1
|
Zhang S, Dong B, Zhao D, Yang J, Sun X, Yan L. Corrosion of carbon steel by Pseudomonas stutzeri CQ-Z5 in simulated oilfield water. Bioelectrochemistry 2025; 162:108846. [PMID: 39586224 DOI: 10.1016/j.bioelechem.2024.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/27/2024]
Abstract
Carbon steel, an important infrastructure material in the petroleum industry, experiences serious damage due to Microbially Influenced Corrosion (MIC) with untold economic impact. Pseudomonas stutzeri CQ-Z5 with solid biofilm formation and organic acid-producing ability was isolated from Changqing oilfield produced water. The corrosion behavior and mechanism of 20# carbon steel by P. stutzeri CQ-Z5 were explored in a simulated oilfield product water circulating device. Bacteria inoculation can hasten steel corrosion, the maximum corrosion rate reached 1.84 mm y-1. Pitting corrosion on rust layer was observed using SEM, and CLSM monitored the change in biofilm thickness. XRD displayed that oxides were the primary corrosion products, including Fe2O3, Fe3O4, and FeOOH. Analysis of contributions of corrosion types indicated that biofilm corrosion contributes 72 % to total corrosion, far higher than those of ion erosion and organic acid decay. Many genes involved in iron metabolism, biofilm synthesis, and organic acid production were annotated in the genome of P. stutzeri CQ-Z5. Accordingly, a hypothetical corrosion mechanism model of P. stutzeri CQ-Z5 for carbon steel involvement of initial ion erosion, then biofilm corrosion and organic acid decay was proposed. The work helped prevent carbon steel corrosion and improve corrosion mitigation strategies.
Collapse
Affiliation(s)
- Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Boyu Dong
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Jiani Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Xiufen Sun
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China; Key Laboratory of Low‑carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China; Engineering Research Center of Processing and Utilization of Grain By-products, Ministry of Education, Daqing, Heilongjiang, 163319, China.
| |
Collapse
|
2
|
Plewka J, Alibrandi A, Bornemann TLV, Esser SP, Stach TL, Sures K, Becker J, Moraru C, Soares A, di Primio R, Kallmeyer J, Probst AJ. Metagenomic analysis of pristine oil sheds new light on the global distribution of microbial genetic repertoire in hydrocarbon-associated ecosystems. MICROLIFE 2025; 6:uqae027. [PMID: 39877152 PMCID: PMC11774207 DOI: 10.1093/femsml/uqae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 10/23/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Oil reservoirs are society's primary source of hydrocarbons. While microbial communities in industrially exploited oil reservoirs have been investigated in the past, pristine microbial communities in untapped oil reservoirs are little explored, as are distribution patterns of respective genetic signatures. Here, we show that a pristine oil sample contains a complex community consisting of bacteria and fungi for the degradation of hydrocarbons. We identified microorganisms and their pathways for the degradation of methane, n-alkanes, mono-aromatic, and polycyclic aromatic compounds in a metagenome retrieved from biodegraded petroleum encountered in a subsurface reservoir in the Barents Sea. Capitalizing on marker genes from metagenomes and public data mining, we compared the prokaryotes, putative viruses, and putative plasmids of the sampled site to those from 10 other hydrocarbon-associated sites, revealing a shared network of species and genetic elements across the globe. To test for the potential dispersal of the microbes and predicted elements via seawater, we compared our findings to the Tara Ocean dataset, resulting in a broad distribution of prokaryotic and viral signatures. Although frequently shared between hydrocarbon-associated sites, putative plasmids, however, showed little coverage in the Tara Oceans dataset, suggesting an undiscovered mode of transfer between hydrocarbon-affected ecosystems. Based on our analyses, genetic information is globally shared between oil reservoirs and hydrocarbon-associated sites, and we propose that currents and other physical occurrences within the ocean along with deep aquifers are major distributors of prokaryotes and viruses into these subsurface ecosystems.
Collapse
Affiliation(s)
- Julia Plewka
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, CA 94720, United States of America
| | - Armando Alibrandi
- GFZ German Research Centre for Geoscience, Telegrafenberg, 14473 Potsdam, Germany
| | - Till L V Bornemann
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Sarah P Esser
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Tom L Stach
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141 Essen, Germany
| | - Katharina Sures
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Jannis Becker
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Cristina Moraru
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - André Soares
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | | | - Jens Kallmeyer
- GFZ German Research Centre for Geoscience, Telegrafenberg, 14473 Potsdam, Germany
| | - Alexander J Probst
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, CA 94720, United States of America
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141 Essen, Germany
- Centre of Medical Biotechnology (ZMB), University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
3
|
Chang S, Gui Y, He X, Xue L. Transcriptome analysis of Acinetobacter calcoaceticus HX09 strain with outstanding crude-oil-degrading ability. Braz J Microbiol 2024; 55:2411-2422. [PMID: 38837015 PMCID: PMC11405614 DOI: 10.1007/s42770-024-01392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/15/2024] [Indexed: 06/06/2024] Open
Abstract
Microbial remediation plays a pivotal role in the elimination of petroleum pollutants, making it imperative to investigate the capabilities of microorganisms in degrading petroleum. The present study describes the isolation of a promising strain, Acinetobacter sp. HX09, from petroleum-contaminated water. GC-MS analysis revealed a remarkable removal efficiency for short and medium-chain alkanes, with a rate of approximately 64% after a 7-days incubation at 30 °C. Transcriptome analysis of HX09 exhibited a predominant upregulation in gene expression levels by the induce of crude oil. Notably, genes such as alkane 1-monooxygenase, dehydrogenases and fatty acid metabolic enzymes exhibited fold changes range from 3.16 to 1.3. Based on the alkB gene sequences in HX09, the Phyre2 algorithm generated a three-dimensional structure that exhibited similarity to segments of acyl coenzyme desaturases and acyl lipid desaturases. Furthermore, three biodegradation-related gene clusters were predicted in HX09 based on the reference genome sequence. These findings contribute to our understanding of the hydrocarbon-degrading mechanisms employed by Acinetobacter species and facilitate the development of effective remediation strategies for crude oil- polluted environments.
Collapse
Affiliation(s)
- Sijing Chang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China.
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China.
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China.
| | - Yanwen Gui
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Xiaoyan He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Lingui Xue
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| |
Collapse
|
4
|
Brzeszcz J, Steliga T, Ryszka P, Kaszycki P, Kapusta P. Bacteria degrading both n-alkanes and aromatic hydrocarbons are prevalent in soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5668-5683. [PMID: 38127231 PMCID: PMC10799122 DOI: 10.1007/s11356-023-31405-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
This study was undertaken to determine the distribution of soil bacteria capable of utilizing both n-alkanes and aromatic hydrocarbons. These microorganisms have not been comprehensively investigated so far. Ten contaminated (4046-43,861 mg of total petroleum hydrocarbons (TPH) kg-1 of dry weight of soil) and five unpolluted (320-2754 mg TPH kg-1 of dry weight of soil) soil samples from temperate, arid, and Alpine soils were subjected to isolation of degraders with extended preferences and shotgun metagenomic sequencing (selected samples). The applied approach allowed to reveal that (a) these bacteria can be isolated from pristine and polluted soils, and (b) the distribution of alkane monooxygenase (alkB) and aromatic ring hydroxylating dioxygenases (ARHDs) encoding genes is not associated with the contamination presence. Some alkB and ARHD genes shared the same taxonomic affiliation; they were most often linked with the Rhodococcus, Pseudomonas, and Mycolicibacterium genera. Moreover, these taxa together with the Paeniglutamicibacter genus constituted the most numerous groups among 132 culturable strains growing in the presence of both n-alkanes and aromatic hydrocarbons. All those results indicate (a) the prevalence of the hydrocarbon degraders with extended preferences and (b) the potential of uncontaminated soil as a source of hydrocarbon degraders applied for bioremediation purposes.
Collapse
Affiliation(s)
- Joanna Brzeszcz
- Department of Microbiology, Oil and Gas Institute - National Research Institute, ul. Lubicz 25A, 31-503, Kraków, Poland.
| | - Teresa Steliga
- Department of Production Technology of Reservoir Fluids, Oil and Gas Institute - National Research Institute, ul. Lubicz 25A, 31-503, Kraków, Poland
| | - Przemysław Ryszka
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University in Kraków, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Paweł Kaszycki
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. Mickiewicza 21, 31-425, Kraków, Poland
| | - Piotr Kapusta
- Department of Microbiology, Oil and Gas Institute - National Research Institute, ul. Lubicz 25A, 31-503, Kraków, Poland
| |
Collapse
|
5
|
Narayanan M, Ali SS, El-Sheekh M. A comprehensive review on the potential of microbial enzymes in multipollutant bioremediation: Mechanisms, challenges, and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117532. [PMID: 36801803 DOI: 10.1016/j.jenvman.2023.117532] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Industrialization and other human activity represent significant environmental hazards. Toxic contaminants can harm a comprehensive platform of living organisms in their particular environments. Bioremediation is an effective remediation process in which harmful pollutants are eliminated from the environment using microorganisms or their enzymes. Microorganisms in the environment often create a variety of enzymes that can eliminate hazardous contaminants by using them as a substrate for development and growth. Through their catalytic reaction mechanism, microbial enzymes may degrade and eliminate harmful environmental pollutants and transform them into non-toxic forms. The principal types of microbial enzymes which can degrade most hazardous environmental contaminants include hydrolases, lipases, oxidoreductases, oxygenases, and laccases. Several immobilizations, genetic engineering strategies, and nanotechnology applications have been developed to improve enzyme performance and reduce pollution removal process costs. Until now, the practically applicable microbial enzymes from various microbial sources and their ability to degrade multipollutant effectively or transformation potential and mechanisms are unknown. Hence, more research and further studies are required. Additionally, there is a gap in the suitable approaches considering toxic multipollutants bioremediation using enzymatic applications. This review focused on the enzymatic elimination of harmful contaminants in the environment, such as dyes, polyaromatic hydrocarbons, plastics, heavy metals, and pesticides. Recent trends and future growth for effectively removing harmful contaminants by enzymatic degradation are also thoroughly discussed.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Division of Research and Innovations, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602 105, Tamil Nadu, India
| | - Sameh Samir Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt; Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
6
|
Kundu A, Harrisson O, Ghoshal S. Impacts of Arctic diesel contamination on microbial community composition and degradative gene abundance during hydrocarbon biodegradation with and without nutrients: A case study of seven sub-Arctic soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161777. [PMID: 36709895 DOI: 10.1016/j.scitotenv.2023.161777] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Although a number of studies have assessed hydrocarbon degradation or microbial responses in petroleum contaminated soils, few have examined both and/or assessed impacts in multiple soils simultaneously. In this study petroleum hydrocarbon biodegradation and microbial activity was monitored in seven sub-Arctic soils at similar levels (∼3500-4000 mg/kg) of Arctic diesel (DSL), amended with moisture and nutrients (70 mg-N/kg, 78 mg-P/kg), and incubated at site-representative summer temperatures (∼7 °C) under water unsaturated conditions. Total petroleum hydrocarbon (TPH) biodegradation extents (42.7-85.4 %) at 50 days were slightly higher in nutrient amended (DSL + N,P) than unamended (DSL) systems in all but one soil. Semi-volatile (C10-C16) hydrocarbons were degraded to a greater extent (40-80 %) than non-volatile (C16-C24) hydrocarbons (20-40 %). However, more significant shifts in microbial diversity and relative abundance of genera belonging to Actinobacteria and Proteobacteria phyla were observed in DSL + N,P than in DSL systems in all soils. Moreover, higher abundance of the alkane degrading gene alkB were observed in DSL + N,P systems than in DSL systems for all soils. The more significant microbial community response in the DSL + N,P systems indicate that addition of nutrients may have influenced the microbial community involved in degradation of carbon sources other than the diesel compounds, such as the soil organic matter or degradation intermediates of diesel compounds. Nocardioides, Arthrobacter, Marmoricola, Pseudomonas, Polaromonas, and Massilia genera were present in high relative abundance in the DSL systems suggesting those genera contained hydrocarbon degraders. Overall, the results suggest that the extents of microbial community shifts or alkB copy number increases may not be closely correlated to the increase in hydrocarbon biodegradation and thus bioremediation performance between various treatments or across different soils.
Collapse
Affiliation(s)
- Anirban Kundu
- Department of Civil Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Orfeo Harrisson
- Department of Civil Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, QC H3A 0C3, Canada.
| |
Collapse
|
7
|
Suyal DC, Joshi D, Kumar S, Bhatt P, Narayan A, Giri K, Singh M, Soni R, Kumar R, Yadav A, Devi R, Kaur T, Kour D, Yadav AN. Himalayan Microbiomes for Agro-environmental Sustainability: Current Perspectives and Future Challenges. MICROBIAL ECOLOGY 2022; 84:643-675. [PMID: 34647148 DOI: 10.1007/s00248-021-01849-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The Himalayas are one of the most mystical, yet least studied terrains of the world. One of Earth's greatest multifaceted and diverse montane ecosystems is also one of the thirty-four global biodiversity hotspots of the world. These are supposed to have been uplifted about 60-70 million years ago and support, distinct environments, physiography, a variety of orogeny, and great biological diversity (plants, animals, and microbes). Microbes are the pioneer colonizer of the Himalayas that are involved in various bio-geological cycles and play various significant roles. The applications of Himalayan microbiomes inhabiting in lesser to greater Himalayas have been recognized. The researchers explored the applications of indigenous microbiomes in both agricultural and environmental sectors. In agriculture, microbiomes from Himalayan regions have been suggested as better biofertilizers and biopesticides for the crops growing at low temperature and mountainous areas as they help in the alleviation of cold stress and other biotic stresses. Along with alleviation of low temperature, Himalayan microbes also have the capability to enhance plant growth by availing the soluble form of nutrients like nitrogen, phosphorus, potassium, zinc, and iron. These microbes have been recognized for producing plant growth regulators (abscisic acid, auxin, cytokinin, ethylene, and gibberellins). These microbes have been reported for bioremediating the diverse pollutants (pesticides, heavy metals, and xenobiotics) for environmental sustainability. In the current perspectives, present review provides a detailed discussion on the ecology, biodiversity, and adaptive features of the native Himalayan microbiomes in view to achieve agro-environmental sustainability.
Collapse
Affiliation(s)
- Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Sirmaur, Himachal Pradesh, India
| | - Divya Joshi
- Uttarakhand Pollution Control Board, Regional Office, Kashipur, Uttarakhand, India
| | - Saurabh Kumar
- Division of Crop Research, Research Complex for Eastern Region, Patna, Bihar, India
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Arun Narayan
- Forest Research Institute, Dehradun, 2480 06, India
| | - Krishna Giri
- Rain Forest Research Institute, Jorhat, 785 010, India
| | - Manali Singh
- Department of Biotechnology, Invertis Institute of Engineering and Technology (IIET), Invertis University, Bareilly, 243123, Uttar Pradesh, India
| | - Ravindra Soni
- Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwa Vidyalaya, Raipur, Chhattisgarh, India
| | - Rakshak Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Ashok Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rubee Devi
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Tanvir Kaur
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Divjot Kour
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| |
Collapse
|
8
|
Wang Q, Guo S, Ali M, Song X, Tang Z, Zhang Z, Zhang M, Luo Y. Thermally enhanced bioremediation: A review of the fundamentals and applications in soil and groundwater remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128749. [PMID: 35364527 DOI: 10.1016/j.jhazmat.2022.128749] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Thermally enhanced bioremediation (TEB), a new concept proposed in recent years, explores the combination of thermal treatment and bioremediation to address the challenges of the low efficiency and long duration of bioremediation. This study presented a comprehensive review regarding the fundamentals of TEB and its applications in soil and groundwater remediation. The temperature effects on the bioremediation of contaminants were systematically reviewed. The thermal effects on the physical, chemical and biological characteristics of soil, and the corresponding changes of contaminants bioavailability and microbial metabolic activities were summarized. Specifically, the increase in temperature within a suitable range can proliferate enzymes enrichment, extracellular polysaccharides and biosurfactants production, and further enhancing bioremediation. Furthermore, a systematic evaluation of TEB applications by utilizing traditional in situ heating technologies, as well as renewable energy (e.g., stored aquifer thermal energy and solar energy), was provided. Additionally, TEB has been applied as a biological polishing technology post thermal treatment, which can be a cost-effective method to address the contaminants rebounds in groundwater remediation. However, there are still various challenges to be addressed in TEB, and future research perspectives to further improve the basic understanding and applications of TEB for the remediation of contaminated soil and groundwater are presented.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Siwei Guo
- Zhejiang University, Hangzhou, China
| | - Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Yang R, Zhang B, Xu Y, Zhang G, Liu Y, Zhang D, Zhang W, Chen T, Liu G. Genomic insights revealed the environmental adaptability of Planococcus halotolerans Y50 isolated from petroleum-contaminated soil on the Qinghai-Tibet Plateau. Gene 2022; 823:146368. [PMID: 35240255 DOI: 10.1016/j.gene.2022.146368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/28/2022]
Abstract
The Tibetan Plateau niche provides unprecedented opportunities to find microbes that are functional and commercial significance. The present study investigated the physiological and genomic characteristics of Planococcus halotolerans Y50 that was isolated from a petroleum-contaminated soil sample from the Qinghai-Tibet Plateau, and it displayed psychrotolerant, antiradiation, and oil-degraded characteristics. Whole genome sequencing indicated that strain Y50 has a 3.52 Mb genome and 44.7% G + C content, and it possesses 3377 CDSs. The presence of a wide range of UV damage repair genes uvrX and uvsE, DNA repair genes radA and recN, superoxide dismutase, peroxiredoxin and dioxygenase genes provided the genomic basis for the adaptation of the plateau environment polluted by petroleum. Related experiments also verified that the Y50 strain could degrade n-alkanes from C11-C23, and approximately 30% of the total petroleum at 25 °C within 7 days. Meanwhile, strain Y50 could withstand 5 × 103 J/m2 UVC and 10 KGy gamma ray radiation, and it had strong antioxidant and high radical scavengers for superoxide anion, hydroxyl radical and DPPH. In addition, pan-genome analysis and horizontal gene transfers revealed that strains with different niches have obtained various genes through horizontal gene transfer in the process of evolution, and the more similar their geographical locations, the more similar their members are genetically and ecologically. In conclusion, P. halotolerans Y50 possesses high potential of applications in the bioremediation of alpine hydrocarbons contaminated environment.
Collapse
Affiliation(s)
- Ruiqi Yang
- College of Urban Environment, Lanzhou City University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000, China
| | - Binglin Zhang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000, China.
| | - Yeteng Xu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000, China; Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000, China; Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Dongming Zhang
- School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000, China; Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000, China; Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
10
|
Wang S, Wang D, Yu Z, Dong X, Liu S, Cui H, Sun B. Advances in research on petroleum biodegradability in soil. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:9-27. [PMID: 33393551 DOI: 10.1039/d0em00370k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the increased demand for petroleum and petroleum products from all parts of the society, environmental pollution caused by petroleum development and production processes is becoming increasingly serious. Soil pollution caused by petroleum seriously affects environmental quality in addition to human lives and productivity. At present, petroleum in soil is mainly degraded by biological methods. In their natural state, native bacteria in the soil spontaneously degrade petroleum pollutants that enter the soil; however, when the pollution levels increase, the degradation rates decrease, and it is necessary to add nutrients, dissolved oxygen, biosurfactants and other additives to improve the degradation ability of the native bacteria in the soil. The degradation process can also be enhanced by adding exogenous petroleum-degrading bacteria, microbial immobilization technologies, and microbial fuel cell technologies.
Collapse
Affiliation(s)
- Song Wang
- School of Earth Science, Northeast Petroleum University, Daqing, China
| | - Dan Wang
- School of Earth Science, Northeast Petroleum University, Daqing, China
| | - Zhongchen Yu
- School of Civil Architecture Engineering, Northeast Petroleum University, Daqing, China.
| | - Xigui Dong
- 2nd Oil Production Plant Daqing Oilfield Co. Ltd, Daqing, China
| | - Shumeng Liu
- 2nd Oil Production Plant Daqing Oilfield Co. Ltd, Daqing, China
| | - Hongmei Cui
- School of Civil Architecture Engineering, Northeast Petroleum University, Daqing, China.
| | - Bing Sun
- 2nd Oil Production Plant Daqing Oilfield Co. Ltd, Daqing, China
| |
Collapse
|
11
|
Nascimben Santos E, Ágoston Á, Kertész S, Hodúr C, László Z, Pap Z, Kása Z, Alapi T, Krishnan SG, Arthanareeswaran G, Hernadi K, Veréb G. Investigation of the applicability of TiO
2
, BiVO
4
, and WO
3
nanomaterials for advanced photocatalytic membranes used for oil‐in‐water emulsion separation. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Erika Nascimben Santos
- Institute of Process Engineering, Faculty of Engineering University of Szeged Szeged Hungary
| | - Áron Ágoston
- Institute of Process Engineering, Faculty of Engineering University of Szeged Szeged Hungary
| | - Szabolcs Kertész
- Institute of Process Engineering, Faculty of Engineering University of Szeged Szeged Hungary
| | - Cecilia Hodúr
- Institute of Process Engineering, Faculty of Engineering University of Szeged Szeged Hungary
- Institute of Environmental Science and Technology University of Szeged Szeged Hungary
| | - Zsuzsanna László
- Institute of Process Engineering, Faculty of Engineering University of Szeged Szeged Hungary
| | - Zsolt Pap
- Institute of Environmental Science and Technology University of Szeged Szeged Hungary
| | - Zsolt Kása
- Institute of Environmental Science and Technology University of Szeged Szeged Hungary
| | - Tünde Alapi
- Department of Inorganic and Analytical Chemistry, Institute of Chemistry University of Szeged Szeged Hungary
| | - S.A. Gokula Krishnan
- Department of Chemical Engineering, National Institute of Technology Membrane Research Laboratory Tiruchirappalli India
| | - Gangasalam Arthanareeswaran
- Department of Chemical Engineering, National Institute of Technology Membrane Research Laboratory Tiruchirappalli India
| | - Klara Hernadi
- Department of Applied and Environmental Chemistry, Institute of Chemistry University of Szeged Szeged Hungary
| | - Gábor Veréb
- Institute of Process Engineering, Faculty of Engineering University of Szeged Szeged Hungary
| |
Collapse
|
12
|
Borowik A, Wyszkowska J, Kucharski M, Kucharski J. The Role of Dactylis Glomerata and Diesel Oil in the Formation of Microbiome and Soil Enzyme Activity. SENSORS 2020; 20:s20123362. [PMID: 32545819 PMCID: PMC7349710 DOI: 10.3390/s20123362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
The global demand for petroleum contributes to a significant increase in soil pollution with petroleum-based products that pose a severe risk not only to humans but also to plants and the soil microbiome. The increasing pollution of the natural environment urges the search for effective remediation methods. Considering the above, the objective of this study was to determine the usability of Dactylis glomerata for the degradation of hydrocarbons contained in diesel oil (DO), as well as the effects of both the plant tested and DO on the biochemical functionality and changes in the soil microbiome. The experiment was conducted in a greenhouse with non-polluted soil as well as soil polluted with DO and phytoremediated with Dactylis glomerata. Soil pollution with DO increased the numbers of microorganisms and soil enzymes and decreased the value of the ecophysiological diversity index of microorganisms. Besides, it contributed to changes in the bacterial structure at all taxonomic levels. DO was found to increase the abundance of Proteobacteria and to decrease that of Actinobacteria, Acidobacteria, Chloroflexi, Gemmatimonadetes and Firmicutes. In the non-polluted soil, the core microbiome was represented by Kaistobacter and Rhodoplanes, whereas in the DO-polluted soil, it was represented by Parvibaculum and Rhodococcus. In soil sown with Dactylis glomerata, gasoline fraction (C6–C12) degradation was higher by 17%; mineral oil (C12–C35), by 9%; benzene, by 31%; anthracene, by 12%; chrysene, by 38%; benzo(a)anthracene, by 19%; benzo(a)pyrene, by 17%; benzo(b)fluoranthene, by 15%; and benzo(k)fluoranthene, by 18% than in non-sowed soil. To conclude, Dactylis glomerata proved useful in degrading DO hydrocarbons and, therefore, may be recommended for the phytoremediation of soils polluted with petroleum-based products. It has been shown that the microbiological, biochemical and chemical tests are fast and sensitive in the diagnosis of soil contamination with petroleum products, and a combination of all these tests gives a reliable assessment of the state of soils.
Collapse
|
13
|
Veréb G, Kassai P, Nascimben Santos E, Arthanareeswaran G, Hodúr C, László Z. Intensification of the ultrafiltration of real oil-contaminated (produced) water with pre-ozonation and/or with TiO 2, TiO 2/CNT nanomaterial-coated membrane surfaces. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22195-22205. [PMID: 32060831 PMCID: PMC7293663 DOI: 10.1007/s11356-020-08047-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
In the present study, commercial PES, PVDF, PTFE ultrafilter membranes, and two different nanomaterial (TiO2 and TiO2/CNT composite)-covered PVDF ultrafilter membranes (MWCO = 100 kDa) were used for the purification of an industrial oil-contaminated (produced) wastewater, with and without ozone pretreatment to compare the achievable fouling mitigations by the mentioned surface modifications and/or pre-ozonation. Fluxes, filtration resistances, foulings, and purification efficiencies were compared in detail. Pre-ozonation was able to reduce the total filtration resistance in all cases (up to 50%), independently from the membrane material. During the application of nanomaterial-modified membranes were by far the lowest filtration resistances measured, and in these cases, pre-ozonation resulted in a slight further reduction (11-13%) of the total filtration resistance. The oil removal efficiency was 83-91% in the case of commercial membranes and > 98% in the case of modified membranes. Moreover, the highest fluxes (301-362 L m-2 h-1) were also measured in the case of modified membranes. Overall, the utilization of nanomaterial-modified membranes was more beneficial than pre-ozonation, but with the combination of these methods, slightly higher fluxes, lower filtration resistances, and better antifouling properties were achieved; however, pre-ozonation slightly decreased the oil removal efficiency.
Collapse
Affiliation(s)
- Gábor Veréb
- Institute of Process Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., Szeged, HU-6725, Hungary.
| | - Péter Kassai
- Institute of Process Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., Szeged, HU-6725, Hungary
| | - Erika Nascimben Santos
- Institute of Process Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., Szeged, HU-6725, Hungary
| | - Gangasalam Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamilnadu, 620015, India
| | - Cecilia Hodúr
- Institute of Process Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., Szeged, HU-6725, Hungary
- Institute of Environmental Science and Technology, University of Szeged, Tisza Lajos Blvd. 103, Szeged, H-6720, Hungary
| | - Zsuzsanna László
- Institute of Process Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., Szeged, HU-6725, Hungary
| |
Collapse
|
14
|
Lopez-Echartea E, Strejcek M, Mukherjee S, Uhlik O, Yrjälä K. Bacterial succession in oil-contaminated soil under phytoremediation with poplars. CHEMOSPHERE 2020; 243:125242. [PMID: 31995861 DOI: 10.1016/j.chemosphere.2019.125242] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/13/2019] [Accepted: 10/26/2019] [Indexed: 05/18/2023]
Abstract
Petroleum hydrocarbons (PHCs) continue to be among the most common pollutants in soil worldwide. Phytoremediation has become a sustainable way of dealing with PHC contamination. We conducted the off-site phytoremediation of PHC-polluted soil from an oil tanker truck accident, where poplars were used for the phytoremediation of the oil-polluted soil in a boreal climate during a seven-year treatment. The succession of bacterial communities over the entire phytoremediation process was monitored using microbial ecological tools relying on high-throughput 16S rRNA gene sequencing. Upon the successful depletion of PHCs from soil, endophytic communities were analyzed in order to assess the complete plant-associated microbiome after the ecological recovery. The rhizosphere-associated soil exhibited different bacterial dynamics than unplanted soil, but both soils experienced succession of bacteria over time, with diversity being negatively correlated with PHC concentration. In the relatively short growing season in North Europe, seasonal variations in environmental conditions were identified that contributed to the dynamics of bacterial communities. Overall, our study proved that phytoremediation using poplar trees can be used to assist in the removal of PHCs from soils in boreal climate conditions and provides new insight into the succession patterns of bacterial communities associated with these plants.
Collapse
Affiliation(s)
- Eglantina Lopez-Echartea
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Michal Strejcek
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Shinjini Mukherjee
- KU Leuven, Laboratory of Aquatic Ecology, Evolution and Conservation, Leuven, Belgium
| | - Ondrej Uhlik
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Kim Yrjälä
- University of Helsinki, Department of Forest Sciences, Helsinki, Finland; Zhejiang A&F University, State Key Laboratory of Subtropical Silviculture, Zhejiang, China.
| |
Collapse
|
15
|
Brzeszcz J, Kapusta P, Steliga T, Turkiewicz A. Hydrocarbon Removal by Two Differently Developed Microbial Inoculants and Comparing Their Actions with Biostimulation Treatment. Molecules 2020; 25:E661. [PMID: 32033085 PMCID: PMC7036810 DOI: 10.3390/molecules25030661] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 01/21/2023] Open
Abstract
Bioremediation of soils polluted with petroleum compounds is a widely accepted environmental technology. We compared the effects of biostimulation and bioaugmentation of soil historically contaminated with aliphatic and polycyclic aromatic hydrocarbons. The studied bioaugmentation treatments comprised of the introduction of differently developed microbial inoculants, namely: an isolated hydrocarbon-degrading community C1 (undefined-consisting of randomly chosen degraders) and a mixed culture C2 (consisting of seven strains with well-characterized enhanced hydrocarbon-degrading capabilities). Sixty days of remedial treatments resulted in a substantial decrease in total aliphatic hydrocarbon content; however, the action of both inoculants gave a significantly better effect than nutrient amendments (a 69.7% decrease for C1 and 86.8% for C2 vs. 34.9% for biostimulation). The bioaugmentation resulted also in PAH removal, and, again, C2 degraded contaminants more efficiently than C1 (reductions of 85.2% and 64.5%, respectively), while biostimulation itself gave no significant results. Various bioassays applying different organisms (the bacterium Vibrio fischeri, the plants Sorghum saccharatum, Lepidium sativum, and Sinapis alba, and the ostracod Heterocypris incongruens) and Ames test were used to assess, respectively, potential toxicity and mutagenicity risk after bioremediation. Each treatment improved soil quality, however only bioaugmentation with the C2 treatment decreased both toxicity and mutagenicity most efficiently. Illumina high-throughput sequencing revealed the lack of (C1) or limited (C2) ability of the introduced degraders to sustain competition from indigenous microbiota after a 60-day bioremediation process. Thus, bioaugmentation with the bacterial mixed culture C2, made up of identified, hydrocarbon-degrading strains, is clearly a better option for bioremediation purposes when compared to other treatments.
Collapse
Affiliation(s)
- Joanna Brzeszcz
- Department of Microbiology, Oil and Gas Institute–National Research Institute, ul. Lubicz 25A, 31-503 Krakow, Poland;
| | - Piotr Kapusta
- Department of Microbiology, Oil and Gas Institute–National Research Institute, ul. Lubicz 25A, 31-503 Krakow, Poland;
| | - Teresa Steliga
- Department of Reservoir Fluid Production Technology, Oil and Gas Institute–National Research Institute, ul. Lubicz 25 A, 31-503 Krakow, Poland;
| | - Anna Turkiewicz
- Department of Microbiology, Oil and Gas Institute–National Research Institute, ul. Lubicz 25A, 31-503 Krakow, Poland;
| |
Collapse
|
16
|
Microbial diversity changes and enrichment of potential petroleum hydrocarbon degraders in crude oil-, diesel-, and gasoline-contaminated soil. 3 Biotech 2020; 10:42. [PMID: 31988836 DOI: 10.1007/s13205-019-2027-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
This study investigated the impacts of crude oil, diesel, and gasoline on the diversity of indigenous microbial communities as well as culturable microorganisms in the studied soil. Oil contamination led to shifts in the diversity of the soil's microbial communities, regardless of the contaminant applied. Unpolluted soils were more diverse and evenly distributed than contaminated samples. The domain Bacteria accounted for 65.15% of the whole microbial community. The bacterial phylum Proteobacteria dominated in all samples, followed by Actinobacteria and Acidobacteria. Pseudomonas with 28.15% of reads dominated in Proteobacteria, while Rhodococcus (3.07%) dominated in Actinobacteria, and Blastocatella (2.53%) dominated in Acidobacteria. The dominant fungal phyla across all samples were Ascomycota dominated by Penicillium (50.48% of sequences), and Zygomycota dominated by Mortierella (16.87%). Sequences similar to the archaeal phyla, Euryarchaeota and Thaumarchaeota, were also detected. The number of culturable microorganisms increased following the contamination and was higher in contaminated samples than in clean samples. Oil contamination also resulted in the enrichment of oil-degrading strains. Two bacteria, Serratia marcescens strain PL and Raoultella ornithinolytica PS, which were isolated from crude oil-contaminated soil, exhibited strong crude oil degradation ability. Strain PL was the most efficient strain and degraded 75.10% of crude oil, while strain PL degraded 65.48%, after 20 days of incubation. However, the mixed culture of the two strains was more effective than single strain and could achieve up to 96.83% of crude oil degradation, with a complete abatement of straight-chain hydrocarbons (from C12 to C25), and more than 91% removal of highly branched hydrocarbons, phytane and pristane, which are known to be more recalcitrant to biodegradation. Strains PS and PL are two newly isolated crude oil degraders that are not among the most prominent crude oil-degrading strains referenced in the literature. Therefore, their high degradation capacity makes them perfect candidates for the bioremediation of petroleum hydrocarbon contaminated environments.
Collapse
|
17
|
Mannacharaju M, Kannan Villalan A, Shenbagam B, Karmegam PM, Natarajan P, Somasundaram S, Arumugam G, Ganesan S. Towards sustainable system configuration for the treatment of fish processing wastewater using bioreactors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:353-365. [PMID: 31792794 DOI: 10.1007/s11356-019-06909-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
The wastewater generated from fish processing industry contains a credible level of biodegradable proteins and low biodegradable fats, oils, and grease (FOG). The conventional biological treatment of fish processing wastewater (FPWW) containing high concentration of FOG faces the challenges of clogging, hindrance to sedimentation due to the formation of hydrophobic sludge along with lipids, flocculation of sludge with poor activity, dewatering of sludge due to the presence of lipids, and formation of aminated offensive odors. The present investigation employed baffled moving bed biofilm reactor (BMBBR), up-flow anaerobic sludge blanket (UASB) reactor, fluidized immobilized cell carbon oxidation (FICCO) reactor, and chemoautotrophic activated carbon oxidation (CAACO) reactors in series to treat FPWW. Five treatment options were evaluated to elevate the correct option for the treatment of FPWW. The treatment option V had established the removal efficiency of COD, 99 ± 0.1%; protein, 99 ± 0.2%; lipids, 100%; and oil and grease, 100%.
Collapse
Affiliation(s)
- Mahesh Mannacharaju
- Environmental Science and Engineering Division, CSIR - Central Leather Research Institute (CLRI), Adyar, Chennai-600020, India
| | - Arivizhivendhan Kannan Villalan
- Environmental Science and Engineering Division, CSIR - Central Leather Research Institute (CLRI), Adyar, Chennai-600020, India
| | - Buvaneswari Shenbagam
- Environmental Science and Engineering Division, CSIR - Central Leather Research Institute (CLRI), Adyar, Chennai-600020, India
| | - Patchai Murugan Karmegam
- Environmental Science and Engineering Division, CSIR - Central Leather Research Institute (CLRI), Adyar, Chennai-600020, India
| | - Prabhakaran Natarajan
- Environmental Science and Engineering Division, CSIR - Central Leather Research Institute (CLRI), Adyar, Chennai-600020, India
| | - Swarnalatha Somasundaram
- Environmental Science and Engineering Division, CSIR - Central Leather Research Institute (CLRI), Adyar, Chennai-600020, India
| | - Gnanamani Arumugam
- Department of Microbiology (Biological Material Laboratory), CSIR - Central Leather Research Institute (CLRI), Adyar, Chennai-600020, India
| | - Sekaran Ganesan
- Environmental Science and Engineering Division, CSIR - Central Leather Research Institute (CLRI), Adyar, Chennai-600020, India.
| |
Collapse
|