC9698218 DOI: 10.3390/molecules27227898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) are in situ methods that have been applied to pre-concentrate a range of marine toxins, pesticides and pharmaceutical compounds that occur at low levels in marine and environmental waters. Recent research has identified the widespread distribution of biotoxins and pharmaceuticals in environmental waters (marine, brackish and freshwater) highlighting the need for the development of effective techniques to generate accurate quantitative water system profiles. In this manuscript, we reviewed in situ methods known as Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the collection and concentration of marine biotoxins, freshwater cyanotoxins and pharmaceuticals in environmental waters since the 1980s to present. Twelve different adsorption substrates in SPATT and 18 different sorbents in POCIS were reviewed for their ability to absorb a range of lipophilic and hydrophilic marine biotoxins, pharmaceuticals, pesticides, antibiotics and microcystins in marine water, freshwater and wastewater. This review suggests the gaps in reported studies, outlines future research possibilities and guides researchers who wish to work on water contaminates using Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) technologies.
Collapse
Affiliation(s)
- Naghmeh Kamali
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Feras Abbas
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Mary Lehane
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Michael Griew
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Ambrose Furey
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
7
|
Zaghden H, Barhoumi B, Jlaiel L, Guigue C, Chouba L, Touil S, Sayadi S, Tedetti M. Occurrence, origin and potential ecological risk of dissolved polycyclic aromatic hydrocarbons and organochlorines in surface waters of the Gulf of Gabès (Tunisia, Southern Mediterranean Sea). MARINE POLLUTION BULLETIN 2022; 180:113737. [PMID: 35597001 DOI: 10.1016/j.marpolbul.2022.113737] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
We investigated the occurrence, origin, and potential ecological risk of dissolved polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyl (PCBs) and organochlorine pesticides (OCPs) in 27 surface water samples collected from a highly anthropized and industrialized area in the Gulf of Gabès (Tunisia, Southern Mediterranean Sea) in October-November 2017. The results demonstrated a wide range of concentrations (ng L-1) with the following decreasing order: Ʃ16 PAHs (17.6-71.2) > Ʃ20 PCBs (2.9-33.7) > Ʃ6 DDTs (1.1-12.1) > Ʃ4 HCHs (1.1-14.8). Selected diagnostic ratios indicated a mixture of both pyrolytic and petrogenic sources of PAHs, with a predominance of petrogenic sources. PCB compositions showed distinct contamination signatures for tetra- to hepta-chlorinated PCBs, characteristic of contamination by commercial (Aroclor) PCB mixtures. The dominant OCP congeners were γ-HCH, 2,4'-DDD and 2,4'-DDE, reflecting past use of Lindane and DDTs in the study area. Agricultural, industrial and domestic activities, as well as atmospheric transport are identified as potential sources of PAHs, PCBs and OCPs in surface waters of the Gulf of Gabès. Toxic equivalents (TEQs) suggested a low carcinogenic potential for PAHs in seawater samples (mean of 0.14 ng TEQ L-1). Evaluation of risk coefficients revealed low risk for PAHs and PCBs, and moderate to severe risk for OCPs.
Collapse
Affiliation(s)
- Hatem Zaghden
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia; Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cédria, 2050 Hammam-Lif, Tunisia.
| | - Badreddine Barhoumi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia; Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.
| | - Lobna Jlaiel
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Catherine Guigue
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Lassaad Chouba
- Laboratory of Marine Environment, National Institute of Marine Science and Technology (INSTM), Goulette, Tunisia
| | - Soufiane Touil
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Marc Tedetti
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia; Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France.
| |
Collapse
|
8
|
MacKeown H, Benedetti B, Di Carro M, Magi E. The study of polar emerging contaminants in seawater by passive sampling: A review. CHEMOSPHERE 2022; 299:134448. [PMID: 35364083 DOI: 10.1016/j.chemosphere.2022.134448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/11/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Emerging Contaminants (ECs) in marine waters include different classes of compounds, such as pharmaceuticals and personal care products, showing "emerging concern" related to the environment and human health. Their measurement in seawater is challenging mainly due to the low concentration levels and the possible matrix interferences. Mass spectrometry combined with chromatographic techniques represents the method of choice to study seawater ECs, due to its sensitivity and versatility. Nevertheless, these instrumental techniques have to be preceded by suitable sample collection and pre-treatment: passive sampling represents a powerful approach in this regard. The present review compiles the existing occurrence studies on passive sampling coupled to mass spectrometry for the monitoring of polar ECs in seawater and discusses the availability of calibration data that enabled quantitative estimations. A vast majority of the published studies carried out during the last two decades describe the use of integrative samplers, while applications of equilibrium samplers represent approximately 10%. The polar Chemcatcher was the first applied to marine waters, while the more sensitive Polar Organic Chemical Integrative Sampler rapidly became the most widely employed passive sampler. The organic Diffusive Gradients in Thin film technology is a recently introduced and promising device, due to its more reliable sampling rates. The best passive sampler selection for the monitoring of ECs in the marine environment as well as future research and development needs in this area are further discussed. On the instrumental side, combining passive sampling with high resolution mass spectrometry to better assess polar ECs is strongly advocated, despite the current challenges associated.
Collapse
Affiliation(s)
- Henry MacKeown
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso, 31, 16146, Genoa, Italy
| | - Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso, 31, 16146, Genoa, Italy
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso, 31, 16146, Genoa, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso, 31, 16146, Genoa, Italy.
| |
Collapse
|
9
|
Sahraoui I, Melliti Ben Garali S, Chakroun Z, Gonzalez C, Pringault O, Sakka Hlaili A. Monoculture and co-culture tests of the toxicity of four typical herbicides on growth, photosynthesis and oxidative stress responses of the marine diatoms Pseudo-nitzschia mannii and Chaetoceros decipiens. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:700-713. [PMID: 35320470 DOI: 10.1007/s10646-022-02535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The toxicity of four herbicides in mixture (alachlor, diuron, des-isopropyl-atrazine and simazine) on the growth and the photosynthesis parameters of two marine diatoms Pseudo-niszchia mannii and Chaetoceros decipiens have been investigated for 9 days in monoculture and co-culture tests. The catalase (CAT) and guaiacol peroxidase (GPX) were also monitored to assess the oxidative stress response. In single-species assays, while both species displayed no affected instantaneous growth rate by herbicides, their physiological responses were different. Chl a content of P. mannii significantly decreased upon herbicide exposure, due probably to pigment destruction or inhibition of their synthesis. This decrease was associated with a reduction in the chlorophyll fluorescence parameters (ABS0/RC, TR0/RC, ET0/RC and DI0/RC). In contrast, C. decipiens maintained an effective photosynthetic performance under herbicide exposure, as Chl a per cell content and the specific energy fluxes per reaction center remained unchanged relative to control values. GPX activity was significantly higher in contaminated P. mannii and C. decipiens monocultures than in controls at early herbicide exposure (1 day), whereas a significant induction of CAT activity occurred later (from day 3 for C. decipiens and at day 9 for P. mannii) in response to herbicides. In control co-culture, P. mannii was eliminated by C. decipiens. As observed in the monoculture, the herbicides did not affect the photosynthetic performance of C. decipiens in co-culture, but significantly reduced its instantaneous growth rate. The oxidative stress response in co-culture has similar trends to that of C. decipiens in monoculture, but the interspecies competition likely resulted in higher CAT activity under herbicide exposure. Results of this study suggest that herbicide toxicity for marine diatoms might be amplified by interspecies interactions in natural communities, which might lead to different physiological and growth responses.
Collapse
Affiliation(s)
- Inès Sahraoui
- Laboratoire de Phytoplanctonologie et de Biologie végétale, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Bizerte, Tunisie.
- Laboratoire d'Ecologie, Biologie et Physiologie des Organismes Aquatiques, LR18ES41, Université de Tunis El Manar, Tunis, Tunisie.
| | - Sondes Melliti Ben Garali
- Laboratoire de Phytoplanctonologie et de Biologie végétale, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Bizerte, Tunisie
- Laboratoire d'Ecologie, Biologie et Physiologie des Organismes Aquatiques, LR18ES41, Université de Tunis El Manar, Tunis, Tunisie
| | - Zoubaida Chakroun
- Laboratoire de Phytoplanctonologie et de Biologie végétale, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Bizerte, Tunisie
| | | | - Olivier Pringault
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
- MARBEC Univ Montpellier, IRD, Ifremer, Montpellier, France
| | - Asma Sakka Hlaili
- Laboratoire de Phytoplanctonologie et de Biologie végétale, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Bizerte, Tunisie
- Laboratoire d'Ecologie, Biologie et Physiologie des Organismes Aquatiques, LR18ES41, Université de Tunis El Manar, Tunis, Tunisie
| |
Collapse
|
10
|
Ben Ameur W, El Megdiche Y, Ennaceur S, Mhadhbi T, Ben Hassine S, Annabi A, de Lapuente J, Driss MR, Borràs M, Eljarrat E. Biomarkers responses and polybrominated diphenyl ethers and their methoxylated analogs measured in Sparus aurata from the Lagoon of Bizerte, Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38618-38632. [PMID: 35083694 DOI: 10.1007/s11356-022-18769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to the examination of the levels and effects of organobromine compounds (polybrominated diphenyl ethers: PBDEs and methoxylated brominated diphenyl ethers: MeO-PBDEs), in Sparus aurata native to the Lagoon of Bizerte. For that, different biomarkers of exposure (somatic indices, superoxide dismutase, and catalase activities) and effect (malondialdehyde level, histopathologic alterations, and DNA damage) as well as pollutant levels were measured in specimens collected from this impacted ecosystem and the Mediterranean Sea as a reference site. Bizerte Lagoon PBDE fish levels were higher than the Mediterranean Sea, whereas MeO-PBDEs were higher in the reference site. Fish from Bizerte Lagoon presented a higher hepatosomatic index, lower catalase and superoxide dismutase activity, higher level of malondialdehyde, and higher percentage of DNA tail in comparison to fish from the reference area. The histological study of the liver indicated substantial lesions in fish from the polluted site. The results showed strong positive correlations between the concentrations of the PBDE or MeO-PBDE and the MDA and DNA tail % levels and negative correlations for the activities of enzymes of SOD and CAT. Consequently, these findings could suggest a potential link between exposure to these pollutants and the observed biomarker responses in the Bizerte Lagoon seabream. Taken together, these results highlight the importance of biomarker selection and the selected sentinel fish species as useful tools for biomonitoring of aquatic pollution.
Collapse
Affiliation(s)
- Walid Ben Ameur
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia.
- Ecologie de La Faune Terrestre UR17ES44, Département Des Sciences de La Vie, Faculté Des Sciences de Gabès, Université de Gabès, Gabes, Tunisia.
| | - Yassine El Megdiche
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Soukaina Ennaceur
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Jeddah, Saudi Arabia
| | - Takoua Mhadhbi
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Sihem Ben Hassine
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Ali Annabi
- Ecologie de La Faune Terrestre UR17ES44, Département Des Sciences de La Vie, Faculté Des Sciences de Gabès, Université de Gabès, Gabes, Tunisia
| | - Joaquin de Lapuente
- Unit of Experimental Toxicology and Ecotoxicology, UTOX-PCB, Parc Científic Barcelona, Barcelona, Spain
| | - Mohamed Ridha Driss
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Miquel Borràs
- Unit of Experimental Toxicology and Ecotoxicology, UTOX-PCB, Parc Científic Barcelona, Barcelona, Spain
| | - Ethel Eljarrat
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
11
|
Pringault O, Bouvy M, Carre C, Mejri K, Bancon-Montigny C, Gonzalez C, Leboulanger C, Hlaili AS, Goni-Urriza M. Chemical contamination alters the interactions between bacteria and phytoplankton. CHEMOSPHERE 2021; 278:130457. [PMID: 34126687 DOI: 10.1016/j.chemosphere.2021.130457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Bacteria and phytoplankton are key players in aquatic ecosystem functioning. Their interactions mediate carbon transfer through the trophic web. Chemical contamination can alter the function and diversity of phytoplankton and bacterioplankton, with important consequences for ecosystem functioning. The aim of the present study was to assess the impact of chemical contamination on the interactions between both biological compartments. Two contrasting marine coastal ecosystems, offshore waters and lagoon waters, were exposed to chemical contamination (artificial or produced from resuspension of contaminated sediment) in microcosms in four seasons characterized by distinct phytoplankton communities. Offshore waters were characterized by a complex phytoplankton-bacterioplankton network with a predominance of positive interactions between both compartments, especially with Haptophyta, Cryptophyta, and dinoflagellates. In contrast, for lagoon waters, the phytoplankton-bacterioplankton network was simpler with a prevalence of negative interactions with Ochrophyta, Cryptophyta, and flagellates. Contamination with an artificial mix of pesticides and trace metal elements resulted in a decrease in the number of interactions between phytoplankton and bacterioplankton, especially for offshore waters. Resuspension of contaminated sediment also altered the interactions between both compartments. The release of nutrients stored in the sediment allowed the growth of nutrient limited phytoplankton species with marked consequences for the interactions with bacterioplankton, with a predominance of positive interactions, whereas in lagoon waters, negative interactions were mostly observed. Overall, this study showed that chemical contamination and sediment resuspension resulted in significant effects on phytoplankton-bacterioplankton interactions that can alter the functioning of anthropogenic coastal ecosystems.
Collapse
Affiliation(s)
- Olivier Pringault
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France; MARBEC Univ Montpellier, IRD, Ifremer, Montpellier, France; Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Bizerte, France.
| | - Marc Bouvy
- MARBEC Univ Montpellier, IRD, Ifremer, Montpellier, France
| | - Claire Carre
- MARBEC Univ Montpellier, IRD, Ifremer, Montpellier, France
| | - Kaouther Mejri
- Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Bizerte, France
| | | | | | | | - Asma Sakka Hlaili
- Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Bizerte, France; Laboratoire d'Ecologie, de Biologie et de Physiologie des Organismes Aquatiques, LR18ES41, Université de Tunis El Manar, Tunis, France
| | - Marisol Goni-Urriza
- Universite de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, 64000, Pau, France
| |
Collapse
|
12
|
Phenotypic and Genotypic Characterization of Intestinal Candida spp. in Tunisia. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.113800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Yeasts naturally colonize the mammalian digestive tract and play an important role in health and disease. This community is composed of commensal yeasts, mostly Candida and Saccharomyces described as a part of the intestinal mycobiome and could be associated with resident or transient flora. Objectives: The aim of our study was to perform the phenotypic and genotypic characterization of culturable Candida isolates present in stool specimens of healthy Tunisian individuals and to evaluate their antifungal susceptibility. Methods: Yeasts were recovered from 46 stool samples cultured on Sabouraud dextrose agar at 37°C. Species were identified using conventional methods and ITS-PCR sequencing. Candida isolates were tested by exploring their tolerance to oxidative stress and extreme acidic conditions. In addition, their biofilm formation ability and in vitro resistance to antifungals was determined by the VITEK 2 system. Results: The identification by sequencing the ITS1-5.8S-ITS2 region of the 56 yeast strains isolated from 37 stool samples revealed that Candida was the dominant genus and was represented by Candida albicans (n = 21), C. parapsilosis (n = 10), C. glabrata (n = 9), and C. krusei (n = 9). In contrast, the other genera, including Trichosporon, Geotrichum, and Rhodotorula, were sporadically occurring. We found that most Candida isolates were able to form biofilms under oxidative stress and extreme pH conditions. Regarding antifungal susceptibility, a higher resistance rate to fluconazole was revealed in comparison to caspofungin and micafungin. However, no resistance was revealed against voriconazole, amphotericin B, and 5-flucytosine. Conclusions: This is the first work-generated data on cultivable yeasts from stool specimens of healthy individuals in Tunisia. Further metagenomic studies with a larger sample size are needed to better characterize the intestinal mycobiota.
Collapse
|
13
|
Wang Z, Ouyang W, Tysklind M, Lin C, Wang B. Seasonal variations in atrazine degradation in a typical semienclosed bay of the northwest Pacific ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117072. [PMID: 33848901 DOI: 10.1016/j.envpol.2021.117072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Pesticides are widely used to alleviate pest pressure in agricultural systems, and atrazine is a typical diffuse pollutant and serves a sensitivity index for environmental characteristics. Based on the physicochemical properties of parent substances, degradation products of pesticides may pose a greater threat to aquatic ecosystems than pesticides. Atrazine and three primary degradation products (deethylatrazine (DEA), deisopropylatrazine (DIA) and didealkylatrazine (DDA)) were investigated in a semienclosed bay of the western Pacific Ocean. Seasonal surface water and suspended particulate sediment (SPS) samples were collected from the estuary and bay in January, April, and August 2019. The level of pesticide contamination was lower in the bay than in the estuary, and the pesticide concentration in the dissolved phase was higher than that in the adsorbed phase. The average concentrations of atrazine and the three degradation products in the three seasons ranged from 2.42 to 328.46 ng/L in water and from 0.07 to 12.75 ng/L in SPS. The proportion of atrazine among the four detected pollutants decreased from 0.7 to 0.1 in surface water and from 0.3 to 0.1 in SPS over the seasons. As the main degradation products, the concentration proportions of DDA and DEA reached as high as 0.6 in August. The ratio of DEA to atrazine (DEA/ATR) increased from January to August, which indicated the progressive degradation process in the bay. Single-factor analysis of variance and principal component analysis indicated that atrazine degradation was sensitive to temperature, dissolved oxygen, and salinity. These three factors accounted for almost 70% of the seasonal variance in atrazine without a quantification assessment of photolysis or bacteria. The spatial distributions of DEA in the three seasons demonstrated that wind and currents also played important roles in pollutant redistribution. The seasonal temporal and spatial correlations between water and SPS demonstrated the degradation patterns of atrazine in marine conditions, supporting the need for future detailed toxicity studies.
Collapse
Affiliation(s)
- Zihan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Mats Tysklind
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Baodong Wang
- The First Institute of Oceanography, State Oceanic Administration, 6 Xianxialing Road, Qingdao, 266061, China
| |
Collapse
|
14
|
Sharif SNM, Hashim N, Isa IM, Bakar SA, Saidin MI, Ahmad MS, Mamat M, Hussein MZ, Zainul R. Chitosan as a coating material in enhancing the controlled release behaviour of zinc hydroxide nitrate–sodium dodecylsulphate–bispyribac nanocomposite. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Barhoumi B, Tedetti M, Heimbürger-Boavida LE, Tesán Onrubia JA, Dufour A, Doan QT, Boutaleb S, Touil S, Scippo ML. Chemical composition and in vitro aryl hydrocarbon receptor-mediated activity of atmospheric particulate matter at an urban, agricultural and industrial site in North Africa (Bizerte, Tunisia). CHEMOSPHERE 2020; 258:127312. [PMID: 32947663 DOI: 10.1016/j.chemosphere.2020.127312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/17/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
As recognized risk factor to pose a health threat to humans and wildlife globally, atmospheric particulate matter (PM) were collected from a North African coastal city (Bizerte, Tunisia) for one year, and were characterized for their chemical compositions, including mercury (HgPM), as well as organic contaminants (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs)), organic carbon (OC) and organic nitrogen (ON), determined in a previous study. Then, we applied an in vitro reporter gene assay (DR-CALUX) to detect and quantify the dioxin-like activity of PM-associated organic contaminants. Results showed that average HgPM concentration over the entire sampling period was found to be 13.4 ± 12 pg m-3. Seasonal variation in the HgPM concentration was observed with lower values in spring and summer and higher values in winter and autumn due to the variation of meteorological conditions together with the emission sources. Principal component analysis suggested that fossil fuel combustion and a nearby cement factory were the dominant anthropogenic HgPM sources. Aryl hydrocarbon receptor (AhR)-mediated activities were observed in all organic extracts of atmospheric PM from Bizerte city (388.3-1543.6 fg m-3), and shows significant positive correlations with all PM-associated organic contaminants. A significant proportion of dioxin-like activity of PM was related to PAHs. The dioxin-like activity followed the same trend as PM-associated organic contaminants, with higher dioxin-like activity in the cold season than in the warm season, indicating the advantage and utility of the use of bioassays in risk assessment of complex environmental samples.
Collapse
Affiliation(s)
- Badreddine Barhoumi
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia.
| | - Marc Tedetti
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | | | - Javier A Tesán Onrubia
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Aurélie Dufour
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Que Thi Doan
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| | - Samiha Boutaleb
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| | - Soufiane Touil
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| |
Collapse
|
16
|
Pringault O, Bouvy M, Carre C, Fouilland E, Meddeb M, Mejri K, Leboulanger C, Sakka Hlaili A. Impacts of chemical contamination on bacterio-phytoplankton coupling. CHEMOSPHERE 2020; 257:127165. [PMID: 32480088 DOI: 10.1016/j.chemosphere.2020.127165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Phytoplankton and bacterioplankton are the key components of the organic matter cycle in aquatic ecosystems, and their interactions can impact the transfer of carbon and ecosystem functioning. The aim of this work was to assess the consequences of chemical contamination on the coupling between phytoplankton and bacterioplankton in two contrasting marine coastal ecosystems: lagoon waters and offshore waters. Bacterial carbon demand was sustained by primary carbon production in the offshore situation, suggesting a tight coupling between both compartments. In contrast, in lagoon waters, due to a higher nutrient and organic matter availability, bacteria could rely on allochthonous carbon sources to sustain their carbon requirements, decreasing so the coupling between both compartments. Exposure to chemical contaminants, pesticides and metal trace elements, resulted in a significant inhibition of the metabolic activities (primary production and bacterial carbon demand) involved in the carbon cycle, especially in offshore waters during spring and fall, inducing a significant decrease of the coupling between primary producers and heterotrophs. This coupling loss was even more evident upon sediment resuspension for both ecosystems due to the important release of nutrients and organic matter. Resulting enrichment alleviated the toxic effects of contaminants as indicated by the stimulation of phytoplankton biomass and carbon production, and modified the composition of the phytoplankton community, impacting so the interactions between phytoplankton and bacterioplankton.
Collapse
Affiliation(s)
- Olivier Pringault
- Aix Marseille Univ, Universite de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France; MARBEC Univ Montpellier, IRD, Ifremer, Montpellier, France; Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Tunisia.
| | - Marc Bouvy
- MARBEC Univ Montpellier, IRD, Ifremer, Montpellier, France
| | - Claire Carre
- MARBEC Univ Montpellier, IRD, Ifremer, Montpellier, France
| | - Eric Fouilland
- MARBEC Univ Montpellier, IRD, Ifremer, Montpellier, France
| | - Marouan Meddeb
- Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Tunisia
| | - Kaouther Mejri
- Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Tunisia
| | | | - Asma Sakka Hlaili
- Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Tunisia; Laboratory of Environmental Sciences, Biology and Physiology of Aquatic Organisms LR18ES41, University El Manar of Tunis, Faculty of Sciences of Tunis, Tunis, Tunisia
| |
Collapse
|
17
|
Bejaoui S, Michán C, Telahigue K, Nechi S, Cafsi ME, Soudani N, Blasco J, Costa PM, Alhama J. Metal body burden and tissue oxidative status in the bivalve Venerupis decussata from Tunisian coastal lagoons. MARINE ENVIRONMENTAL RESEARCH 2020; 159:105000. [PMID: 32662434 DOI: 10.1016/j.marenvres.2020.105000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Coastal transitional waters are exposed to many anthropogenic threats. This study aims to assess the trace metals' pollution status of transitional waters by evaluating its biological effects in the clam Venerupis decussata. Among the studied sites along the Tunisian littoral, South Tunis and Boughrara were the most impacted, since clams from these two lagoons presented significant differences in: (i) trace metal contents, (ii) in-cell hydrogen peroxide, (iii) enzymatic and non-enzymatic defenses, (iv) damage to lipids and proteins, and (v) protein post-translational modifications. These changes related to evident histopathological traits. PCA showed a clear separation between the digestive gland and gills tissues and illustrated an impact gradient in Tunisian coastal lagoons. Water temperature was revealed as an added natural stressor that, when concurring with high pollution, may jeopardize an ecosystem's health and contribute to the accumulation of hazardous metals in organisms.
Collapse
Affiliation(s)
- Safa Bejaoui
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain; Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Biology Department, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Khaoula Telahigue
- Anatomy and Cytology Service, CHU Mohamed Taher Maamouri Hospital, University Tunis El Manar, Tunis, Tunisia
| | - Salwa Nechi
- Anatomy and Cytology Service, CHU Mohamed Taher Maamouri Hospital, University Tunis El Manar, Tunis, Tunisia
| | - Mhamed El Cafsi
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Biology Department, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Nejla Soudani
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Biology Department, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Julián Blasco
- Dpt. Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, E-11510, Puerto Real (Cadiz), Spain
| | - Pedro M Costa
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - José Alhama
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain.
| |
Collapse
|
18
|
Bancon-Montigny C, Gonzalez C, Delpoux S, Avenzac M, Spinelli S, Mhadhbi T, Mejri K, Hlaili AS, Pringault O. Seasonal changes of chemical contamination in coastal waters during sediment resuspension. CHEMOSPHERE 2019; 235:651-661. [PMID: 31276878 DOI: 10.1016/j.chemosphere.2019.06.213] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
The potential of remobilization of pollutants is a major problem for anthropogenic ecosystems, because even when the anthropogenic source of pollution is identified and removed, pollutants stored in sediments can be released into the water column and impact pelagic communities during sediment resuspension provoked by dredging, storms or bottom trawling. The objectives of the present study were to assess the changes observed in the chemical composition of the water column following resuspension of a polluted marine sediment and the consequences for the chemical composition of adjacent marine waters according to season. For that purpose, an experimental sediment resuspension protocol was performed on four distinct occasions, spring, summer, fall and winter, and the changes in nutrients, organic contaminants and inorganic contaminants were measured after mixing sediment elutriate with lagoon waters and offshore waters sampled nearby. Significant seasonal variations in the chemical composition of the contaminated sediments were observed, with a strong accumulation of PAHs in fall, whereas minimum PAH concentrations were observed during winter. In all seasons, sediment resuspension provoked a significant enrichment in nutrients, dissolved organic carbon, and trace metal elements like Ni, Cu, and Zn in offshore waters and lagoon waters, with enrichment factors that were season and site dependent. The most pronounced changes were observed for offshore waters, especially in spring and winter, whereas the chemical composition of lagoon waters was weakly impacted by the compounds supplied by sediment resuspension.
Collapse
Affiliation(s)
- Chrystelle Bancon-Montigny
- UMR 5569 HydroSciences HSM Université Montpellier, CNRS, IRD 300, avenue du Professeur Emile Jeanbrau, CC57 34090, Montpellier, cedex 5, France
| | - Catherine Gonzalez
- IMT Mines Alès, University of Montpellier, 6 avenue de Clavières, 30319, Alès, cedex, France
| | - Sophie Delpoux
- UMR 5569 HydroSciences HSM Université Montpellier, CNRS, IRD 300, avenue du Professeur Emile Jeanbrau, CC57 34090, Montpellier, cedex 5, France
| | - Muriel Avenzac
- IMT Mines Alès, University of Montpellier, 6 avenue de Clavières, 30319, Alès, cedex, France
| | - Sylvie Spinelli
- IMT Mines Alès, University of Montpellier, 6 avenue de Clavières, 30319, Alès, cedex, France
| | - Takoua Mhadhbi
- IMT Mines Alès, University of Montpellier, 6 avenue de Clavières, 30319, Alès, cedex, France; Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Tunisia
| | - Kaouther Mejri
- Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Tunisia
| | - Asma Sakka Hlaili
- Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Tunisia
| | - Olivier Pringault
- Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Tunisia; UMR 9190 MARBEC IRD-Ifremer-CNRS-Université de Montpellier, Place Eugène Bataillon, case 093, 34095, Montpellier, cedex 5, France; UMR 110 MIO Mediterranean Institute of Oceanography, Aix Marseille University, University of Toulon, CNRS, IRD, Marseille, France.
| |
Collapse
|