1
|
Cant A, Bado-Nilles A, Porcher JM, Bolzan D, Prygiel J, Catteau A, Turiès C, Geffard A, Bonnard M. Application of the Fpg-modified comet assay on three-spined stickleback in freshwater biomonitoring: toward a multi-biomarker approach of genotoxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3357-3373. [PMID: 37989949 DOI: 10.1007/s11356-023-30756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
Aquatic species are exposed to a wide spectrum of substances, which can compromise their genomic integrity by inducing DNA damage or oxidative stress. Genotoxicity biomarkers as DNA strand breaks and chromosomal damages developed on sentinel species have already proved to be relevant in aquatic biomonitoring. However, these biomarkers do not reflect DNA oxidative lesions, i.e., the 8-oxodG, recognized as pre-mutagenic lesion if not or mis-repaired in human biomonitoring. The relevance to include the measure of these lesions by using the Fpg-modified comet assay on erythrocytes of the three-spined stickleback was investigated. An optimization step of the Fpg-modified comet assay considering enzyme buffer impact, Fpg concentration, and incubation time has been performed. Then, this measure was integrated in a battery of genotoxicity and cytotoxicity biomarkers (considering DNA strand breaks, DNA content variation, and cell apoptosis/necrosis and density) and applied in a freshwater monitoring program on six stations of the Artois Picardie watershed (3-week caging of control fish). These biomarkers allowed to discriminate the stations regarding the genotoxic potential of water bodies and specifically by the measure of oxidative DNA lesions, which seem to be a promising tool in environmental genotoxicity risk assessment.
Collapse
Affiliation(s)
- Amélie Cant
- Institut National de L'Environnement Industriel Et Des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de La Housse, B.P. 1039, 51687, Reims, France
| | - Anne Bado-Nilles
- Institut National de L'Environnement Industriel Et Des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
| | - Jean-Marc Porcher
- Institut National de L'Environnement Industriel Et Des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
| | - Dorothée Bolzan
- Agence de L'Eau Artois-Picardie, Centre Tertiaire de L'Arsenal, BP 80818, 59508, Douai Cedex, France
| | - Jean Prygiel
- Agence de L'Eau Artois-Picardie, Centre Tertiaire de L'Arsenal, BP 80818, 59508, Douai Cedex, France
| | - Audrey Catteau
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de La Housse, B.P. 1039, 51687, Reims, France
| | - Cyril Turiès
- Institut National de L'Environnement Industriel Et Des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de La Housse, B.P. 1039, 51687, Reims, France
| | - Marc Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de La Housse, B.P. 1039, 51687, Reims, France.
| |
Collapse
|
2
|
Giovanetti L, Caliani I, Damiani G, Dell'Omo G, Costantini D, Casini S. A blood-based multi-biomarker approach reveals different physiological responses of common kestrels to contrasting environments. ENVIRONMENTAL RESEARCH 2024; 251:118674. [PMID: 38492836 DOI: 10.1016/j.envres.2024.118674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
The increase of urbanization and agricultural activities is causing a dramatic reduction of natural environments. As a consequence, animals need to physiologically adjust to these novel environments, in order to exploit them for foraging and breeding. The aim of this work was to compare the physiological status among nestling common kestrels (Falco tinnunculus) that were raised in nest-boxes located in more natural, rural, or urban areas in a landscape with a mosaic of land uses around Rome in Central Italy. A blood-based multi-biomarker approach was applied to evaluate physiological responses at multiple levels, including antioxidant concentrations, immunological functions, genotoxicity, and neurotoxicity. We found lower concentrations of glutathione and GSH:GSSG ratio values and higher proportions of monocytes in urban birds compared to the other areas. We also found higher DNA damage in rural compared to urban and natural krestels and inhibition of butyrylcholinesterase activity in urban and natural birds compared to rural area. Finally, we found similar values among study areas for respiratory burst, complement system, bactericidal capacity, and plasma non-enzymatic antioxidant capacity. These results suggest that (i) city life does not necessarily cause physiological alterations in kestrels compared to life in other habitats, and (ii) environmental pressures are likely to differ in typology and intensity across habitats requiring specific responses that a multi-biomarker approach can help to detect. Further studies are needed to assess which factors are responsible for the physiological differences among city, rural, and natural birds, and whether these differences are consistent across time and space.
Collapse
Affiliation(s)
- Laura Giovanetti
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy.
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy.
| | - Gianluca Damiani
- Ornis Italica, Piazza Crati 15, 00199, Rome, Italy; Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell'Università s.n.c., 01100, Viterbo, Italy.
| | | | - David Costantini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell'Università s.n.c., 01100, Viterbo, Italy; Unité Physiologie Moléculaire et Adaptation, UMR7221 CNRS-Muséum National d'Histoire Naturelle, 75005, Paris, France.
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy.
| |
Collapse
|
3
|
Slaby S, Geffard A, Fisson C, Bonnevalle-Normand M, Allonier-Fernandes AS, Amara R, Bado-Nilles A, Bonnard I, Bonnard M, Burlion-Giorgi M, Cant A, Catteau A, Chaumot A, Costil K, Coulaud R, Delahaut L, Diop M, Duflot A, Geffard O, Jestin E, Le Foll F, Le Guernic A, Lopes C, Palos-Ladeiro M, Peignot Q, Poret A, Serpentini A, Tremolet G, Turiès C, Xuereb B. Advancing environmental monitoring across the water continuum combining biomarker analysis in multiple sentinel species: A case study in the Seine-Normandie Basin (France). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120784. [PMID: 38603847 DOI: 10.1016/j.jenvman.2024.120784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Nowadays, biomarkers are recognized as valuable tools to complement chemical and ecological assessments in biomonitoring programs. They provide insights into the effects of contaminant exposures on individuals and establish connections between environmental pressure and biological response at higher levels. In the last decade, strong improvements in the design of experimental protocols and the result interpretation facilitated the use of biomarker across wide geographical areas, including aquatic continua. Notably, the statistical establishment of reference values and thresholds enabled the discrimination of contamination effects in environmental conditions, allowed interspecies comparisons, and eliminated the need of a reference site. The aim of this work was to study freshwater-estuarine-coastal water continua by applying biomarker measurements in multi-species caged organisms. During two campaigns, eight sentinel species, encompassing fish, mollusks, and crustaceans, were deployed to cover 25 sites from rivers to the sea. As much as possible, a common methodology was employed for biomarker measurements (DNA damage and phagocytosis efficiency) and data interpretation based on guidelines established using reference values and induction/inhibition thresholds (establishment of three effect levels). The methodology was successfully implemented and allowed us to assess the environmental quality. Employing multiple species per site enhances confidence in observed trends. The results highlight the feasibility of integrating biomarker-based environmental monitoring programs across a continuum scale. Biomarker results align with Water Framework Directive indicators in cases of poor site quality. Additionally, when discrepancies arise between chemical and ecological statuses, biomarker findings offer a comprehensive perspective to elucidate the disparities. Presented as a pilot project, this work contributes to gain insights into current biomonitoring needs, providing new questions and perspectives.
Collapse
Affiliation(s)
- Sylvain Slaby
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Cédric Fisson
- GIP Seine-Aval, Hangar C - Espace des Marégraphes, CS 41174, 76176, Rouen, Cedex 1, France.
| | - Matthieu Bonnevalle-Normand
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | | | - Rachid Amara
- Université Littoral Côte d'Opale, Université Lille, CNRS, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Wimereux, France.
| | - Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France.
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Marc Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Mayélé Burlion-Giorgi
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Amélie Cant
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France.
| | - Audrey Catteau
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Arnaud Chaumot
- INRAE, RiverLy, Ecotoxicology Laboratory, 5 Avenue de la Doua, CS20244, 69625, Villeurbanne Cedex, France.
| | - Katherine Costil
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) Université de Caen Normandie UNICAEN, Sorbonne Université, MNHN, UPMC Univ Paris 06, UA, CNRS 8067, IRD 207, Esplanade de la paix, Caen F-14032, France.
| | - Romain Coulaud
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Mamadou Diop
- Université Littoral Côte d'Opale, Université Lille, CNRS, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Wimereux, France.
| | - Aurélie Duflot
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Olivier Geffard
- INRAE, RiverLy, Ecotoxicology Laboratory, 5 Avenue de la Doua, CS20244, 69625, Villeurbanne Cedex, France.
| | - Emmanuel Jestin
- Agence de l'eau Seine-Normandie, 12 rue de l'Industrie CS 80148 92416 Courbevoie Cedex, France.
| | - Frank Le Foll
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Antoine Le Guernic
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Christelle Lopes
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, 69622, Villeurbanne, France.
| | - Mélissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Quentin Peignot
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Agnès Poret
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Antoine Serpentini
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) Université de Caen Normandie UNICAEN, Sorbonne Université, MNHN, UPMC Univ Paris 06, UA, CNRS 8067, IRD 207, Esplanade de la paix, Caen F-14032, France.
| | - Gauthier Tremolet
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Cyril Turiès
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France.
| | - Benoît Xuereb
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| |
Collapse
|
4
|
Lombardero LR, Pérez DJ, Medici SK, Mendieta JR, Iturburu FG, Menone ML. Usefulness of oxidative stress biomarkers in native species for the biomonitoring of pesticide pollution in a shallow lake of the Austral Pampas, Argentina. CHEMOSPHERE 2024; 353:141578. [PMID: 38430938 DOI: 10.1016/j.chemosphere.2024.141578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Pesticide contamination and its adverse effects on native freshwater species continue to be a worldwide major concern, mainly in developing countries. Passive biomonitoring of pesticide pollution in shallow lakes may be achieved by the simultaneous use of fish and wetland plants. Thus, the present study aimed to evaluate the occurrence of current-use pesticides in the surface water of a shallow lake of the Austral Pampas region (Buenos Aires Province, Argentina) surrounded by intensive agricultural activities and its relationship with a battery of biomarkers, including oxidative stress and genotoxicity, in two native species, the fish Oligosarcus jenynsii and the macrophyte Bidens laevis. A total of 26 pesticide residues were analyzed, and the main ones detected were glyphosate and its metabolite aminomethylphosphonic acid (AMPA), chlorpyrifos, and imidacloprid. In O. jenynsii, hydrogen peroxide (H2O2) content in the liver increased with chlorpyrifos occurrence, while malondialdehyde (MDA) levels in the brain and liver increased with the presence of both chlorpyrifos and glyphosate. In B. laevis, H2O2 and MDA levels in leaves and roots increased with AMPA occurrence. Also, leaf H2O2 contents and root MDA levels increased with chlorpyrifos concentration. In contrast, catalase and peroxidase activities in roots decreased with AMPA and chlorpyrifos occurrence. In both species, mainly H2O2 and MDA levels demonstrated their sensitivity to be used as biomarkers in the biomonitoring of current-use pesticide pollution in shallow lakes. Their use may provide information to plan strategies for environmental conservation by government institutions or decision-makers, and to assess the biota health status.
Collapse
Affiliation(s)
- Lucas Rodrigo Lombardero
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| | - Débora Jesabel Pérez
- Instituto de Innovación Para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Consejo Nacional de Investigaciones Científicas y Técnicas, INTA Balcarce, Ruta Nacional 226 Km 73,5, 7620, Balcarce, Buenos Aires, Argentina
| | - Sandra Karina Medici
- Fares Taie Instituto de Análisis Magallanes 3019, 7600, Mar del Plata, Buenos Aires Argentina
| | - Julieta Renée Mendieta
- Instituto de Investigaciones Biológicas (IIB, CONICET), Universidad Nacional de Mar del Plata, Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina; Comisión de Investigaciones Científica (CIC-BA), Calle 526 entre 10 y 11, 1900, La Plata, Buenos Aires, Argentina
| | - Fernando Gastón Iturburu
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| | - Mirta Luján Menone
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Andrade M, Pinto J, Soares AMVM, Solé M, Pereira E, Freitas R. Yttrium effects on the Mediterranean mussel under a scenario of salinity shifts and increased temperature. MARINE ENVIRONMENTAL RESEARCH 2024; 195:106365. [PMID: 38295610 DOI: 10.1016/j.marenvres.2024.106365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 02/02/2024]
Abstract
Climate change (CC) induces significant worldwide alterations in salinity and temperature, impacting ecosystems and their services. Marine organisms, susceptible to these changes, may experience modified vulnerability to anthropogenic contaminants, including rare-earth elements (REEs) such as yttrium (Y) derived from electronic waste. This study investigated the influence of temperature and salinity changes on the impacts of Y in Mytilus galloprovincialis mussels. Organisms were subjected to Y (0 and 10 μg/L) for 28 days under three salinity scenarios (20, 30 (control), and 40, at a control temperature of 17 °C) or to two temperatures (17 and 22 °C, at the control salinity of 30). Under these conditions, Y bioaccumulation and different biomarkers were evaluated. Results showed that salinity and temperature did not affect Y accumulation, indicating effective detoxification mechanisms and physiological adaptations in the exposed organisms. However, in Y-exposed mussels effects were intensified under decreased salinity, evidenced by increased metabolism, defense enzyme activities, and acetylcholinesterase (AChE) levels. Similar responses occurred under heat stress with enhanced metabolic capacity, AChE activity, and activation of defense mechanisms such as glutathione S-transferases. These defense mechanisms mitigated cellular damage caused by Y, but under the highest temperature and especially lower salinity, Y-exposed mussels exhibited increased oxidative stress and decreased efficiency of activated defense enzymes, resulting in cellular damage compared to their uncontaminated counterpart. The present study sheds light on the effects that interactions between temperature, salinity, and the presence of emerging contaminants like REEs may have on marine organisms. Such assessments are crucial for developing effective strategies to mitigate the impacts of CC and protect the long-term health and resilience of marine ecosystems.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Montserrat Solé
- Departamento de Recursos Marinos Renovables, Instituto de Ciencias del Mar ICM-CSIC, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Andrade M, Pinto J, Soares AMVM, Solé M, Pereira E, Freitas R. How predicted temperature and salinity changes will modulate the impacts induced by terbium in bivalves? CHEMOSPHERE 2024; 351:141168. [PMID: 38215828 DOI: 10.1016/j.chemosphere.2024.141168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
The threat of climate change, which includes shifts in salinity and temperature, has generated a global concern for marine organisms. These changes directly impact them and may alter their susceptibility to contaminants, such as terbium (Tb), found in electronic waste. This study assessed how decreased and increased salinity, as well as increased temperature, modulates Tb effects in Mytilus galloprovincialis mussels. After an exposure period of 28 days, Tb bioaccumulation and biochemical changes were evaluated. Results indicated no significant modulation of salinity and temperature on Tb accumulation, suggesting detoxification mechanisms and adaptations. Further analysis showed that Tb exposure alone caused antioxidant inhibition and neurotoxicity. When exposed to decreased salinity, these Tb-exposed organisms activated defense mechanisms, a response indicative of osmotic stress. Moreover, increased salinity also led to increased oxidative stress and metabolic activity in Tb-exposed organisms. Additionally, Tb-exposed organisms responded to elevated temperature with altered biochemical activities indicative of damage and stress response. Such responses suggested that Tb effects were masked by osmotic and heat stress. This study provides valuable insights into the interactions between temperature, salinity, and contaminants such as Tb, impacting marine organisms. Understanding these relationships is crucial for mitigating climate change and electronic waste effects on marine ecosystems.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - João Pinto
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Departamento de Recursos Marinos Renovables, Instituto de Ciencias del Mar ICM-CSIC, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
7
|
Pollicelli MDLP, Márquez F, Pollicelli MD, Idaszkin YL. Screening of tolerance of Atriplex vulgatissima under zinc or lead experimental conditions. An integrative perspective by using the integrated biological response index (IBRv2). CHEMOSPHERE 2023; 341:140110. [PMID: 37690562 DOI: 10.1016/j.chemosphere.2023.140110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
The search for plants with a high capacity to tolerate and accumulate metals is an important issue in phytoremediation. In this sense, this study was conducted in the halophyte Atriplex vulgatissima to evaluate the effects of different concentrations of lead (Pb, 50 and 100 μM) or zinc (Zn, 100 and 200 μM) on morphological, physiological, and biochemical parameters as well as the accumulation patterns of this species. The results indicated that while essential metal Zn showed high translocation from roots to shoots (TF > 1), non-essential Pb was mainly accumulated in the roots (BCF>1). Regarding shape, both metals induced slenderness of the blade, but only Zn treatment reduced leaf size. No difference in biomass production and photosynthetic parameters was found between Pb and Zn treatments. Pb treatments did not show significant differences between treatments regarding water content (WC), pigment concentration, and the activity of superoxide dismutase (SOD) and guaiacol peroxidase (GPx), but did result in a decrease in catalase activity at 100 μM Pb. On the other hand, 200 μM Zn leads to a clear reduction in WC and pigment concentrations, along with an increase in SOD and GPx activities. In addition, ascorbate peroxidase (APx) activity showed a hormesis effect at 50 μM Pb and 100 μM Zn. Malondialdehyde increased with both Pb and Zn treatments. The integrated biological index (IBRv2) indicated that 200 μM Zn was the most affected treatment (IBRv2 = 19.02) and that under the same concentrations of metals (100 μM Pb or Zn), Pb treatments presented major stress (IBRv2 = 11.55). A. vulgatissima is a metallophyte with the potential for Pb phytostabilization and Zn phytoextraction, as well as a bioindicator of these metals. Its high biomass and deep roots, combined with its halophytic traits, make it suitable for bioremediation and monitoring programs.
Collapse
Affiliation(s)
- María de la Paz Pollicelli
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET), Boulevard Brown 2915, U9120ACD Puerto Madryn, Chubut, Argentina; Universidad Nacional de la Patagonia San Juan Bosco, Boulevard Brown 3051, U9120ACD Puerto Madryn, Chubut, Argentina
| | - Federico Márquez
- Universidad Nacional de la Patagonia San Juan Bosco, Boulevard Brown 3051, U9120ACD Puerto Madryn, Chubut, Argentina; Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Boulevard Brown 2915, U9120ACD Puerto Madryn, Chubut, Argentina
| | - María Débora Pollicelli
- Universidad Nacional de la Patagonia San Juan Bosco, Boulevard Brown 3051, U9120ACD Puerto Madryn, Chubut, Argentina; Centro Para el Estudio de Sistemas Marinos (CESIMAR-CONICET), Boulevard Brown 2915, U9120ACD Puerto Madryn, Chubut, Argentina
| | - Yanina L Idaszkin
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET), Boulevard Brown 2915, U9120ACD Puerto Madryn, Chubut, Argentina; Universidad Nacional de la Patagonia San Juan Bosco, Boulevard Brown 3051, U9120ACD Puerto Madryn, Chubut, Argentina.
| |
Collapse
|
8
|
Grimmelpont M, Lefrançois C, Panisset Y, Jourdon G, Receveur J, Le Floch S, Boudenne JL, Labille J, Milinkovitch T. Avoidance behaviour and toxicological impact of sunscreens in the teleost Chelon auratus. MARINE POLLUTION BULLETIN 2023; 194:115245. [PMID: 37517278 DOI: 10.1016/j.marpolbul.2023.115245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
There is increasing evidence that sunscreen, more specifically the organic ultra-violet filters (O-UVFs), are toxic for aquatic organisms. In the present study, we simulated an environmental sunscreen exposure on the teleost fish, Chelon auratus. The first objective was to assess their spatial avoidance of environmental concentrations of sunscreen products (i.e. a few μg.L-1 of O-UVFs). Our results showed that the fish did not avoid the contaminated area. Therefore, the second objective was to evaluate the toxicological impacts of such pollutants after 35 days exposure to concentrations of a few μg.L-1 of O-UVFs. At the individual level, O-UVFs increased the hepatosomatic index which could suggest pathological alterations of the liver or the initiation of the detoxification processes. At the cellular level, a significant increase of malondialdehyde was measured in the muscle of fish exposed to O-UVFs which suggests a failure of antioxidant defences and/or an excess of reactive oxygen species.
Collapse
Affiliation(s)
- Margot Grimmelpont
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| | - Christel Lefrançois
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| | - Yannis Panisset
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Guilhem Jourdon
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Justine Receveur
- Centre de Documentation de Recherche et d'Expérimentations sur les Pollutions Accidentelles des Eaux (CEDRE), 715 rue Alain Colas, CS41836-F-29218 Brest Cedex 2, France.
| | - Stéphane Le Floch
- Centre de Documentation de Recherche et d'Expérimentations sur les Pollutions Accidentelles des Eaux (CEDRE), 715 rue Alain Colas, CS41836-F-29218 Brest Cedex 2, France.
| | | | - Jérôme Labille
- Aix Marseille Univ, CNRS, IRD, INRAe, Coll France, CEREGE, Aix-en-Provence, France.
| | - Thomas Milinkovitch
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| |
Collapse
|
9
|
Andrade M, Soares AMVM, Solé M, Pereira E, Freitas R. Assessing the impact of terbium on Mytilus galloprovincialis: Metabolic and oxidative stress responses. CHEMOSPHERE 2023:139299. [PMID: 37353169 DOI: 10.1016/j.chemosphere.2023.139299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The increasing demand for electric and electronic equipment has led to a rise in potentially hazardous electronic waste, including rare-earth elements (REEs), such as terbium (Tb), which have been already detected in aquatic systems. This study investigated the biochemical effects of anthropogenic Tb on mussels over a 28-day period. The mussels were exposed to different concentrations of Tb (0, 5, 10, 20, 40 μg/L), and biomarkers related to metabolism, oxidative stress, cellular damage, and neurotoxicity were evaluated. Bioaccumulation of Tb in the mussels' tissue increased with exposure concentrations, but the bioconcentration factor remained similar between treatments. Exposure to Tb enhanced glycogen consumption and decreased metabolic capacity which could be seen as a physiological adaptation to limit Tb accumulation. Antioxidant defenses and glutathione S-transferases showed a more complex dose-response, with enzymatic responses increasing until 10 μg/L but then returning to control levels at 20 μg/L. At 40 μg/L, enzymatic responses were also enhanced but to a lower extent than at 10 μg/L. The presence of Tb had clearly an inhibitory effect on biotransformation enzymes such as carboxylesterases in a dose-dependent manner. Likely, thanks to biochemical and physiological adaptations, no cellular damage or neurotoxicity was observed in any treatments, confirming the mussels' ability to tolerate Tb exposure. Nevertheless, prolonged exposure to these concentrations could lead to harmful consequences when facing other environmental stressors, such as misallocating energy resources for growth, reproduction, and defense mechanisms.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Departamento de Recursos Marinos Renovables, Instituto de Ciencias Del Mar ICM-CSIC, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
10
|
Catteau A, Le Guernic A, Palos Ladeiro M, Dedourge-Geffard O, Bonnard M, Bonnard I, Delahaut L, Bado-Nilles A, Porcher JM, Lopes C, Geffard O, Geffard A. Integrative biomarker response - Threshold (IBR-T): Refinement of IBRv2 to consider the reference and threshold values of biomarkers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118049. [PMID: 37182402 DOI: 10.1016/j.jenvman.2023.118049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
The Integrated Biomarker Response (IBR) is one of the most used index in biomonitoring, especially the IBRv2 integrating a reference condition. However, some limitations remain for its routine and large-scale use. The IBRv2 is proportional to the total number of biomarkers, is dependent on the nature of biomarkers and considers all biomarkers modulations, even small and biologically non-significant. In addition, IBRv2 relies on reference values but the references are often different between each study, making it difficult to compare results between studies and/or campaigns. To overcome these limitations, the present work proposed a new index called IBR-T ("Integrated Biomarker Response - Threshold") which considers the threshold values of biomarkers by limiting the calculation of the IBR value to biomarkers with significant modulations. The IBRv2 and the IBR-T were calculated and compared on four datasets from active biomonitoring campaigns using Dreissena polymorpha, a bivalve widely used in freshwater biomonitoring studies. The comparison between indices has demonstrated that the IBR-T presents a better correlation (0.907 < r2 < 0.998) with the percentage of biomarkers significantly modulated than the IBRv2 (0.002 < r2 < 0.759). The IBRv2 could not be equal to 0 (0.915 < intercept <1.694) because the value was dependent on the total number of biomarkers, whereas the IBR-T reached 0 when no biomarker was significantly modulated, which appears more biologically relevant. The final ranking of sites was different between the two index and the IBR-T ranking tends to be more ecologically relevant that the IBRv2 ranking. This IBR-T have shown an undeniable interest for biomonitoring and could be used by environmental managers to simplify the interpretation of large datasets, directly interpret the contamination status of the site, use it to decision-making, and finally to easily communicate the results of biomonitoring studies to the general public.
Collapse
Affiliation(s)
- Audrey Catteau
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de La Housse, BP 1039, 51687, Reims, France.
| | - Antoine Le Guernic
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de La Housse, BP 1039, 51687, Reims, France.
| | - Mélissa Palos Ladeiro
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de La Housse, BP 1039, 51687, Reims, France
| | - Odile Dedourge-Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de La Housse, BP 1039, 51687, Reims, France
| | - Marc Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de La Housse, BP 1039, 51687, Reims, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de La Housse, BP 1039, 51687, Reims, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de La Housse, BP 1039, 51687, Reims, France
| | - Anne Bado-Nilles
- Institut National de L'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), BP 2, 60550, Verneuil-en-Halatte, France
| | - Jean-Marc Porcher
- Institut National de L'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), BP 2, 60550, Verneuil-en-Halatte, France
| | - Christelle Lopes
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622, Villeurbanne, France
| | - Olivier Geffard
- INRAE, UR RiverLy, Laboratoire D'écotoxicologie, F-69625, Villeurbanne, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de La Housse, BP 1039, 51687, Reims, France
| |
Collapse
|
11
|
Sarkis N, Geffard O, Souchon Y, Chandesris A, Ferréol M, Valette L, François A, Piffady J, Chaumot A, Villeneuve B. Identifying the impact of toxicity on stream macroinvertebrate communities in a multi-stressor context based on national ecological and ecotoxicological monitoring databases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160179. [PMID: 36395849 DOI: 10.1016/j.scitotenv.2022.160179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
In situ bioassays are used to measure the harmful effects induced by mixtures of toxic chemicals in watercourses. In France, national-scale biomonitoring data are available including invertebrate surveys and in-field chemical toxicity measures with caged gammarids to assess environmental toxicity of mixtures of chemicals. The main objective of our study is to present a proof-of-concept approach identifying possible links between in-field chemical toxicity, stressors and the ecological status. We used two active biomonitoring databases comprising lethal toxicity (222 in situ measures of gammarid mortality) and sublethal toxicity (101 in situ measures of feeding inhibition). We measured the ecological status of each active biomonitoring site using the I2M2 metric (macroinvertebrate-based multimetric index), accounted for known stressors of nutrients and organic matter, hydromorphology and chemical toxicity. We observed a negative relationship between stressors (hydromorphology, nutrients and organic matter, and chemical toxicity) and the good ecological status. This relationship was aggravated in watercourses where toxicity indicators were degraded. We validated this hypothesis for instance with nutrients and organic matter like nitrates or hydromorphological conditions like percentage of vegetation on banks. Future international assesments concerning the role of in-field toxic pollution on the ecological status in a multi-stressor context are now possible via the current methodology.
Collapse
Affiliation(s)
- Noëlle Sarkis
- INRAE, UR RiverLy, EcoFlowS, F-69625 Villeurbanne, France
| | - Olivier Geffard
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Yves Souchon
- INRAE, UR RiverLy, EcoFlowS, F-69625 Villeurbanne, France
| | | | | | | | - Adeline François
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Jérémy Piffady
- INRAE, UR RiverLy, EcoFlowS, F-69625 Villeurbanne, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | | |
Collapse
|
12
|
Kumari K, Swamy S. Field validated biomarker (ValidBIO) based assessment of impacts of various pollutants in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5347-5370. [PMID: 36414892 DOI: 10.1007/s11356-022-24006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The sensitivity of fish towards pollutants serves as an excellent tool for the analysis of water pollution. The effluents generated from various anthropogenic activities may contain heavy metals, pesticides, microplastics, and persistent organic pollutants (POPs) and ultimately find its way to aquatic environment. The enzymatic activities of fish collected from water bodies near major cities, oil spillage sites, agricultural land, and intensively industrialized areas have been reported to be significantly impacted in various field studies. These significant alterations in enzymatic activities act as a biomarker for monitoring purposes. The use of biomarkers not only helps in the identification of known and unknown pollutants and their detrimental health impacts, but also identifies the interaction between pollutants and organisms. The conventional method majorly used is physicochemical analysis, which is recognized as the backbone of the system for monitoring water quality. In physicochemical monitoring, major problems exist in assessing or predicting biological effects from chemical or physical data. Xenobiotic-induced enzymatic changes in fish may serve as an intuitive and efficient biomarker for determining contaminants in water bodies. Therefore, field validated biomarker (ValidBIO) approach needs to be integrated in water quality monitoring program for environmental health risk assessment of aquatic life impacted due to various point and non-point sources of water pollution.
Collapse
Affiliation(s)
- Kanchan Kumari
- CSIR-National Environmental Engineering Research Institute, Kolkata Zonal Centre, Kolkata, West Bengal, 700107, India.
| | - Senerita Swamy
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| |
Collapse
|
13
|
Leprêtre M, Geffard O, Espeyte A, Faugere J, Ayciriex S, Salvador A, Delorme N, Chaumot A, Degli-Esposti D. Multiple reaction monitoring mass spectrometry for the discovery of environmentally modulated proteins in an aquatic invertebrate sentinel species, Gammarus fossarum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120393. [PMID: 36223854 DOI: 10.1016/j.envpol.2022.120393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Multiple reaction monitoring (MRM) mass spectrometry is emerging as a relevant tool for measuring customized molecular markers in freshwater sentinel species. While this technique is typically used for the validation of protein molecular markers preselected from shotgun experiments, recent gains of MRM multiplexing capacity offer new possibilities to conduct large-scale screening of animal proteomes. By combining the strength of active biomonitoring strategies and MRM technologies, this study aims to propose a new strategy for the discovery of candidate proteins that respond to environmental variability. For this purpose, 249 peptides derived from 147 proteins were monitored by MRM in 273 male gammarids caged in 56 environmental sites, representative of the diversity of French water bodies. A methodology is here proposed to identify a set of customized housekeeping peptides (HKPs) used to correct analytical batch effects and allow proper comparison of peptide levels in gammarids. A comparative analysis performed on HKPs-normalized data resulted in the identification of peptides highly modulated in the environment and derived from proteins likely involved in the environmental stress response. Overall, this study proposes a breakthrough approach to screen and identify potential proteins responding to relevant environmental conditions in sentinel species.
Collapse
Affiliation(s)
- Maxime Leprêtre
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | - Olivier Geffard
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | - Anabelle Espeyte
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | - Julien Faugere
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Sophie Ayciriex
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Arnaud Salvador
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Nicolas Delorme
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | | |
Collapse
|
14
|
Freire MM, Gomez C, Moreira JC, Linde Arias AR. Multibiomarker approach in fish to assess a heavily polluted Brazilian estuary, Guanabara Bay. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:187. [PMID: 36504393 DOI: 10.1007/s10661-022-10752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Brazil's Guanabara Bay (GB), located in Rio De Janeiro, is a deeply contaminated, eutrophic waterbody that challenges the understanding of the effects of pollutants on the biota. This paper presents a strategy to evaluate the impact of contamination utilizing a multibiomarker approach in two fish species: corvine (Micropogonias furnieri) and burrfish (Chilomycterus spinosus). The strategy is comprised of a general biomarker of fish' physical condition, the condition factor (CF), and specific biomarkers of pollutant exposure such as acetylcholinesterase (AChE), metallothionein (MT) activity and biliary polycyclic aromatic hydrocarbons (PAH) metabolites. Our results indicate that fish from GB are greatly affected by environmental pollution. CF values were lower in fishes from GB than in the reference site indicating that these fishes were under higher environmental stress. Lower AChE activity level in both species showed vulnerability to the presence of pesticide residues. Higher levels of MT in both species in GB reflect the consequences of heavy metal exposure in the bay, in spite of their bioavailability being restricted specially by the high organic matter content of GB. The levels of PAHs were higher in GB for both fish species, indicating exposure to these substances. However, the fish species showed different behavior regarding the origin of the PAHs. The multibiomarker approach used in this study evidently depicted effects on the health of fish in a waterbody with a complex polluted situation and further categorized the effects of anthropogenic activities in this aquatic system.
Collapse
Affiliation(s)
- Marina Moreira Freire
- CESTEH - Centro de Estudos da Saúde do Trabalhador e Ecologia Humana, Escola Nacional de Saúde Pública - Fundação Oswaldo Cruz, Av. Leopoldo Bulhões, 1480, Rio de Janeiro, RJ, 21041-210, Brazil
- Centro Universitário Serra dos Órgãos - UNIFESO, Endereço Av. Alberto Tôrres 111 - Alto, Teresópolis, RJ, 25964-004, Brazil
| | - Cristina Gomez
- Escola de Matematica Aplicada, Fundação Getulio Vargas, Praia de Botafogo, 190, Rio de Janeiro, RJ, 22250-90, Brazil
- Instituto de Estudos em Saude Coletiva, Universidade Federal de Rio de Janeiro, Cidade Universitaria da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-592, Brazil
| | - Josino Costa Moreira
- Instituto de Estudos em Saude Coletiva, Universidade Federal de Rio de Janeiro, Cidade Universitaria da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-592, Brazil
| | - Ana Rosa Linde Arias
- Escola de Matematica Aplicada, Fundação Getulio Vargas, Praia de Botafogo, 190, Rio de Janeiro, RJ, 22250-90, Brazil.
- Instituto de Estudos em Saude Coletiva, Universidade Federal de Rio de Janeiro, Cidade Universitaria da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-592, Brazil.
| |
Collapse
|
15
|
Freitas LC, Silva JLC, Pinheiro-Sousa DB, Santos DMS, Benjamin LA, Oliveira SRS, Moreno LCGAI, Carvalho-Neta RNF. Histological biomarkers and biometric data on trahira Hoplias malabaricus (Pisces, Characiformes, Erythrinidae): a bioindicator species in the Mearim river, Brazilian Amazon. BRAZ J BIOL 2022; 82:e263047. [PMID: 35920465 DOI: 10.1590/1519-6984.263047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to evaluate the levels of environmental contamination in a protected area in the Brazilian Amazon. For this, two areas were chosen along the Mearim River: the reference area (A1) and the potentially contaminated area (A2), where water samples were collected, for physicochemical and microbiological analyses, as well as specimens of Hoplias malabaricus, for the evaluation of biometric data and incidence of branchial lesions. The physicochemical analyzes of the water from both areas showed contamination (low levels of dissolved oxygen, tubidity and high iron concentrations, especially in A2). The microbiological analyzes showed that all water samples showed total coliform values higher than those acceptable by CONAMA and WHO (with higher values in A2), in addition to E. coli values higher than those allowed by legislation in A2. Regarding biometric data, male and female fishes were significantly longer and heavier in A1 during the dry and rain seasons and the gonadosomatic index also showed higher values in A1 than in A2 in both seasons. H. malabaricus showed gill lesions of minimal to moderate pathological importance in A1 and A2, indicating that specimens from both areas of the Mearim River showed biological responses to contamination. The observed changes in the water quality, bimetic parameters and the histological analyzes of the specimens of H. malabaricus directly reflect on the quality and health of the fishes in the Mearim River, and point to the urgent need for prevention and remediation of contamination in these ecosystems.
Collapse
Affiliation(s)
- L C Freitas
- Universidade Estadual do Maranhão - UEMA, Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, São Luís, MA, Brasil
| | - J L C Silva
- Universidade Estadual do Maranhão - UEMA, Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, São Luís, MA, Brasil
| | - D B Pinheiro-Sousa
- Universidade Federal do Maranhão - UFMA, Coordenação do Curso de Engenharia Ambiental. Centro de Ciências de Balsas, Balsas, MA, Brasil
| | - D M S Santos
- Universidade Estadual do Maranhão - UEMA, Departamento de Biologia, São Luís, MA, Brasil
| | - L A Benjamin
- Universidade Federal de Viçosa - UFV, Departamento de Medicina Veterinária, Viçosa, MG, Brasil
| | - S R S Oliveira
- Universidade Estadual do Maranhão - UEMA, Programa de Pós-graduação em Biodiversidade e Biotecnologia, São Luís, MA, Brasil
| | - L C G A I Moreno
- Universidade Estadual do Maranhão - UEMA, Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, São Luís, MA, Brasil
| | - R N F Carvalho-Neta
- Universidade Estadual do Maranhão - UEMA, Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, São Luís, MA, Brasil
| |
Collapse
|
16
|
Khosrovyan A, Aghajanyan E, Avalyan R, Atoyants A, Sahakyan L, Gabrielyan B, Aroutiounian R. Assessment of the mutagenic potential of the water of an urban river by means of two Tradescantia-based test systems. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503449. [PMID: 35483780 DOI: 10.1016/j.mrgentox.2022.503449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
River pollution can be caused by anthropogenic or natural factors. When testing water quality for the presence of toxic substances, higher plants as bioindicators for the genotoxic effects of complex mixtures are effective and appropriate. Hence, in this work the Tradescantia (clone 02) stamen hair mutations (Trad-SHM) and Tradescantia micronuclei (Trad-MCN) were used to determine mutagenic and clastogenic potential of an urban river. A significant increase in the level of all studied endpoints as well as morphological changes, including pink cells (PC) and colorless cells (CC) in stamen hairs, stunted hairs (SH), tetrads with micronuclei (MN) and MN in tetrads of pollen microspores in the Tradescantia was observed compared to the negative control (tap water). As an example riverine system, part of the River Hrazdan (Armenia) flowing through a highly urbanized and industrial area was studied. The positive control (10 mM CrO3) showed the highest genotoxicity for the SHM assay (PC: 5.1 / 1000, CC: 17.9 / 1000) and for the MCN assay (12 MN / 100 tetrads and 9.4 ± 0.53 tetrads with MN). Genetic responses were analyzed in conjunction with the concentrations of select elements in the riverine water. Reasons for observing such a high level of genetic markers in the riverine water and applicability of the Tradescantia (clone 02) test-systems in environmental risk assessment and biomonitoring are discussed.
Collapse
Affiliation(s)
- Alla Khosrovyan
- National Institute of Chemical Physics and Biophysics, Laboratory of Environmental Toxicology, Akadeemia Tee 23, Tallinn, 12612, Estonia.
| | - Evelina Aghajanyan
- Laboratory of General and Molecular Genetics, RI Biology, Faculty of Biology, Yerevan State University, 8, Charents Str., Yerevan, Armenia
| | - Rima Avalyan
- Laboratory of General and Molecular Genetics, RI Biology, Faculty of Biology, Yerevan State University, 8, Charents Str., Yerevan, Armenia
| | - Anahit Atoyants
- Laboratory of General and Molecular Genetics, RI Biology, Faculty of Biology, Yerevan State University, 8, Charents Str., Yerevan, Armenia
| | - Lilit Sahakyan
- Center for Ecological-Noosphere Studies, Abovyan 68, Yerevan, 0025, Armenia
| | - Bardukh Gabrielyan
- Scientific Center of Zoology and Hydroecology of the National Academy of Sciences of Armenia, Paruyr Sevak 7, Yerevan, 0014, Armenia
| | - Rouben Aroutiounian
- Laboratory of General and Molecular Genetics, RI Biology, Faculty of Biology, Yerevan State University, 8, Charents Str., Yerevan, Armenia
| |
Collapse
|
17
|
Garg A, Yadav BK, Das DB, Wood PJ. Improving the assessment of polluted sites using an integrated bio-physico-chemical monitoring framework. CHEMOSPHERE 2022; 290:133344. [PMID: 34922961 DOI: 10.1016/j.chemosphere.2021.133344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/12/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Soil - water pollution resulting from anthropogenic activities is a growing concern internationally. Effective monitoring techniques play a crucial role in the detection, prevention, and remediation of polluted sites. Current pollution monitoring practices in many geographical locations are primarily based on physico-chemical assessments which do not always reflect the potential toxicity of contaminant 'cocktails' and harmful chemicals not screened for routinely. Biomonitoring provides a range of sensitive techniques to characterise the eco-toxicological effects of chemical contamination. The bioavailability of contaminants, in addition to their effects on organisms at the molecular, cellular, individual, and community level allows the characterisation of the overall health status of polluted sites and ecosystems. Quantifying bioaccumulation, changes to community structure, faunal morphology, behavioural, and biochemical responses are standard procedures employed in biomonitoring studies in many High-Income Countries (HICs). This review highlights the need to integrate biomonitoring tools alongside physico-chemical monitoring techniques by using 'effect-based' tools to provide more holistic information on the ecological impairment of soil-water systems. This paper considers the wider implementation of biomonitoring methods in Low to Middle Income Countries (LMICs) and their significance in pollution investigations and proposes an integrated monitoring framework that can identify toxicity drivers by utilising 'effect-based' and 'risk-based' monitoring approaches.
Collapse
Affiliation(s)
- Anuradha Garg
- Department of Hydrology, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Brijesh K Yadav
- Department of Hydrology, Indian Institute of Technology Roorkee, Uttarakhand, India.
| | - Diganta B Das
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| | - Paul J Wood
- Geography and Environment, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| |
Collapse
|
18
|
Integration of Genotoxic Biomarkers in Environmental Biomonitoring Analysis Using a Multi-Biomarker Approach in Three-Spined Stickleback (Gasterosteus aculeatus Linnaeus, 1758). TOXICS 2022; 10:toxics10030101. [PMID: 35324726 PMCID: PMC8950626 DOI: 10.3390/toxics10030101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/27/2023]
Abstract
Water is impacted by a variety of increasing pressures, such as contaminants, including genotoxic pollutants. The proposed multi-biomarker approach at a sub-individual level gives a complementary indicator to the chemical and ecological parameters of the Water Framework Directive (WFD, 2000/60/EC). By integrating biomarkers of genotoxicity and erythrocyte necrosis in the sentinel fish species the three-spined stickleback (Gasterosteus aculeatus) through active biomonitoring of six stations of the Artois-Picardie watershed, north France, our work aimed to improve the already existing biomarker approach. Even if fish in all stations had high levels of DNA strand breaks, the multivariate analysis (PCA), followed by hierarchical agglomerative clustering (HAC), improved discrimination among stations by detecting an increase of nuclear DNA content variation (Etaing, St Rémy du Nord, Artres and Biache-St-Vaast) and erythrocyte necrosis (Etaing, St Rémy du Nord). The present work highlighted that the integration of these biomarkers of genotoxicity in a multi-biomarker approach is appropriate to expand physiological parameters which allow the targeting of new potential effects of contaminants.
Collapse
|
19
|
Krayem M, Khatib SE, Hassan Y, Deluchat V, Labrousse P. In search for potential biomarkers of copper stress in aquatic plants. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105952. [PMID: 34488000 DOI: 10.1016/j.aquatox.2021.105952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Over the last few decades, the use of pesticides and discharge of industrial and domestic wastewater on water surfaces have increased. Especially, Copper (Cu) pollution in aquatic ecosystems could constitute a major health problem, not only for flora and fauna but also for humans. To cope with this challenge, environmental monitoring studies have sought to find Cu-specific biomarkers in terrestrial and aquatic flora and/or fauna. This review discusses the toxic effects caused by Cu on the growth and development of plants, with a special focus on aquatic plants. While copper is considered as an essential metal involved in vital mechanisms for plants, when in excess it becomes toxic and causes alterations on biomarkers: biochemical (oxidative stress, pigment content, phytochelatins, polyamines), physiological (photosynthesis, respiration, osmotic potential), and morphological. In addition, Cu has a detrimental effect on DNA and hormonal balance. An overview of Cu toxicity and detoxification in plants is provided, along with information regarding Cu bioaccumulation and transport. Awareness of the potential use of these reactions as specific biomarkers for copper contamination has indeed become essential.
Collapse
Affiliation(s)
- Maha Krayem
- LIU, Lebanese International University, Bekaa Campus, Al Khyara-West Bekaa, Lebanon; Université de Limoges, PEIRENE EA 7500, Limoges, France
| | - S El Khatib
- LIU, Lebanese International University, Bekaa Campus, Al Khyara-West Bekaa, Lebanon
| | - Yara Hassan
- LIU, Lebanese International University, Bekaa Campus, Al Khyara-West Bekaa, Lebanon
| | | | | |
Collapse
|
20
|
Tlili S, Mouneyrac C. New challenges of marine ecotoxicology in a global change context. MARINE POLLUTION BULLETIN 2021; 166:112242. [PMID: 33706213 DOI: 10.1016/j.marpolbul.2021.112242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 05/27/2023]
Abstract
Currently, research agenda in marine ecotoxicology is facing new challenges with the emergence of newly and complex synthetized chemicals. The study of the fate and adverse effects of toxicants remains increasingly complicated with global change events. Ecotoxicology had provided for a decades, precious scientific data and knowledge but also technical and management tools for the environmental community. Regarding those, it is necessary to update methodologies dealing with these issues such as combined effect of conventional and emergent stressors and global changes. In this point of view article, we discuss one hand the new challenges of ecotoxicology in this context, and in the other hand, the need of updating agenda and methodologies currently used in monitoring programs and finally recommendations and future research needs. Among recommendations, it could be cited the necessity to perform long-term experiments, the standardization of sentinel species and taking benefit from baseline studies and omics technologies.
Collapse
Affiliation(s)
- Sofiene Tlili
- Laboratoire Mer, Molécules, Santé (MMS, EA 2160), Université Catholique, de l'Ouest, 49000 Angers, France.
| | - Catherine Mouneyrac
- Laboratoire Mer, Molécules, Santé (MMS, EA 2160), Université Catholique, de l'Ouest, 49000 Angers, France
| |
Collapse
|
21
|
Balbi T, Auguste M, Ciacci C, Canesi L. Immunological Responses of Marine Bivalves to Contaminant Exposure: Contribution of the -Omics Approach. Front Immunol 2021; 12:618726. [PMID: 33679759 PMCID: PMC7930816 DOI: 10.3389/fimmu.2021.618726] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/22/2021] [Indexed: 12/27/2022] Open
Abstract
The increasing number of data studies on the biological impact of anthropogenic chemicals in the marine environment, together with the great development of invertebrate immunology, has identified marine bivalves as a key invertebrate group for studies on immunological responses to pollutant exposure. Available data on the effects of contaminants on bivalve immunity, evaluated with different functional and molecular endpoints, underline that individual functional parameters (cellular or humoral) and the expression of selected immune-related genes can distinctly react to different chemicals depending on the conditions of exposure. Therefore, the measurement of a suite of immune biomarkers in hemocytes and hemolymph is needed for the correct evaluation of the overall impact of contaminant exposure on the organism's immunocompetence. Recent advances in -omics technologies are revealing the complexity of the molecular players in the immune response of different bivalve species. Although different -omics represent extremely powerful tools in understanding the impact of pollutants on a key physiological function such as immune defense, the -omics approach has only been utilized in this area of investigation in the last few years. In this work, available information obtained from the application of -omics to evaluate the effects of pollutants on bivalve immunity is summarized. The data shows that the overall knowledge on this subject is still quite limited and that to understand the environmental relevance of any change in immune homeostasis induced by exposure to contaminants, a combination of both functional assays and cutting-edge technology (transcriptomics, proteomics, and metabolomics) is required. In addition, the utilization of metagenomics may explain how the complex interplay between the immune system of bivalves and its associated bacterial communities can be modulated by pollutants, and how this may in turn affect homeostatic processes of the host, host–pathogen interactions, and the increased susceptibility to disease. Integrating different approaches will contribute to knowledge on the mechanism responsible for immune dysfunction induced by pollutants in ecologically and economically relevant bivalve species and further explain their sensitivity to multiple stressors, thus resulting in health or disease.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Manon Auguste
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Caterina Ciacci
- Department of Biomolecular Sciences (DIBS), University of Urbino, Urbino, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| |
Collapse
|
22
|
Hani YMI, Prud'Homme SM, Nuzillard JM, Bonnard I, Robert C, Nott K, Ronkart S, Dedourge-Geffard O, Geffard A. 1H-NMR metabolomics profiling of zebra mussel (Dreissena polymorpha): A field-scale monitoring tool in ecotoxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116048. [PMID: 33190982 DOI: 10.1016/j.envpol.2020.116048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Biomonitoring of aquatic environments requires new tools to characterize the effects of pollutants on living organisms. Zebra mussels (Dreissena polymorpha) from the same site in north-eastern France were caged for two months, upstream and downstream of three wastewater treatment plants (WWTPs) in the international watershed of the Meuse (Charleville-Mézières "CM" in France, Namur "Nam" and Charleroi "Cr" in Belgium). The aim was to test 1H-NMR metabolomics for the assessment of water bodies' quality. The metabolomic approach was combined with a more "classical" one, i.e., the measurement of a range of energy biomarkers: lactate dehydrogenase (LDH), lipase, acid phosphatase (ACP) and amylase activities, condition index (CI), total reserves, electron transport system (ETS) activity and cellular energy allocation (CEA). Five of the eight energy biomarkers were significantly impacted (LDH, ACP, lipase, total reserves and ETS), without a clear pattern between sites (Up and Down) and stations (CM, Nam and Cr). The metabolomic approach revealed variations among the three stations, and also between the upstream and downstream of Nam and CM WWTPs. A total of 28 known metabolites was detected, among which four (lactate, glycine, maltose and glutamate) explained the observed metabolome variations between sites and stations, in accordance with chemical exposure levels. Metabolome changes suggest that zebra mussel exposure to field contamination could alter their osmoregulation and anaerobic metabolism capacities. This study reveals that lactate is a potential biomarker of interest, and 1H-NMR metabolomics can be an efficient approach to assess the health status of zebra mussels in the biomonitoring of aquatic environments.
Collapse
Affiliation(s)
- Younes Mohamed Ismail Hani
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France; Université de Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Place du Dr Peyneau, 33120, Arcachon, France.
| | - Sophie Martine Prud'Homme
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France; Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Jean-Marc Nuzillard
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097, Reims, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France
| | | | - Katherine Nott
- La Société Wallonne des Eaux, Rue de la Concorde 41, 4800, Verviers, Belgium
| | - Sébastien Ronkart
- La Société Wallonne des Eaux, Rue de la Concorde 41, 4800, Verviers, Belgium
| | - Odile Dedourge-Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France
| |
Collapse
|
23
|
Guedes MEG, Correia TG. Plasma energetic substrates and hepatic enzymes in the four-eyed fish Anableps anableps (Teleostei: Cyprinodontiformes) during the dry and rainy seasons in the Amazonian Island of Maracá, extreme north of Brazil. NEOTROPICAL ICHTHYOLOGY 2021. [DOI: 10.1590/1982-0224-2021-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Anableps anableps is a viviparous teleost typical from Amazon Delta estuaries. It is representative of this biome in Maracá, which offers a potential for biomonitoring. The aim of this study is to apply different biomarkers to males and females of this species and verify possible seasonal influences on their physiology. To collect fish, three expeditions were carried out from the rainy season of April 2018 to the rainy season of February 2019. Biometric parameters and gonadosomatic (GSI), hepatosomatic (HSI), and viscerosomatic (VSI) indexes were calculated, and blood samples were taken to measure triglycerides, total proteins, glucose, and activity of the enzymes aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). The GSI of males is higher in the rainy season and of females in the dry season. This is probably related to the embryogenesis process. Males show an increase in biomass during the dry season, a metabolic homogeneity, and females show an increase in plasma glucose, triglycerides, and ALT activity. The tested biomarkers are potential for biomonitoring, preliminarily suggesting that there is a seasonal asynchronism between males and females of A. anableps as for the allocation of energy resources at different times of their life cycle.
Collapse
|