1
|
Ji W, Wang Y, Zhao B, Liu J. Identifying high-risk volatile organic compounds in residences of Chinese megacities: A comprehensive health-risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135630. [PMID: 39216248 DOI: 10.1016/j.jhazmat.2024.135630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Indoor volatile organic compounds (VOCs) pose considerable health hazards. However, research on hazardous VOCs in Chinese residences has been conducted on a limited spectrum. This study used Monte Carlo simulations with data from Beijing, Shanghai, and Shenzhen to assess VOC health risks in Chinese homes. We identified high-risk VOCs and analyzed the impact of geographic location, age group, activity duration, and inhalation rate on VOC exposure, including lifetime risks. Formaldehyde, acrolein, naphthalene, and benzene posed the highest risks. Notably, acrolein made the leading contribution to non-cancer risks across all megacities. Naphthalene had elevated cancer and non-cancer risks in Shenzhen. This study highlights the need to investigate acrolein and naphthalene, which are currently unregulated but pose substantial health risks. The cumulative cancer risk (TCR) decreases from adults to children, while the cumulative non-cancer risk (HI) is higher for children. In all cities, the average TCR for adults exceeds the tolerable threshold of 10-4, and the average HI values surpass the safety threshold of 1. Nearly 100 % of the population faces a lifetime cancer risk above 10-4, and over 71 % face a non-cancer risk exceeding 10 (tenfold the benchmark). This study underscores the critical need for developing control strategies tailored to VOCs.
Collapse
Affiliation(s)
- Wenjing Ji
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Yanting Wang
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Jing Liu
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
2
|
Li H, Zhang L, Song L, Wang Y, Song P, Ye Y, Li X, An P. Delta-CT radiomics based model for predicting postoperative anastomotic leakage following radical resection of esophageal squamous cell carcinoma. Front Oncol 2024; 14:1485323. [PMID: 39469635 PMCID: PMC11513298 DOI: 10.3389/fonc.2024.1485323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024] Open
Abstract
Objective To predict postoperative anastomotic leakage (AL) following radical resection of esophageal squamous cell carcinoma (ESCC) based on clinical data and preoperative enhanced Computed tomography(CT) radiomics of the esophagus. Method We retrospectively analyzed the clinicopathological and radiological data of 213 patients with ESCC who received radical resection at Xiangyang No.1 People's Hospital from July 2011 to February 2024. 3D slicer software was used in combination with Lasso extraction and 10-fold cross-validation to extract texture parameters from contrast-enhanced CT images and generate Delta-Radscores. Several models were built using logistic regression to predict postoperative AL in ESCC. Results In the training set, the univariate analysis confirmed that duration of surgery, surgical method, delta radscore 1, delta radscore 2, contrast enhancement patterns, peripheral lymph node metastasis, post thoracotomy pulmonary infection(PTPI), and hot pot were risk factors for ESCC-AL (P<0.05 for both). The multivariate analysis showed that delta radscore 1, delta radscore 2, PTPI, and hot pot were independent risk factors for AL (P<0.05 for all). These results were verified by the XGboost machine learning model. The combinational model based on all of the above risk factors [AUC 0.900, OR 0.0282, 95%CI 0.841-0.943] outperformed either the clinical model[AUC 0.759, OR 0.0392, 95%0.683-0.825,P<0.05] or the imaging model[AUC 0.869, OR 0.0335, 95%0.804-0.918,P=0.1277] alone in predictive efficacy. The decision curve proved that the combinational model had a higher clinical net benefit. The nomogram generated via the combinational model simplified the predictive process. The same predictions were verified in the testing set. Conclusion Delta radscore 1, delta radscore 2, PTPI, and hot pot were related to ESCC-AL. The novel nomogram created using enhanced CT radiomics informed perioperative management and improved the survival quality of ESCC patients.
Collapse
Affiliation(s)
- Huantian Li
- Department of Surgery and Radiology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Oncology, Pathology and Epidemiology, Xiangyang Key Laboratory of Maternal-fetal Medicine on Fetal Congenital Heart Disease, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Linjun Zhang
- Department of Surgery and Radiology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Oncology, Pathology and Epidemiology, Xiangyang Key Laboratory of Maternal-fetal Medicine on Fetal Congenital Heart Disease, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Lina Song
- Department of Surgery and Radiology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yong Wang
- Department of Surgery and Radiology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Oncology, Pathology and Epidemiology, Xiangyang Key Laboratory of Maternal-fetal Medicine on Fetal Congenital Heart Disease, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Ping Song
- Department of Surgery and Radiology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yingjian Ye
- Department of Surgery and Radiology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiumei Li
- Department of Surgery and Radiology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Peng An
- Department of Surgery and Radiology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Oncology, Pathology and Epidemiology, Xiangyang Key Laboratory of Maternal-fetal Medicine on Fetal Congenital Heart Disease, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| |
Collapse
|
3
|
Motaghi L, Mansouri N, Atabi F, Vahidnia MH. Investigation of the spatial variation of ambient air VOCs and their effects on the health risk caused by long-term exposure in urban area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-12. [PMID: 39149759 DOI: 10.1080/09603123.2024.2382905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Long-term exposure to Volatile Organic Compounds (VOCs) is a health risk for citizens. In this study, the cumulative health risk of exposure to VOCs in Tehran was assessed by investigating the concentration of these pollutants in ambient air in a five-year period. Health risk assessment was calculated by the quantitative method and the carcinogenic risk level was determined using the lifetime carcinogenic risk (LCR) method. The average concentration of benzene, toluene, ortho-xylene, and ethylbenzene was 1.4-1.8, 4.8-5.4, 5-6.5, and 3.6-4 ppb, respectively. Although HQ was not greater than 1, but it was very close in the case of benzene, ortho-xylene, meta-xylene, and para-xylene. Benzene and ethylbenzene had the largest effect in the assessed health risk. So the long-term exposure of Tehran citizens to VOCs has serious health consequences for them, which could be different according to the exposure time and spatial variations.
Collapse
Affiliation(s)
- Leila Motaghi
- Department of Environmental Engineering, Science & Research Branch of IA University, Tehran, Iran
| | - Nabiollah Mansouri
- Faculty of Natural Resources and Environment, Tehran Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Farideh Atabi
- Faculty of Natural Resources and Environment, Tehran Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Vahidnia
- Center for Remote Sensing and GIS Research, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
4
|
Zhang L, Nian G, Zhong J, Lin Y, Zhang Y. Impact of volatile organic compounds in large municipal solid waste landfills on regional environment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 181:145-156. [PMID: 38608529 DOI: 10.1016/j.wasman.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/18/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Landfill disposal is a major approach of disposing municipal solid waste (MSW) in China. In order to explore the impact of volatile organic compounds (VOCs) generated by landfill on the air quality of regional environment, Jiangcungou landfill in Xi'an and its surrounding area were taken as a research object to analyze the spatial distribution and seasonal variation patterns of non-methane hydrocarbon (NMHC) and VOCs components through seasonal sampling of regional NMHC concentration and VOCs concentration (116 species). CALPUFF model was adopted to analyze the regional dispersion characteristics of NMHC on landfill. In addition, propylene equivalent concentration (PEC) and maximum incremental reactivity (MIR) methods were used to estimate O3 formation potential of the landfill, while fraction aerosol coefficient (FAC) and SOA potential (SOAP) methods were used to estimate SOA formation potential of the landfill. It was indicated that, the component with the highest concentration of VOCs on the working surface and the surrounding area of landfill was p + m-xylene (41.0 μg/m3) and halohydrocarbon (111.2 μg/m3-156.3 μg/m3), respectively. The component with the greatest impact on the surrounding air was acetone, which accounts for 75 %-87 % of the corresponding substance concentration on the landfill. In summer, the surrounding area was affected most by NMHC from landfill, whose emissions contributed 9.5 mg/m3 to the surrounding area. The component making the largest contribution to O3 formation was p + m-xylene (8 %-24 %), while ethylbenzene was the component making the largest contribution to SOA formation (20 %-24 %).
Collapse
Affiliation(s)
- Liyuan Zhang
- School of Water and Environment, Chang'an University, Xi'an, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China
| | - Guanyu Nian
- School of Water and Environment, Chang'an University, Xi'an, China
| | - Jiahao Zhong
- School of Water and Environment, Chang'an University, Xi'an, China
| | - Yifan Lin
- Xi'an Solid Waste Disposal Center, Xi'an, China
| | - Yue Zhang
- School of Architecture, Chang'an University, Xi'an, China; Shaanxi Provincial Academy of Environmental Science, Xi'an, China.
| |
Collapse
|
5
|
Lv Z, Liu X, Bai H, Nie L, Li G. Process-specific volatile organic compounds emission characteristics, environmental impact and health risk assessments of the petrochemical industry in the Beijing-Tianjin-Hebei region. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3938-3950. [PMID: 38095794 DOI: 10.1007/s11356-023-31351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Volatile organic compounds (VOCs) concentration, source profiles, O3 and SOA formation, and health risks were investigated in the petrochemical industry in Beijing-Tianjin-Hebei. The results showed that total VOCs concentrations were 547.1-1956.5 μg·m-3, and alkanes were the most abundant group in all processes (31.4%-54.6%), followed by alkenes (20.6%-29.2%) and aromatics (10.1%-25.1%). Moreover, ethylene (11.3%), iso-pentane (7.1%), n-hexane (5.1%), benzene (4.9%) and 2,2-dimethylbutae (4.8%) were identified as the top five species released for the whole petrochemical industry. The coefficient of divergence between the source profiles from different processes was 0.49-0.73, indicating that most source profiles must not be similar. Moreover, because of the different raw materials and technologies used, the source profiles in this study are significantly different from those of other regions. The ozone and secondary organic aerosol formation potentials (OFPs and SOAPs) were evaluated, suggesting that ethylene, propylene, 1-butene, m,p-xylene, and 1,3-butadiene should be preferentially controlled to reduce OFPs. That benzene, toluene, ethylbenzene, m,p-xylene, isopropylbenzene, o-ethyltoluene, and 1,3,5-trimethylbenzene should be priority control compounds for SOAPs. Additionally, the total hazard ratio for non-cancer risk ranged from 0.9 to 7.7, and only living area was unlikely to be related to adverse health effects. Cancer risks associated with organic chemicals, rubber synthesis, oil refining, and wastewater collection and treatment have definite risks, whereas other processes have probable risks. This study provides a scientific basis for VOCs emission control and management and guides human health in the petrochemical industry.
Collapse
Affiliation(s)
- Zhe Lv
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Beijing, 100037, China
| | - Xiaoyu Liu
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Beijing, 100037, China
| | - Huahua Bai
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Beijing, 100037, China
| | - Lei Nie
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Beijing, 100037, China
| | - Guohao Li
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China.
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Beijing, 100037, China.
| |
Collapse
|
6
|
Song K, Yang X, Wang Y, Wan Z, Wang J, Wen Y, Jiang H, Li A, Zhang J, Lu S, Fan B, Guo S, Ding Y. Addressing new chemicals of emerging concern (CECs) in an indoor office. ENVIRONMENT INTERNATIONAL 2023; 181:108259. [PMID: 37839268 DOI: 10.1016/j.envint.2023.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Indoor pollutants change over time and place. Exposure to hazardous organics is associated with adverse health effects. This work sampled gaseous organics by Tenax TA tubes in two indoor rooms, i.e., an office set as samples, and the room of chassis dynamometer (RCD) set as backgrounds. Compounds are analyzed by a thermal desorption comprehensive two-dimensional gas chromatography-quadrupole mass spectrometer (TD-GC × GC-qMS). Four new chemicals of emerging concern (CECs) are screened in 469 organics quantified. We proposed a three-step pipeline for CECs screening utilizing GC × GC including 1) non-target scanning of organics with convincing molecular structures and quantification results, 2) statistical analysis between samples and backgrounds to extract useful information, and 3) pixel-based property estimation to evaluate the contamination potential of addressed chemicals. New CECs spotted in this work are all intermediate volatility organic compounds (IVOCs), containing mintketone, isolongifolene, β-funebrene, and (5α)-androstane. Mintketone and sesquiterpenes may be derived from the use of volatile chemical products (VCPs), while (5α)-androstane is probably human-emitted. The occurrence and contamination potential of the addressed new CECs are reported for the first time. Non-target scanning and the measurement of IVOCs are of vital importance to get a full glimpse of indoor organics.
Collapse
Affiliation(s)
- Kai Song
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xinping Yang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yunjing Wang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zichao Wan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Junfang Wang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yi Wen
- China Automotive Technology and Research Center (CATARC), Beijing 100176, China
| | - Han Jiang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ang Li
- China Automotive Technology and Research Center (CATARC), Beijing 100176, China
| | | | - Sihua Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Baoming Fan
- TECHSHIP (Beijing) Technology Co., LTD, Beijing 100039, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Yan Ding
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
7
|
Zhang H, Wang X, Shen X, Li X, Wu B, Li G, Bai H, Cao X, Hao X, Zhou Q, Yao Z. Chemical characterization of volatile organic compounds (VOCs) emitted from multiple cooking cuisines and purification efficiency assessments. J Environ Sci (China) 2023; 130:163-173. [PMID: 37032033 DOI: 10.1016/j.jes.2022.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 06/19/2023]
Abstract
Cooking process can produce abundant volatile organic compounds (VOCs), which are harmful to environment and human health. Therefore, we conducted a comprehensive analysis in which VOCs emissions from multiple cuisines have been sampled based on the simulation and acquisition platform, involving concentration characteristics, ozone formation potential (OFP) and purification efficiency assessments. VOCs emissions varied from 1828.5 to 14,355.1 µg/m3, with the maximum and minimum values from Barbecue and Family cuisine, respectively. Alkanes and alcohol had higher contributions to VOCs from Sichuan and Hunan cuisine (64.1%), Family cuisine (66.3%), Shandong cuisine (69.1%) and Cantonese cuisine (69.8%), with the dominant VOCs species of ethanol, isobutane and n-butane. In comparison, alcohols (79.5%) were abundant for Huaiyang cuisine, while alkanes (19.7%), alkenes (35.9%) and haloalkanes (22.9%) accounted for higher proportions from Barbecue. Specially, carbon tetrachloride, n-hexylene and 1-butene were the most abundant VOCs species for Barbecue, ranging from 8.8% to 14.6%. The highest OFP occurred in Barbecue. The sensitive species of OFP for Huaiyang cuisine were alcohols, while other cuisines were alkenes. Purification efficiency assessments shed light on the removal differences of individual and synergistic control technologies. VOCs emissions exhibited a strong dependence on the photocatalytic oxidation, with the removal efficiencies of 29.0%-54.4%. However, the high voltage electrostatic, wet purification and mechanical separation techniques played a mediocre or even counterproductive role in the VOCs reduction, meanwhile collaborative control technologies could not significantly improve the removal efficiency. Our results identified more effective control technologies, which were conductive to alleviating air pollution from cooking emissions.
Collapse
Affiliation(s)
- Hanyu Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Xuejun Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Xianbao Shen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Bobo Wu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Guohao Li
- Beijing Municipal Research Institute of Environmental Protection, Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Urban Environmental Pollution Control Engineering Research Center, Beijing 100037, China
| | - Huahua Bai
- Beijing Municipal Research Institute of Environmental Protection, Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Urban Environmental Pollution Control Engineering Research Center, Beijing 100037, China
| | - Xinyue Cao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Xuewei Hao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Qi Zhou
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
8
|
Ditto JC, Crilley LR, Lao M, VandenBoer TC, Abbatt JPD, Chan AWH. Indoor and outdoor air quality impacts of cooking and cleaning emissions from a commercial kitchen. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:964-979. [PMID: 37102581 DOI: 10.1039/d2em00484d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Gas and particulate emissions from commercial kitchens are important contributors to urban air quality. Not only are these emissions important for occupational exposure of kitchen staff, but they can also be vented to outdoors, causing uncertain health and environmental impacts. In this study, we chemically speciated volatile organic compounds and measured particulate matter mass concentrations in a well-ventilated commercial kitchen for two weeks, including during typical cooking and cleaning operations. From cooking, we observed a complex mixture of volatile organic gases dominated by oxygenated compounds commonly associated with the thermal degradation of cooking oils. Gas-phase chemicals existed at concentrations 2-7 orders of magnitude lower than their exposure limits, due to the high ventilation in the room (mean air change rate of 28 h-1 during operating hours). During evening kitchen cleaning, we observed an increase in the signal of chlorinated gases from 1.1-9.0 times their values during daytime cooking. Particulate matter mass loadings tripled at these times. While exposure to cooking emissions in this indoor environment was reduced effectively by the high ventilation rate, exposure to particulate matter and chlorinated gases was elevated during evening cleaning periods. This emphasizes the need for careful consideration of ventilation rates and methods in commercial kitchen environments during all hours of kitchen operation.
Collapse
Affiliation(s)
- Jenna C Ditto
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada.
- Department of Chemistry, University of Toronto, Toronto, Canada.
| | | | - Melodie Lao
- Department of Chemistry, York University, Toronto, Canada
| | | | | | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada.
- Department of Chemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
9
|
Zhang W, Bai Z, Shi L, Son JH, Li L, Wang L, Chen J. Investigating aldehyde and ketone compounds produced from indoor cooking emissions and assessing their health risk to human beings. J Environ Sci (China) 2023; 127:389-398. [PMID: 36522070 DOI: 10.1016/j.jes.2022.05.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 06/17/2023]
Abstract
Aldehyde and ketone compounds are ubiquitous in the air and prone to adverse effects on human health. Cooking emission is one of the major indoor sources. Aiming to evaluate health risks associated with inhalation exposure to aldehyde and ketone compounds, 13 carbonyl compounds (CCs) released from heating 5 edible oils, 3 seasonings, and 2 dishes were investigated in a kitchen laboratory. For the scenarios of heating five types of oil, aldehydes accounted for 61.1%-78.0% of the total emission, mainly acetaldehyde, acrolein and hexanal. Comparatively, heating oil with added seasonings released greater concentrations of aldehyde and ketone compounds. The concentration enhancement of larger molecular aldehydes was significantly greater. The emission factors of aldehyde and ketone compounds for cooking the dish of chili fried meat were much greater compared to that of tomato fried eggs. Therefore, food materials also had a great impact on the aldehyde and ketone emissions. Acetone and acetaldehyde were the most abundant CCs in the kitchen. Acrolein concentrations ranged from 235.18 to 498.71 µg/m3, which was about 100 times greater compared to the guidelines provided by Office of Environmental Health Hazard Assessment (OEHHA). The acetaldehyde inhalation for adults was 856.83-1515.55 µg and 56.23-192.79 µg from exposure to chili fried meat and tomato fried eggs, respectively. This exceeds the reference value of 90 µg/day provided by OEHHA. The findings of this study provided scientific evidences for the roles of cooking emissions on indoor air quality and human health.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zhe Bai
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Longbo Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jung Hyun Son
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Ling Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Xu C, Chen J, Zhang X, Cai K, Chen C, Xu B. Emission characteristics and quantitative assessment of the health risks of cooking fumes during outdoor barbecuing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121319. [PMID: 36813099 DOI: 10.1016/j.envpol.2023.121319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Given the increasing popularity of outdoor barbecue activities and the disregard for barbecue fumes, this study systematically investigated barbecue fume emission characteristics for three types of grilled meats. Particulate matter and volatile organic compounds (VOCs) were continuously measured, and polycyclic aromatic hydrocarbons (PAHs) were isolated from the particulate matter. Cooking emission concentrations depended strongly on the type of meat being cooked. Fine particles were the main particles detected in this study. Low and medium-weight PAHs were the dominant species for all cooking experiments. The mass concentration of total VOCs in the barbecue smoke of the three groups showed significant differences (p < 0.05) and was 1667.18 ± 10.49 μg/m3 in the chicken wing group, 904.03 ± 7.12 μg/m3 in the beef steak group, and 3653.37 ± 12.22 μg/m3 in the streaky pork group. The results of risk assessment showed that the toxicity equivalent quality (TEQ) of carcinogenic PAHs in the particulate matter was significantly higher in the streaky pork group than in the chicken wing and beef steak groups. The carcinogenic risk of benzene exceeds the US EPA standard (1.0E-6) in all types of fumes. Although the hazard index (HI) was below one in all groups for noncarcinogenic risks, it was not cause of optimism. We conjecture that only 500 g of streaky pork would exceed the noncarcinogenic risk limit, and the mass required for carcinogenic risk may be less. When barbecuing, it is essential to avoid high-fat foods and strictly control the fat quantity. This study quantifies the incremental risk of specific foods to consumers and will hopefully provide insight into the hazards of barbecue fumes.
Collapse
Affiliation(s)
- Chaoyang Xu
- Engineering Research Center of Bioprocesses, Ministry of Education, Hefei University of Technology, Hefei, China.
| | - Jiusong Chen
- School of Public Affairs, University of Science and Technology of China, Hefei, China.
| | - Xiaomin Zhang
- Engineering Research Center of Bioprocesses, Ministry of Education, Hefei University of Technology, Hefei, China.
| | - Kezhou Cai
- Engineering Research Center of Bioprocesses, Ministry of Education, Hefei University of Technology, Hefei, China.
| | - Conggui Chen
- Engineering Research Center of Bioprocesses, Ministry of Education, Hefei University of Technology, Hefei, China.
| | - Baocai Xu
- Engineering Research Center of Bioprocesses, Ministry of Education, Hefei University of Technology, Hefei, China.
| |
Collapse
|
11
|
Liang X, Chen L, Liu M, Lu Q, Lu H, Gao B, Zhao W, Sun X, Xu J, Ye D. Carbonyls from commercial, canteen and residential cooking activities as crucial components of VOC emissions in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157317. [PMID: 35842166 DOI: 10.1016/j.scitotenv.2022.157317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Cooking in China supply the large population with nutrition and, as a commercial activity, it also promotes the economic growth of Chinese society. The specific cooking styles in China can produce complex volatile organic compound (VOC) emissions. The resulting adverse effects on the environment and human health of carbonyls from cooking should not be ignored. We quantitatively evaluated the contribution of carbonyls to common VOCs (carbonyl/VOC ratio) from cooking activities in China through the establishment and comparison of the source profiles, emission factors (EFs), emission amount and ozone formation potential (OFP). It was found that carbonyls are crucial components of VOCs from commercial, canteen and residential cooking activities (COC, CAC and REC, respectively). The carbonyl/VOC ratio from cooking activities in China had EFs, emissions, and a total OFP of 22-65 %, 23-34 %, and 49-104 %, respectively. The high OFP was due to the high OFP emissions intensity (OFPEI) and maximum incremental reactivity (MIR) values of carbonyls. This indicates that to alleviate O3 pollution, OFP-based control measures that target carbonyls might be more efficient than measures that target common VOCs. Priority should be given to emission controlling COC emissions, specifically those from medium- and large-scale catering. Formaldehyde, acetaldehyde, and hexanal were the key carbonyl species that form O3 in the environment. Our findings imply that cooking-emitted carbonyls should not be overlooked in investigations of O3 formation and that these compounds should be subject to strict regulations.
Collapse
Affiliation(s)
- Xiaoming Liang
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Laiguo Chen
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Ming Liu
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Qing Lu
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haitao Lu
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Bo Gao
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xibo Sun
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Jiantie Xu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Navruz-Varli S, Bilici S, Ari A, Ertürk-Ari P, Ilhan MN, O Gaga E. Organic pollutant exposure and health effects of cooking emissions on kitchen staff in food services. INDOOR AIR 2022; 32:e13093. [PMID: 36040287 DOI: 10.1111/ina.13093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/01/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
This study was conducted to determine the exposure and health risk to cooking fumes of a total of 88 volunteer kitchen staff aged between 18 and 65 years working in five different kitchens in Ankara. Gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs), and volatile organic compound (VOCs) concentrations were evaluated in the indoor air of 5 kitchens. Serum malondialdehyde (MDA) and superoxide dismutase (SOD) levels were analyzed to determine the oxidative damage as a result of the exposure to cooking fumes among the cooks and waiters. Significant positive relationships were found between serum MDA levels of the hot kitchen workers and indoor chrysene (Chr), indeno(1,2,3-c,d)pyrene (Ind), and total VOC levels. Although the carcinogenic risks estimated for the exposed population were between the acceptable/tolerable levels, the hazard quotient (HQ) estimated for the exposure to indoor benzene exceeded the safe level. The results of the study revealed that exposure to organic pollutants in indoor air may be a risk factor for the development of oxidative stress, especially in hot kitchen workers. The importance of efficient ventilation in the kitchen has been pointed out to reduce health risks caused by cooking fumes.
Collapse
Affiliation(s)
| | - Saniye Bilici
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkiye
| | - Akif Ari
- Department of Environmental Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkiye
| | - Pelin Ertürk-Ari
- Department of Environmental Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkiye
| | | | - Eftade O Gaga
- Department of Environmental Engineering, Eskişehir Technical University, Eskisehir, Turkiye
| |
Collapse
|
13
|
Atamaleki A, Motesaddi Zarandi S, Massoudinejad M, Esrafili A, Mousavi Khaneghah A. Emission of BTEX compounds from the frying process: Quantification, environmental effects, and probabilistic health risk assessment. ENVIRONMENTAL RESEARCH 2022; 204:112295. [PMID: 34743807 DOI: 10.1016/j.envres.2021.112295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Frying is one of the cooking methods which generates mono aromatic hydrocarbons, including benzene, toluene, ethylbenzene, and xylene (BTEX); subsequently, it affects health through carcinogenic (CR) and non-carcinogenic risks (n-CR). However, their environmental effects known by secondary organic aerosols (SOA) and ozone formation potential (OFP) were also attended by many scientists. Therefore, this study quantified the BTEX emissions from 4 types of most commonly used edible oils (canola, corn, sunflower, and blend) under various frying conditions of temperatures and food additives. Furthermore, the effects of the chemicals in the light of health (CR and n-CR) and environment (SOA and OFP) were also investigated. The study results showed that higher temperatures could significantly increase the emissions, while the addition of food ingredients significantly reduces the emissions. The rank order of emitted chemical was obtained as T > B > E > X. The blend had the most emission among oils, followed by, in descending order, corn, sunflower, and canola. In association with environmental effects, the orders of X > T > E > B and T ∼ E > X > B were obtained for OFP and SOA, respectively. THQ for blend, corn, canola, and sunflower oils was higher than 1 (1.76, 1.35, 1.27, and 1.002, respectively), showing a considerable n-CR when the hood was off. In this respect, TCR for the oils (1.78 × 10-4, 1.45 × 10-4, 1.39 × 10-4, and 1.05 × 10-4, respectively) shown the probable risk for all oils. Moreover, hood switching reduced the risk by about 11-81%.
Collapse
Affiliation(s)
- Ali Atamaleki
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Motesaddi Zarandi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohamadreza Massoudinejad
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
14
|
Chen WQ, Zhang XY. 1,3-Butadiene: a ubiquitous environmental mutagen and its associations with diseases. Genes Environ 2022; 44:3. [PMID: 35012685 PMCID: PMC8744311 DOI: 10.1186/s41021-021-00233-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/27/2021] [Indexed: 01/09/2023] Open
Abstract
1,3-Butadiene (BD) is a petrochemical manufactured in high volumes. It is a human carcinogen and can induce lymphohematopoietic cancers, particularly leukemia, in occupationally-exposed workers. BD is an air pollutant with the major environmental sources being automobile exhaust and tobacco smoke. It is one of the major constituents and is considered the most carcinogenic compound in cigarette smoke. The BD concentrations in urban areas usually vary between 0.01 and 3.3 μg/m3 but can be significantly higher in some microenvironments. For BD exposure of the general population, microenvironments, particularly indoor microenvironments, are the primary determinant and environmental tobacco smoke is the main contributor. BD has high cancer risk and has been ranked the second or the third in the environmental pollutants monitored in most urban areas, with the cancer risks exceeding 10-5. Mutagenicity/carcinogenicity of BD is mediated by its genotoxic metabolites but the specific metabolite(s) responsible for the effects in humans have not been determined. BD can be bioactivated to yield three mutagenic epoxide metabolites by cytochrome P450 enzymes, or potentially be biotransformed into a mutagenic chlorohydrin by myeloperoxidase, a peroxidase almost specifically present in neutrophils and monocytes. Several urinary BD biomarkers have been developed, among which N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine is the most sensitive and is suitable for biomonitoring BD exposure in the general population. Exposure to BD has been associated with leukemia, cardiovascular disease, and possibly reproductive effects, and may be associated with several cancers, autism, and asthma in children. Collectively, BD is a ubiquitous pollutant that has been associated with a range of adverse health effects and diseases with children being a subpopulation with potentially greater susceptibility. Its adverse effects on human health may have been underestimated and more studies are needed.
Collapse
Affiliation(s)
- Wan-Qi Chen
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin-Yu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
15
|
Gao X, Zhang M, Zou H, Zhou Z, Yuan W, Quan C, Cao Y. Characteristics and risk assessment of occupational exposure to ultrafine particles generated from cooking in the Chinese restaurant. Sci Rep 2021; 11:15586. [PMID: 34341422 PMCID: PMC8329283 DOI: 10.1038/s41598-021-95038-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/13/2021] [Indexed: 11/08/2022] Open
Abstract
Ultrafine particles have been increasingly linked to adverse health effects in restaurant workers. This study aimed to clarify the exposure characteristics and risks of ultrafine particles during the cooking process, and to provide a reasonable standard for protecting the workers in the Chinese restaurant. The temporal variations in particle concentrations (number concentration (NC), mass concentration (MC), surface area concentration (SAC), and personal NC), and size distributions by number were measured by real-time system. The hazard, exposure, and risk levels of ultrafine particles were analyzed using the control banding tools. The NC, MC, and SAC increased during the cooking period and decreased gradually to background levels post-operation. The concentration ratios of MC, total NC, SAC, and personal NC ranged from 3.82 to 9.35. The ultrafine particles were mainly gathered at 10.4 and 100 nm during cooking. The exposure, hazard and risk levels of the ultrafine particles were high. These findings indicated that the workers during cooking were at high risk due to exposure to high levels of ultrafine particles associated with working activity and with a bimodal size distribution. The existing control strategies, including engineering control, management control, and personal protection equipment need to be improved to reduce the risk.
Collapse
Affiliation(s)
- Xiangjing Gao
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang, China
| | - Meibian Zhang
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang, China
| | - Hua Zou
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang, China
| | - Zanrong Zhou
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang, China
| | - Weiming Yuan
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang, China
| | - Changjian Quan
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang, China
| | - Yiyao Cao
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang, China.
| |
Collapse
|
16
|
Even M, Juritsch E, Richter M. Measurement of very volatile organic compounds (VVOCs) in indoor air by sorbent-based active sampling: Identifying the gaps towards standardisation. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Nieto A, Zhang L, Bhandari D, Zhu W, Blount BC, De Jesús VR. Exposure to 1,3-Butadiene in the U.S. Population: National Health and Nutrition Examination Survey 2011-2016. Biomarkers 2021; 26:371-383. [PMID: 33729088 DOI: 10.1080/1354750x.2021.1904000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1,3-Butadiene is a volatile organic compound with a gasoline-like odour that is primarily used as a monomer in the production of synthetic rubber. The International Agency for Research on Cancer has classified 1,3-butadiene as a human carcinogen. We assessed 1,3-butadiene exposure in the U.S. population by measuring its urinary metabolites N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (34HBMA), N-acetyl-S-(1-hydroxymethyl-2-propenyl)-L-cysteine (1HMPeMA), N-acetyl-S-(2-hydroxy-3-butenyl)-L-cysteine (2HBeMA), and N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine (4HBeMA). Urine samples from the 2011 to 2016 National Health and Nutrition Examination Survey were analysed for 1,3-butadiene metabolites using ultrahigh-performance liquid chromatography/tandem mass spectrometry. 34HBMA and 4HBeMA were detected in >96% of the samples; 1HMPeMA and 2HBeMA were detected in 0.66% and 9.84% of the samples, respectively. We used sample-weighted linear regression models to examine the influence of smoking status (using a combination of self-reporting and serum-cotinine data), demographic variables, and diet on biomarker levels. The median 4HBeMA among exclusive smokers (31.5 µg/g creatinine) was higher than in non-users (4.11 µg/g creatinine). Similarly, the median 34HBMA among exclusive smokers (391 µg/g creatinine) was higher than in non-users (296 µg/g creatinine). Furthermore, smoking 1-10, 11-20, and >20 cigarettes per day (CPD) was associated with 475%, 849%, and 1143% higher 4HBeMA (p < 0.0001), respectively. Additionally, smoking 1-10, 11-20, and >20 CPD was associated with 33%, 44%, and 102% higher 34HBMA (p < 0.0001). These results provide significant baseline data for 1,3-butadiene exposure in the U.S. population, and demonstrate that tobacco smoke is a major exposure source.
Collapse
Affiliation(s)
- Alma Nieto
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, U.S. Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Luyu Zhang
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, U.S. Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Deepak Bhandari
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, U.S. Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Wanzhe Zhu
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, U.S. Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Benjamin C Blount
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, U.S. Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Víctor R De Jesús
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, U.S. Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| |
Collapse
|