1
|
Zhou Y, Zhang R, Wang J, Tong Y, Zhang J, Li Z, Zhang H, Abbas Z, Si D, Wei X. Isolation, Characterization, and Functional Properties of Antioxidant Peptides from Mulberry Leaf Enzymatic Hydrolysates. Antioxidants (Basel) 2024; 13:854. [PMID: 39061922 PMCID: PMC11273431 DOI: 10.3390/antiox13070854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024] Open
Abstract
Recent evidence suggests that mulberry leaves have good antioxidant activity. However, what the antioxidant ingredient is and how the ingredient works are still not well understood. In this study, we enzymatically hydrolyze mulberry leaf proteins (MLPs) using neutral protease and find that the mulberry leaf protein hydrolysates (MLPHs) have stronger antioxidant activity compared to MLPs. We separate the core antioxidant components in MLPHs by ion-exchange columns and molecular sieves and identify 798 antioxidant peptides by LC-MS/MS. Through bioinformatics analysis and biochemical assays, we screen two previously unreported peptides, P6 and P7, with excellent antioxidant activities. P6 and P7 not only significantly reduce ROS in cells but also improve the activities of the antioxidant enzymes SOD and CAT. In addition, both peptides are found to exert protective effects against H2O2-induced chromatin damage and cell apoptosis. Collectively, these results provide support for the application of mulberry leaf peptides as antioxidants in the medical, food and livestock industries.
Collapse
Affiliation(s)
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.)
| | | | | | | | | | | | | | | | - Xubiao Wei
- Correspondence: (R.Z.); (X.W.); Tel.: +86-10-62731208 (X.W.)
| |
Collapse
|
2
|
Li B, Zhang J, Liu Y, Wang Z, Xu F. Characterization, Antioxidant Capacity and Protective Effect of Peptides from Cordyceps militaris Cultivated with Tussah Pupa on Oxidative Injured HepG2 Cells. J Microbiol Biotechnol 2024; 34:1082-1091. [PMID: 38719776 PMCID: PMC11180915 DOI: 10.4014/jmb.2312.12012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/04/2024] [Accepted: 03/30/2024] [Indexed: 05/29/2024]
Abstract
The antioxidant capacity and protective effect of peptides from protein hydrolysate of Cordyceps militaris cultivated with tussah pupa (ECPs) on H2O2-injured HepG2 cells were studied. Results indicated ECP1 (<3 kDa) presented the strongest antioxidant activity compared with other molecular weight peptides. Pretreated with ECPs observably enhanced survival rates and reduced apoptosis rates of HepG2 cells. ECPs treatment decreased the ROS level, MDA content and increased CAT and GSH-Px activities of HepG2 cells. Besides, the morphologies of natural peptides from C. militaris cultivated with tussah pupa (NCP1) and ECP1 were observed by scanning electron microscopy (SEM). Characterization results suggested the structure of NCP1 was changed by enzymatic hydrolysis treatment. Most of hydrophobic and acidic amino acids contents (ACC) in ECP1 were also observably improved by enzymatic hydrolysis. In conclusion, low molecular weight peptides had potential value in the development of cosmetics and health food.
Collapse
Affiliation(s)
- Bingxin Li
- College of Life Science, Shenyang Normal University, Shenyang, Liaoning 110034, P.R. China
| | - Jinying Zhang
- College of Life Science, Shenyang Normal University, Shenyang, Liaoning 110034, P.R. China
| | - Yefei Liu
- Experimental Teaching Center, Shenyang Normal University, Shenyang, Liaoning 110034, P.R. China
- Cordyceps militaris Germplasm Bank of Liaoning Province, Shenyang, Liaoning 110034, P.R. China
| | - Ze Wang
- College of Life Science, Shenyang Normal University, Shenyang, Liaoning 110034, P.R. China
- Industrial Technology Research Academy for Cordyceps militaris with Functional Value of Shenyang, Shenyang, Liaoning 110034, P.R. China
| | - Fangxu Xu
- Experimental Teaching Center, Shenyang Normal University, Shenyang, Liaoning 110034, P.R. China
- Key Laboratory of Cordyceps militaris with Functional Value of Liaoning Province, Shenyang, Liaoning 110034, P.R. China
| |
Collapse
|
3
|
Tang Y, Liang F, Yan Y, Zeng Y, Li Y, Zhou R. Purification and Identification of Peptides from Hydrilla verticillata (Linn. f.) Royle with Cytoprotective and Antioxidative Effect against H 2O 2-Treated HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4170-4183. [PMID: 38358942 DOI: 10.1021/acs.jafc.3c09917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Antioxidant peptides were purified from Hydrilla verticillata (Linn. f.) Royle (HVR) protein hydrolysate by ultrafiltration, gel filtration chromatography, and semipreparative reversed-phase HPLC and identified by UPLC-ESI-MS/MS. Therein, TCLGPK and TCLGER were selected to be synthesized, and they displayed desirable radical-scavenging activity to ABTS (99.20 ± 0.56-99.20 ± 0.43%), DPPH (97.32 ± 0.59-97.56 ± 0.97%), hydroxyl radical (54.32 ± 1.27-70.42 ± 2.01%), and superoxide anion (42.93 ± 1.46-52.62 ± 1.11%) at a concentration of 0.96 μmol/mL. They possessed a cytoprotective effect against H2O2-induced oxidative stress in HepG2 cells in a dose-dependent manner. 1.6 μmol/mL of the two peptides could perfectly protect HepG2 cells from H2O2-induced injury. The TCLGPK exhibited higher antioxidant activity and cytoprotective effect than TCLGER. Western blot and molecular docking results indicated that the two peptides achieved antioxidant ability and cytoprotective effect by combining with Kelch-like ECH-associated protein 1 (Keap1) to activate the Keap1-nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response elements signaling pathway, leading to the activity and expression of the related antioxidases in the pathway significantly up-regulating and the intracellular reactive oxygen species level, lipid peroxidation, and cell apoptosis rate significantly down-regulating.
Collapse
Affiliation(s)
- Yufang Tang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Fan Liang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yue Yan
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yanlin Zeng
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yuqin Li
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Rong Zhou
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
4
|
Chen L, Cheng G, Meng S, Ding Y. Collagen Membrane Derived from Fish Scales for Application in Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14132532. [PMID: 35808577 PMCID: PMC9269230 DOI: 10.3390/polym14132532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Guided tissue/bone regeneration (GTR/GBR) is currently the main treatment for alveolar bone regeneration. The commonly used barrier membranes in GTR/GBR are collagen membranes from mammals such as porcine or cattle. Fish collagen is being explored as a potential substitute for mammalian collagen due to its low cost, no zoonotic risk, and lack of religious constraints. Fish scale is a multi-layer natural collagen composite with high mechanical strength, but its biomedical application is limited due to the low denaturation temperature of fish collagen. In this study, a fish scale collagen membrane with a high denaturation temperature of 79.5 °C was prepared using an improved method based on preserving the basic shape of fish scales. The fish scale collagen membrane was mainly composed of type I collagen and hydroxyapatite, in which the weight ratios of water, organic matter, and inorganic matter were 20.7%, 56.9%, and 22.4%, respectively. Compared to the Bio-Gide® membrane (BG) commonly used in the GTR/GBR, fish scale collagen membrane showed good cytocompatibility and could promote late osteogenic differentiation of cells. In conclusion, the collagen membrane prepared from fish scales had good thermal stability, cytocompatibility, and osteogenic activity, which showed potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Liang Chen
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (L.C.); (G.C.); (S.M.)
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Periodontology, West China College of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Guoping Cheng
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (L.C.); (G.C.); (S.M.)
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Periodontology, West China College of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shu Meng
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (L.C.); (G.C.); (S.M.)
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Periodontology, West China College of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Ding
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (L.C.); (G.C.); (S.M.)
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Periodontology, West China College of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
5
|
Rahabi M, Salon M, Bruno-Bonnet C, Prat M, Jacquemin G, Benmoussa K, Alaeddine M, Parny M, Bernad J, Bertrand B, Auffret Y, Robert-Jolimaître P, Alric L, Authier H, Coste A. Bioactive fish collagen peptides weaken intestinal inflammation by orienting colonic macrophages phenotype through mannose receptor activation. Eur J Nutr 2022; 61:2051-2066. [PMID: 34999930 PMCID: PMC9106617 DOI: 10.1007/s00394-021-02787-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE Particular interest is now given to the potential of dietary supplements as alternative non-pharmacological approaches in intestinal inflammation handling. In this aim, this study evaluates the efficiency of fish collagen peptides, Naticol®Gut, on colonic inflammation. METHODS Wild type and Mannose receptor-deficient in the myeloid lineage C57BL/6 mice were administered with Dextran Sodium Sulfate (DSS), Naticol®Gut, DSS, and Naticol®Gut or only water for 4 or 8 days. Inflammatory status was evaluated by establishing macroscopic and microscopic scores, by measuring cytokine and calprotectin production by ELISA and the myeloperoxidase activity by chemiluminescence. Colonic macrophages were phenotyped by measuring mRNA levels of specific markers of inflammation and oxidative status. Colonic immune populations and T-cell activation profiles were determined by flow cytometry. Mucosa-associated gut microbiota assessment was undertaken by qPCR. The phenotype of human blood monocytes from inflammatory bowel disease (IBD) subjects was characterized by RT-qPCR and flow cytometry and their oxidative activity by chemiluminescence. RESULTS Naticol®Gut-treated DSS mice showed attenuated colonic inflammation compared to mice that were only exposed to DSS. Naticol®Gut activity was displayed through its ability to orient the polarization of colonic macrophage towards an anti-inflammatory and anti-oxidant phenotype after its recognition by the mannose receptor. Subsequently, Naticol®Gut delivery modulated CD4 T cells in favor of a Th2 response and dampened CD8 T-cell activation. This immunomodulation resulted in an intestinal eubiosis. In human monocytes from IBD subjects, the treatment with Naticol®Gut also restored an anti-inflammatory and anti-oxidant phenotype. CONCLUSION Naticol®Gut acts as a protective agent against colitis appearing as a new functional food and an innovative and complementary approach in gut health.
Collapse
Affiliation(s)
- Mouna Rahabi
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France.,Weishardt International, Rond-Point Georges Jolimaître, BP 259, 81305, Graulhet, France
| | - Marie Salon
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France.,Weishardt International, Rond-Point Georges Jolimaître, BP 259, 81305, Graulhet, France
| | | | - Mélissa Prat
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France
| | - Godefroy Jacquemin
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Khaddouj Benmoussa
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Mohamad Alaeddine
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France
| | - Mélissa Parny
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - José Bernad
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France
| | - Bénédicte Bertrand
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Yannick Auffret
- Weishardt International, Rond-Point Georges Jolimaître, BP 259, 81305, Graulhet, France
| | | | - Laurent Alric
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France.,Department of Internal Medicine and Digestive Diseases, Pôle Digestif, CHU Toulouse, Toulouse, France
| | - Hélène Authier
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Agnès Coste
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France. .,RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France.
| |
Collapse
|
6
|
Hu YM, Lu SZ, Li YS, Wang H, Shi Y, Zhang L, Tu ZC. Protective effect of antioxidant peptides from grass carp scale gelatin on the H 2O 2-mediated oxidative injured HepG2 cells. Food Chem 2021; 373:131539. [PMID: 34776311 DOI: 10.1016/j.foodchem.2021.131539] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/24/2021] [Accepted: 11/04/2021] [Indexed: 01/22/2023]
Abstract
The protective effect of antioxidant peptides from grass carp scale gelatin on hydrogen peroxide (H2O2)-mediated oxidative injured HepG2 cells was investigated, and the protective mechanism as well as peptide structure were studied. Pretreated with grass carp scale gelatin hydrolysates (GSGH) for 24 h significantly increased the survival rates and decreased the apoptosis rates of H2O2-mediated oxidative injured HepG2 cells. The increase in SOD, CAT and GPX activities, reduce in ROS level and MDA content, and weaken in damage on cell membrane and DNA could be responsible for the protective effect of GSGH on H2O2-mediated oxidative injured HepG2 cells. Peptide sequences of GSGH were analyzed by LC-ESI-Q-Orbitrap-MS/MS, and results showed that most of them were low molecular weight peptide at 358-986 Da. Synergistic effect existed among antioxidant peptides and contributed to the strong antioxidant activities of GSGH.
Collapse
Affiliation(s)
- Yue-Ming Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Su-Zhen Lu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ya-Si Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yan Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Lu Zhang
- National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Zong-Cai Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
7
|
Magtaan JK, Fitzpatrick B, Murphy R. Elucidating the Biological Activity of Fish-Derived Collagen and Gelatine Hydrolysates using Animal Cell Culture - A Review. Curr Pharm Des 2021; 27:1365-1381. [PMID: 33302859 DOI: 10.2174/1381612826666201210112119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
A large percentage of a fish's weight is generally discarded during fish processing. Reducing the waste products of marine origin is a subject of great interest within the scientific community. Pelagic byproducts, such as the structural protein collagen, which can be generated during the processing of fish, have been proposed as an alternative to terrestrial, mammalian sources due to advantages including high availability and low risk of zoonotic disease transmission. Gelatine has multiple possible applications, ranging from nutraceutical applications to cosmetics and has the advantage of being generally regarded as safe. In this multidisciplinary review, the chemistry of gelatine and its parent protein collagen, the chemical reactions to generate their hydrolysates, and studies on their biological activities using animal cell culture are discussed.
Collapse
Affiliation(s)
- Jordan Kevin Magtaan
- School of Health & Human Performance, Dublin City University, Glasnevin, Dublin 9, Ireland
| | | | - Ronan Murphy
- School of Health & Human Performance, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
8
|
Zhan J, Ma X, Liu D, Liang Y, Li P, Cui J, Zhou Z, Wang P. Gut microbiome alterations induced by tributyltin exposure are associated with increased body weight, impaired glucose and insulin homeostasis and endocrine disruption in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115276. [PMID: 32835916 DOI: 10.1016/j.envpol.2020.115276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/15/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Tributyltin (TBT), an organotin compound once widely used in agriculture and industry, has been reported to induce obesity and endocrine disruption. Gut microbiota has a strong connection with the host's physiology. Nevertheless, the influences of TBT exposure on gut microbiota and whether TBT-influenced gut microbiota is related to TBT-induced toxicity remain unclear. To fill these gaps, ICR (CD-1) mice were respectively exposed to TBT at NOEL (L-TBT) and tenfold NOEL (H-TBT) daily by gavage for 8 weeks in the current study. The results showed that TBT exposure significantly increased body weight as well as epididymal fat, and led to adipocyte hypertrophy, dyslipidemia and impaired glucose and insulin homeostasis in mice. Additionally, TBT exposure significantly decreased the levels of T4, T3 and testosterone in serum. Also of note, TBT exposure changed gut microbiota composition mainly by decreasing Bacteroidetes and increasing Firmicutes proportions. To confirm the role of gut microbiota in TBT-induced overweight and hormonal disorders, fecal microbiota transplantation was performed and the mice receiving gut microbiota from H-TBT mice had similar phenotypes with their donor mice including significant body weight and epididymal fat gain, glucose and insulin dysbiosis and hormonal disorders. These results suggested that gut microbiome altered by TBT exposure was involved in the TBT-induced increased body weight, impaired glucose and insulin homeostasis and endocrine disruption in mice, providing significant evidence and a novel perspective for better understanding the mechanism by which TBT induces toxicity.
Collapse
Affiliation(s)
- Jing Zhan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Xiaoran Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Yiran Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Peize Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Jingna Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China.
| |
Collapse
|
9
|
He R, Zhao L, Xu X, Zheng W, Zhang J, Zhang J, Yan Q, Huang L. Aryl hydrocarbon receptor is required for immune response in Epinephelus coioides and Danio rerio infected by Pseudomonas plecoglossicida. FISH & SHELLFISH IMMUNOLOGY 2020; 97:564-570. [PMID: 31891808 DOI: 10.1016/j.fsi.2019.12.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Aryl hydrocarbon receptor (AhR), a ligand-dependent transcriptional factor that responds to environmental chemicals, has been recently found to be closely associated with immune response in mammals. Pseudomonas plecoglossicida (P. plecoglossicida) is a temperature-dependent bacterial pathogen of visceral white spot disease in fish. Using dual RNA-seq, we previously evaluated the expression levels of ahr1a, ahr1b, ahr2 and cyp1a in the spleen of Epinephelus coioides at different time points after infection with P. plecoglossicida. In the present study, the expression levels of ahr1a, ahr1b, ahr2 and cyp1a in different organs of E. coioides and Danio rerio showed similar trends after being infected by P. plecoglossicida. It also was noted that liver, intestine, spleen, and heart were the most obviously affected organs, and ahr2 particularly showed a dramatically increase in the spleen. Subsequently, macrophages of E. coioides were isolated, and then infected by P. plecoglossicida, followed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay, which revealed that the expression level of ahr1a in macrophages was significantly down-regulated, while expression levels of ahr1b, ahr2 and cyp1a were noticeably up-regulated. Eventually, it was noted that ahr1b and ahr2 were knocked-down in macrophages, and intracellular survival rate and immune escape rate of P. plecoglossicida were markedly improved. Taken together, ahr1a, ahr1b, ahr2 and cyp1a participate in the immune response to P. plecoglossicida in different organs of fish, while ahr1b and ahr2 may play pivotal roles in the immune response of spleen and macrophages.
Collapse
Affiliation(s)
- Rongchao He
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China
| | - Weiqiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, PR China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Jiaolin Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China.
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China.
| |
Collapse
|