1
|
Lourenço R, Cesar R, Koifman G, Teixeira M, Santos D, Polivanov H, Alexandre K, Carneiro M, da Silva LID, Pereira MMSC, Castilhos Z. Land disposal of dredged sediments from an urbanized tropical lagoon: toxicity to soil fauna. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:590-607. [PMID: 38733499 DOI: 10.1007/s10646-024-02757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Urban tropical lagoons are commonly impacted by silting, domestic sewage and industrial wastes and the dredging of their sediments is often required to minimize environmental impacts. However, the ecological implications of land disposal of dredged sediments are still poorly investigated in the tropics. Aiming to contribute to filling this gap, an ecotoxicological evaluation was conducted with dredged sediments from Tijuca Lagoon (Rio de Janeiro, Brazil) using different lines of evidence, including soil and sediment characterization, metal determination, and acute and avoidance bioassays with Eisenia andrei. Two different dredged sediment samples, a sandy sediment and another muddy one, were obtained in two distinct and spatially representative sectors of the Tijuca Lagoon. The sediments were mixed with an artificial soil, Ferralsol and Spodosol to obtain doses between 0 (pure soil) and 12%. The sediment dose that caused mortality (LC50) or avoidance responses (EC50) to 50% of the organisms was estimated through PriProbit analysis. Metal concentrations and toxicity levels were higher in the muddy sediment (artificial soil LC50 = 3.84%; Ferralsol LC50 = 4.58%; Spodosol LC50 = 2.85%) compared to the sandy one (artificial soil LC50 = 10.94%; Ferralsol LC50 = 14.36%; Spodosol LC50 = 10.38%), since fine grains tend to adsorb more organic matter and contaminants. Mortality and avoidance responses were the highest in Spodosol due to its extremely sandy texture (98% of sand). Metal concentrations in surviving earthworms were generally low, except sodium whose bioaccumulation was high. Finally, the toxicity is probably linked to marine salts, and the earthworms seem to accumulate water in excess to maintain osmotic equilibrium, increasing their biomass.
Collapse
Affiliation(s)
- Rodrigo Lourenço
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Ricardo Cesar
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil.
- Department of Geology, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| | - Gustavo Koifman
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Geochemistry, Fluminense Federal University, UFF, Outeiro São João Baptista, s/n. Centro, Niterói, RJ, Brazil
| | - Matheus Teixeira
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Geochemistry, Fluminense Federal University, UFF, Outeiro São João Baptista, s/n. Centro, Niterói, RJ, Brazil
| | - Domynique Santos
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Helena Polivanov
- Department of Geology, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Katia Alexandre
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Manuel Carneiro
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Lilian Irene Dias da Silva
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | | | - Zuleica Castilhos
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Charan K, Bhattacharyya P, Bhattacharya SS. Vermitechnology transforms hazardous red mud into benign organic input for agriculture: Insights on earthworm-microbe interaction, metal removal, and soil-crop improvement. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120320. [PMID: 38377754 DOI: 10.1016/j.jenvman.2024.120320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/20/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Bioremediation of hazardous bauxite residues, red mud (RM), through vermicomposting has yet to be attempted. Therefore, the valorization potential of Eisenia fetida in various RM and cow dung (CD) mixtures was compared to aerobic composting. Earthworm fecundity and biomass growth were hindered in RM + CD (1:1) feedstock but enhanced in RM + CD (1:3). The pH of highly alkaline RM-feedstocks sharply reduced (>17%) due to vermicomposting. N, P, and K availability increased dramatically with Ca and Na reduction under vermicomposting. Additionally, ∼40-60% bioavailable metal fractions were transformed to obstinate (organic matter and residual bound) forms upon vermicomposting. Consequently, the total metal concentrations were significantly reduced with considerably high earthworm bioaccumulation. Microbial growth and enzyme activity were more significant under vermicomposting than composting. Correlation statistics revealed that microbial augmentation significantly facilitated a metal reduction in RM-vermibeds. Eventually, RM-vermicompost stimulated sesame growth and improved soil health with the least heavy metal contamination to soil and crop.
Collapse
Affiliation(s)
- Kasturi Charan
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, 815301, Jharkhand, India
| | - Pradip Bhattacharyya
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, 815301, Jharkhand, India.
| | - Satya Sundar Bhattacharya
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur, 784 028, India.
| |
Collapse
|
3
|
Shi B, Qu Y, Li H, Wan M, Zhang J. Pseudomonas simiae augments the tolerance to alkaline bauxite residue in Atriplex canescens by modulating photosynthesis, antioxidant defense enzymes, and compatible osmolytes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24370-24380. [PMID: 35141832 DOI: 10.1007/s11356-022-19031-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
In situ revegetation is effective in improving water-stable aggregation, preserving structural stability, and decreasing groundwater pollution to reduce the environmental risks posed by alkaline bauxite residue (ABR). Pseudomonas simiae, a plant growth-promoting rhizobacteria (PGPR), was used to promote Atriplex canescens growth challenged by ABR. The mechanism of P. simiae-induced plant growth promotion and tolerance against ABR stresses has been investigated. P. simiae was shown to alleviate ABR-induced stress in A. canescens by regulating photosynthesis and transpiration, inducing antioxidant defense, causing osmolyte accumulation, and altering plant morphology. Shoot dry weight, root dry weight, and root length of A. canescens were increased by 5.9%, 6.7%, and 11.5%, respectively, after inoculation with P. simiae for 60 days. Thus, it seems that P. simiae systemically regulated physiological processes in A. canescens favoring its growth under ABR treatments.
Collapse
Affiliation(s)
- Ben Shi
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China.
| | - Yang Qu
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China
| | - Hui Li
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China
| | - Minghui Wan
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China
| | - Jiayu Zhang
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
4
|
Di Carlo E, Boullemant A, Courtney R. Ecotoxicological risk assessment of revegetated bauxite residue: Implications for future rehabilitation programmes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134344. [PMID: 31783438 DOI: 10.1016/j.scitotenv.2019.134344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Around 3 billion tonnes of bauxite residue (BR), the by-product of alumina extraction, have been produced and stockpiled worldwide, representing a potential risk for the environment due to the high alkalinity and the presence of relatively high concentrations of trace elements. Phytoremediation (or simply revegetation) is regarded as the most promising in situ remediation option to mitigate the environmental risk that might arise from the land-disposal of BR. Rehabilitation strategies (including the incorporation of amendments such as gypsum and organic matter) have been employed to address the main limitations to plant establishment and growth on BR, typically the high alkalinity, salinity and sodicity. However, the potential for trace element uptake and phytotoxicity have been largely unreported in revegetated BRs. In order to assess the ecotoxicological risk, samples of previously revegetated BR were collected from the field, characterized in the laboratory, and used to conduct ex-situ plant bioassays (Phytotoxkit™ and the RHIZOtest). Without rehabilitation, fresh BR severely inhibits seed germinationand root/shoot development in test species Lepidium sativum, Sinapis alba and Sorghum saccharatum. Plant uptake for Al, As, Cr, V was assessed with RHIZOtest bioassay trials with Lolium perenne and demonstrated that plants exposed to fresh BR take up and translocated trace elements to their shoots at concentrations (As = 4.13 mg/kg dm; Cr = 3.29 mg/kg dm; V = 85.66 mg/kg dm) exceeding phytotoxic levels (vanadium) or maximum levels specified for animal feed (arsenic), showing visible stress symptoms in the seedlings. Conversely, revegetated BR show improved chemical properties, allow seed germination, and permits seedling growth with no evidence of trace element phytotoxicity. However, Na can be taken up at concentrations that could elicit phytotoxicity and impair the success of revegetation. For future rehabilitation programmes, direct revegetation on BR after the incorporation of amendments such as gypsum and organic matter is recommended.
Collapse
Affiliation(s)
- Elisa Di Carlo
- University of Limerick, Department of Biological Sciences & The Bernal Institute, Co., Limerick, Ireland
| | | | - Ronan Courtney
- University of Limerick, Department of Biological Sciences & The Bernal Institute, Co., Limerick, Ireland.
| |
Collapse
|