1
|
Popek R, Przybysz A, Łukowski A, Baranowska M, Bułaj B, Hauke-Kowalska M, Jagiełło R, Korzeniewicz R, Moniuszko H, Robakowski P, Zadworny M, Kowalkowski W. Shields against pollution: phytoremediation and impact of particulate matter on trees at Wigry National Park, Poland. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:448-461. [PMID: 39564929 DOI: 10.1080/15226514.2024.2426771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
This study examines the impact of airborne particulate matter (PM) and associated trace elements (TEs) on deciduous and coniferous trees at the edge of Wigry National Park in northeast Poland, focusing on pollution levels and the potential for phytoremediation. Researchers measured PM concentrations in the air and on the leaves of Picea abies, Quercus robur, and Corylus avellana, along with photosynthetic indicators (Fv/Fm ratio and performance index). The study found significant differences in pollution intensity across areas with varying levels of human activity. P. abies, an evergreen species, accumulated the highest PM levels (>200 μg/cm2), while Q. robur had the highest accumulation among deciduous trees (>50 μg/cm2). Trace elements such as Fe, Cu, Zn, Sr, and Cd were detected, with C. avellana being the most efficient in accumulating Cd (up to 7.5 mg/kg). The accumulation of pollutants correlated with reduced photosynthetic efficiency in trees closest to pollution sources. The findings suggest that strategically planting specific tree species can help mitigate air pollution in national parks and protect sensitive vegetation. Future research should explore the long-term effects of PM on forest health and the role of different species in phytoremediation.
Collapse
Affiliation(s)
- Robert Popek
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Warsaw, Poland
| | - Arkadiusz Przybysz
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Warsaw, Poland
| | - Adrian Łukowski
- Faculty of Forestry, Poznań University of Life Sciences, Poznań, Poland
| | | | - Bartosz Bułaj
- Faculty of Forestry, Poznań University of Life Sciences, Poznań, Poland
| | | | - Radosław Jagiełło
- Faculty of Forestry, Poznań University of Life Sciences, Poznań, Poland
| | | | - Hanna Moniuszko
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Warsaw, Poland
| | - Piotr Robakowski
- Faculty of Forestry, Poznań University of Life Sciences, Poznań, Poland
| | - Marcin Zadworny
- Faculty of Forestry, Poznań University of Life Sciences, Poznań, Poland
| | | |
Collapse
|
2
|
Miralles-Pérez B, Andrés Camacho C, Fernández-Espinosa AJ, Rossini-Oliva S. Particulate matter and potentially toxic element content in urban ornamental plant species to assess pollutants trapping capacity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124058. [PMID: 39793500 DOI: 10.1016/j.jenvman.2025.124058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/13/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Urban environments are usually polluted by anthropogenic activities like traffic, a major source of potentially toxic elements (PTEs), and ornamental plant species may reduce contamination by trapping traffic-related air pollutants in their leaves. The purpose of this study was tested the trapping pollutant capacity of four species commonly used in green areas of Seville city (SW Spain) to better choose species in urban green planning. Composition of particulate matter (PM) obtained from foliar surfaces (sPM) and wax-included (wPM) was determined by EDX-SEM analysis in samples from different city locations. Concentration of different PTEs (Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn), by microwave induced-plasma optical emission spectroscopy (MP-AES) were also analyzed in unwashed leaves of one of the selected species (Citrus aurantium) since it is the most cultivated species in Seville. Results showed that Nerium oleander was the plant species which trapped best superficial total and coarse PM. This capacity was enhanced by the presence of a waxy-cuticle and by cuticle thickness but not by leaf hairs. The only species unable to trap fine particles was Bougainvillea glabra. The most representative sPM on leaf surfaces from all species was the largest fraction (59-75%), followed by coarse (25-37%) and fine fractions (2.2-4.4%). In the wax PM, 48% of coarse particles were found in Citrus aurantium. Particulate matter deposited on surface foliage in general did not vary seasonally, while the large fraction of wPM in summer was significantly higher than in winter. The seasonal differences also existed in the level of PTE (Cd, Fe, Ni and V) in leaves. This work indicates that the leaf traits should be taken into account to evaluate the pollutants caption capacity, especially when planning of recreational green urban areas. Particulate matter composition was different according to the pollution sources and mostly contained Al, C, Ca, Fe, K, and Mg, but potentially toxic elements such as Si, As, Cr, Cu and Zn just accounted for 0.11-1.95% of the total elemental content.
Collapse
Affiliation(s)
- B Miralles-Pérez
- Botanical Garden of the University of Valencia, C/Quart 80, 46008, Valencia, Spain
| | - C Andrés Camacho
- Department of Plant Biology and Ecology, University of Seville, Avda. Reina Mercedes S/n, Apartado de Correos, 1095, 41012, Sevilla, Spain
| | - A J Fernández-Espinosa
- Department of Analytical Chemistry, University of Seville, Profesor García González 1, 41012, Sevilla, Spain
| | - S Rossini-Oliva
- Department of Plant Biology and Ecology, University of Seville, Avda. Reina Mercedes S/n, Apartado de Correos, 1095, 41012, Sevilla, Spain.
| |
Collapse
|
3
|
Wang J, Kong W, Li H, Sun X, Sun Y, Liu Y. Effects of meteorological factors on the retention of particulate matter in lawn grass blades. FRONTIERS IN PLANT SCIENCE 2025; 16:1495212. [PMID: 39912097 PMCID: PMC11794498 DOI: 10.3389/fpls.2025.1495212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025]
Abstract
Plant leaves can reduce the concentration of atmospheric particulate matter (PM) by absorbing it in the air, and this mitigates the deleterious human health effects of PM. However, the ability of plant leaves to retain dust is limited and varies continually due to various meteorological factors such as rainfall, extreme wind speed, and PM10 concentrations. Here, we measured the ability of seven types of turfgrass with leaves similar in macromorphology but varying in micromorphology to retain dust particles of different sizes; we also analyzed the effects of various meteorological factors, such as rainfall, maximum wind speed, and PM10 concentration, on the ability of leaves to retain particles of different sizes. There were significant differences in the ability of the seven types of turfgrass to retain particles of different sizes; the dust retention capacity of Zoysia sinensis was the strongest(2.04 g·m-2), and that of Festuca elata was the weakest(1.39 g·m-2). The elution rates of PM>10 after rainfall of 3 mm and 4 mm were significantly higher than those of PM2.5-10 and PM2.5; the elution rates of PM>10, PM2.5-10, and PM2.5 increased as the amount of rainfall increased. When the amount of dust on leaves is low, wind promotes increases in leaf PM retention. When the blade retains a certain amount of dust, the maximum wind speed is greater than 9.1 m·s-1, which leads to a decrease in the dust retention of lawn grass blades. The concentrations of PM10 and PM2.5 were positively correlated with the retention of particles of different particle sizes. Therefore, evaluations of the dust retention ability of plant leaves require consideration of the effects of local rainfall, maximum wind speed, PM10 concentration, and other factors.
Collapse
Affiliation(s)
- Junrui Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Weihan Kong
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Haimei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xiaodan Sun
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Yingkun Sun
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yu Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
4
|
Černiauskas V, Varnagirytė-Kabašinskienė I, Čėsnienė I, Armoška E, Araminienė V. Response of Tree Seedlings to a Combined Treatment of Particulate Matter, Ground-Level Ozone, and Carbon Dioxide: Primary Effects. PLANTS (BASEL, SWITZERLAND) 2024; 14:6. [PMID: 39795266 PMCID: PMC11723176 DOI: 10.3390/plants14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025]
Abstract
Trees growing in urban areas face increasing stress from atmospheric pollutants, with limited attention given to the early responses of young seedlings. This study aimed to address the knowledge gap regarding the effects of simulated pollutant exposure, specifically particulate matter (PM), elevated ozone (O3), and carbon dioxide (CO2) concentrations, on young seedlings of five tree species: Scots pine (Pinus sylvestris L.); Norway spruce (Picea abies (L.) H.Karst.); silver birch (Betula pendula Roth); small-leaved lime (Tilia cordata Mill.); and Norway maple (Acer platanoides L.). The main objectives of this paper were to evaluate the seedling stem growth response and the biochemical response of seedling foliage to pollutant exposure. Four treatments were performed on two- to three-year-old seedlings of the selected tree species: with PM (0.4 g per seedling) under combined O3 = 180 ppb + CO2 = 650 ppm; without PM under combined O3 = 180 ppb + CO2 = 650 ppm; with PM (0.4 g per seedling) under combined O3 < 40-45 ppb + CO2 < 400 ppm; and without PM under combined O3 < 40-45 ppb + CO2 < 400 ppm. Scots pine and Norway maple showed no changes in growth (stem height and diameter) and biochemical parameters (photosynthetic pigments, total polyphenol content (TPC), total flavonoids content (TFC), and total soluble sugars (TSS)), indicating a neutral response to the combined PM, O3, and CO2 treatment. The chlorophyll response to PM alone and in combination with elevated O3 and CO2 exposure varied, with silver birch increasing, Norway maple-neutral to increasing, Scots pine-neutral to decreasing, and Norway spruce and small-leaved lime-decreasing. The TPC indicated stress responses in Scots pine, small-leaved lime, and Norway maple under increased combined O3 and CO2 and in Norway spruce under single PM treatment. Hence, Scots pine and Norway maple seedlings showed greater resistance to increased PM under combined O3 and CO2 with minimal change in growth, while silver birch seedlings showed adaptation potential with increasing chlorophyll under simulated pollutant stress.
Collapse
Affiliation(s)
| | - Iveta Varnagirytė-Kabašinskienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų 1, Girionys, LT-53101 Kaunas, Lithuania; (V.Č.)
| | | | | | | |
Collapse
|
5
|
Shahrukh S, Baldauf R, Popek R, Moniruzzaman M, Huda MN, Islam MM, Hossain SA, Hossain ME. Removal of airborne particulate matter by evergreen tree species in Dhaka, Bangladesh. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125194. [PMID: 39461612 DOI: 10.1016/j.envpol.2024.125194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Urban air quality stands as a pressing concern in cities globally, with airborne particulate matter (PM) emerging as a significant threat to human health. An investigation was carried out to examine the potential of four prevalent evergreen roadside tree species grown at different locations in Dhaka to capture PM using their leaves. The distribution of PM by mass and quantity in Dhaka are presented for the first time for Bangladesh and these results will also be applicable to countries with similar climates and tree species. Separate gravimetric analyses were carried out to quantify PM in three different size ranges (0.2-2.5 μm, 2.5-10 μm, and 10-100 μm) accumulated on surfaces and trapped within waxes by using the rinse and weigh method. The method is validated for the first time through SEM-EDX analysis, which confirmed that the increase in weight from chloroform-rinsed leaves was exclusively attributable to particle deposition on the filter. The chemical composition of the deposited PM2.5 was analyzed quantitatively by determining the concentration of twenty-five trace elements employing ICP-MS. SEM-EDX analysis revealed the significance of leaf microstructural traits in effectively capturing PM. Significant variations in the deposition of PM were found among different species for two PM categories (surface PM and wax-embedded PM) and three size fractions (large, coarse, and fine) (one-way ANOVA; p < 0.05). The quantity of wax retained on the foliage of trees documented in these locations also varied (p < 0.05). Among the species studied, Ficus benghalensis demonstrated a greater ability to retain PM. Mangifera indica was identified to be the most efficient collector of wax-related PM and appears to be the ideal species for traffic-heavy areas distinguished by high concentrations of organic compounds from vehicle emissions.
Collapse
Affiliation(s)
- Saif Shahrukh
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Richard Baldauf
- Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA
| | - Robert Popek
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Muhammad Nurul Huda
- Centre for Advanced Research in Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Mominul Islam
- Department of Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shahid Akhtar Hossain
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | | |
Collapse
|
6
|
Schaidhauer ACG, Costa FVD, Melo-Júnior JCFD. Air pollution generated in an industrial region: Effect on the cardiovascular health of humans and damage caused to a plant species, Piper gaudichaudianum (Piperaceae), used for biomonitoring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124584. [PMID: 39032548 DOI: 10.1016/j.envpol.2024.124584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Atmospheric pollution due to anthropogenic activities is a complex mixture of gasses and particulate matter (PM) that is currently one of the main causes of premature death in the world. Similarly, it is also capable of directly interfering with plant species by reducing their photosynthetic capacity and growth and killing cells. This work is about an observational study conducted in a region with two industries: a mine and an automobile parts manufacturer. Mining rocks is a source of PM in the air like that caused by other industrial activities. Twenty-five people that work or live in the industrial region cited (area A) and 25 people that live further away (area B) were selected to evaluate their vital signs and conduct a transthoracic echocardiogram. Leaves of Piper gaudichaudianum (Piperaceae), a native plant species, were also collected in both areas and evaluated in a laboratory. The PM accumulated on the leaves was evaluated using scanning electron microscopy (SEM) and inductively coupled plasma-optical emission spectrometry (ICP-OES). A statistical difference (P < 0.05) was verified for the levels of systolic blood pressure (SBP), diastolic blood pressure (DBP), and left ventricular mass index by echocardiography; the values were greater in people in area A. For the plant analysis, there was a statistical difference for all characters evaluated, chlorophyll levels, fresh mass, dry mass and leaf area were reduced, and thickness was greater in area A (P < 0.001). The PM analysis revealed a predominance of silicon, iron, and aluminum chemical elements. The present study suggests that particulate matter pollution is harmful to both humans and the flora.
Collapse
Affiliation(s)
| | - Fábio Voigt da Costa
- Program of Postgraduate in Health and Environment, University of Joinville Region, Brazil
| | | |
Collapse
|
7
|
Tian Y, Li H, Li M, Li S, Guo X. Physiological changes in shrub species due to different sources of dust pollution in an urban environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64280-64294. [PMID: 39531108 DOI: 10.1007/s11356-024-35438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Plants effectively filter ambient air by adsorbing particulate matter. The correct selection of landscape plants can exert greater dust retention benefits in different polluted areas. However, few studies have focused on the dust retention ability and related physiological responses of plants under continuous dust pollution from different dust sources. Here, we assessed the particle retention dynamics and plant physiology (chlorophyll content, soluble protein content, soluble sugar content, and peroxidase activity) of six shrubs (Berberis thunbergii var. atropurpurea, Ligustrum vicaryi, Rosa multiflora, Sorbaria sorbifolia, Swida alba, and Syzyga oblata) under continuous dust pollution from different dust sources (industrial sources: area below the direction of the coal-fired thermal power plant in Chengyang District, Qingdao, China; traffic sources: both sides of the road in each direction at the intersection of Great Wall Road and Zhengyang Road, Chengyang District, Qingdao, China; clean sources: Qingdao Agricultural University Campus, Qingdao Olympic Sculpture Park). The results showed that R. multiflora had the highest dust retention per unit leaf area of 3.27 ± 0.018 g·m-2 and 2.886 ± 0.02 g·m-2 in the experimental treatments of fuel source dust and clean source dust, respectively. The chlorophyll content of the tested shrubs significantly decreased due to the influence of dust treatment time, the range of cellular osmoregulatory substances (soluble sugars, soluble proteins, proline) tended to first increase and then decrease, and the antioxidant enzyme activities (superoxide dismutase, peroxidase) tended to increase and then decrease after continuous dust treatment. The greatest physiological changes were observed in plants within the industrial dust treatment area. The peroxidase activity and chlorophyll could be used as sensitive indicators of dust pollution in plants. R. multiflora showed better resistance to dust and had a greater dust retention capacity than other shrubs, making it more suitable for planting as a greening tree in industrial and traffic-polluted areas. S. alba and S. sorbifolia are sensitive to dust pollution, so they can be used as sensitive tree species to indicate atmospheric dust pollution. Our results may help design a feasible approach for urban shrub greening.
Collapse
Affiliation(s)
- Yuan Tian
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, 266109, People's Republic of China
| | - Haimei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, 266109, People's Republic of China.
| | - Mingyan Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, 266109, People's Republic of China
| | - Shimei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, 266109, People's Republic of China
| | - Xiao Guo
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, 266109, People's Republic of China
- Academy of Dongying Efficient Agricultural Technology and Industry On Saline and Alkaline Land in Collaboration With, Qingdao Agricultural University, Dongying, 257347, People's Republic of China
| |
Collapse
|
8
|
Puchalska E, Przybysz A, Nowak A, Wójcik-Gront E, Askarova G, Lewandowski M, Moniuszko H. Particulate matter hinders the development and reproduction of predatory mites of Euseius finlandicus (Acariformes: Phytoseiidae). Sci Rep 2024; 14:17647. [PMID: 39085440 PMCID: PMC11291712 DOI: 10.1038/s41598-024-68570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
The foliage of the small-leaved lime (Tilia cordata) is characterised by the nerve axils being grown by non-glandular trichomes, which trait contributes to the enhanced retention of the particulate matter (PM). This fact may disturb the ecological service of T. cordata related to the structure of its leaves, which is to provide acarodomatia (micro-shelters) for the predatory mites of the Phytoseiidae family. Phytoseiids are natural enemies of a variety of plant pests, widely applied in integrated pest management (IPM). Their occurrence is largely related to acarodomatia in which these mites hide, feed, reproduce, and develop. For the first time, the influence of PM deposition within spaces typically occupied by phytoseiids is investigated. Experimental populations of Euseius finlandicus were reared on T. cordata leaves in the progressive PM-pollution. The results showed that the values of life table parameters of the predator depended significantly on the level of PM deposition on leaves. Contrary to clean leaves from the control, the medium and high contamination intensities significantly reduced the daily (by 47% and 70%, respectively) and the total fecundity (by 62% and 77%, respectively) of females which, in turn, resulted in a decreased net reproductive rate (by 67% and 81%, respectively), intrinsic rate of increase (by 40% and 55%, respectively) and finite rate of increase (by 8% and 10%, respectively) of E. finlandicus. The pre-ovipositional period was prolonged, while the oviposition duration was shortened and the mites matured longer. In high pollution level the mortality of phytoseiids was boosted by 19% and some females were observed with pollutant lumps adhered to the idiosoma. Also, significant shares of juvenile forms (13%) and adult females (25%) made attempts to escape from highly contaminated experimental arenas. The implications of PM retention on the shelter vegetation are discussed in the context of IPM and ecological services.
Collapse
Affiliation(s)
- E Puchalska
- Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - A Przybysz
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - A Nowak
- Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - E Wójcik-Gront
- Department of Biometry, Institute of Agriculture, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - G Askarova
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61‑614, Poznań, Poland
| | - M Lewandowski
- Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - H Moniuszko
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
9
|
Moniuszko H, Popek R, Nawrocki A, Stankiewicz-Kosyl M, Grylewicz S, Podoba S, Przybysz A. Urban meadow-a recipe for long-lasting anti-smog land cover. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1932-1941. [PMID: 38885074 DOI: 10.1080/15226514.2024.2367137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
This study evaluates for the first time whether 33 species of annual and perennial herbaceous plants originating from a moderate climate continue to be capable of air filtration of particulate matter (PM) at the end of the growing season. Research was undertaken in November in two urban meadows located in trafficked areas of Białystok (Poland). The study reveals that despite the lateness in the season, tested species remained capable of PM accumulation. Deposition of total PM exceeding 100 μg·cm-2 was found on S. vulgaris, S. latifolia, T. pratense, E. vulgare, and A. officinalis. The finest and most toxic fraction was accumulated most effectively by S. latifolia, E. vulgare, and L. vulgare (>12 μg·cm-2). Taraxacum officinale and M. sylvestris retained c. 60% of PM in their epicuticular wax. A slight significant correlation was found between rosette growth pattern and deposition of total PM on foliage, while the accumulation of the finest fraction was correlated with a simple leaf shape. These results support the usefulness of urban meadows as long-lasting air bio-filters provided that their composition includes species that have a confirmed, prolonged PM accumulation capacity and that the meadow is not mown in autumn.
Collapse
Affiliation(s)
- Hanna Moniuszko
- Department of Plant Protection, Section of Basic Research in Horticulture, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Warsaw, Poland
| | - Robert Popek
- Department of Plant Protection, Section of Basic Research in Horticulture, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Warsaw, Poland
| | - Adam Nawrocki
- Department of Plant Protection, Section of Basic Research in Horticulture, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Warsaw, Poland
| | - Marta Stankiewicz-Kosyl
- Department of Plant Protection, Section of Basic Research in Horticulture, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Warsaw, Poland
| | - Sebastian Grylewicz
- Department of Plant Protection, Section of Basic Research in Horticulture, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Warsaw, Poland
| | - Szymon Podoba
- Department of Plant Protection, Section of Basic Research in Horticulture, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Warsaw, Poland
| | - Arkadiusz Przybysz
- Department of Plant Protection, Section of Basic Research in Horticulture, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Warsaw, Poland
| |
Collapse
|
10
|
Xu L, Liu Y, Feng S, Liu C, Zhong X, Ren Y, Liu Y, Huang Y, Yang M. The relationship between atmospheric particulate matter, leaf surface microstructure, and the phyllosphere microbial diversity of Ulmus L. BMC PLANT BIOLOGY 2024; 24:566. [PMID: 38880875 PMCID: PMC11181616 DOI: 10.1186/s12870-024-05232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Plants can retain atmospheric particulate matter (PM) through their unique foliar microstructures, which has a profound impact on the phyllosphere microbial communities. Yet, the underlying mechanisms linking atmospheric particulate matter (PM) retention by foliar microstructures to variations in the phyllosphere microbial communities remain a mystery. In this study, we conducted a field experiment with ten Ulmus lines. A series of analytical techniques, including scanning electron microscopy, atomic force microscopy, and high-throughput amplicon sequencing, were applied to examine the relationship between foliar surface microstructures, PM retention, and phyllosphere microbial diversity of Ulmus L. RESULTS We characterized the leaf microstructures across the ten Ulmus lines. Chun exhibited a highly undulated abaxial surface and dense stomatal distribution. Langya and Xingshan possessed dense abaxial trichomes, while Lieye, Zuiweng, and Daguo had sparsely distributed, short abaxial trichomes. Duomai, Qingyun, and Lang were characterized by sparse stomata and flat abaxial surfaces, whereas Jinye had sparsely distributed but extensive stomata. The mean leaf retention values for total suspended particulate (TSP), PM2.5, PM2.5-10, PM10-100, and PM> 100 were 135.76, 6.60, 20.10, 90.98, and 13.08 µg·cm- 2, respectively. Trichomes substantially contributed to PM2.5 retention, while larger undulations enhanced PM2.5-10 retention, as evidenced by positive correlations between PM2.5 and abaxial trichome density and between PM2.5-10 and the adaxial raw microroughness values. Phyllosphere microbial diversity patterns varied among lines, with bacteria dominated by Sediminibacterium and fungi by Mycosphaerella, Alternaria, and Cladosporium. Redundancy analysis confirmed that dense leaf trichomes facilitated the capture of PM2.5-associated fungi, while bacteria were less impacted by PM and struggled to adhere to leaf microstructures. Long and dense trichomes provided ideal microhabitats for retaining PM-borne microbes, as evidenced by positive feedback loops between PM2.5, trichome characteristics, and the relative abundances of microorganisms like Trichoderma and Aspergillus. CONCLUSIONS Based on our findings, a three-factor network profile was constructed, which provides a foundation for further exploration into how different plants retain PM through foliar microstructures, thereby impacting phyllosphere microbial communities.
Collapse
Grants
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
Collapse
Affiliation(s)
- Liren Xu
- Hebei Agricultural University, Baoding, 071000, Hebei, China
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, 050061, Hebei, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yichao Liu
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, 050061, Hebei, China
| | - Shuxiang Feng
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, 050061, Hebei, China
| | - Chong Liu
- Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Xinyu Zhong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yachao Ren
- Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yinran Huang
- Hebei Agricultural University, Baoding, 071000, Hebei, China.
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, 050061, Hebei, China.
| | - Minsheng Yang
- Hebei Agricultural University, Baoding, 071000, Hebei, China.
| |
Collapse
|
11
|
Li D, Wang H, Gao Q, Lu M. Study on the ability of indoor plants to absorb and purify benzene pollution. Sci Rep 2024; 14:13169. [PMID: 38849491 PMCID: PMC11161576 DOI: 10.1038/s41598-024-63811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
The ability of indoor plants to purify benzene pollution is the basic basis for the selection of plants for ecological remediation of indoor benzene pollution. In this study, the purification rate and the purification amount per unit leaf area of 13 test plants at three benzene concentrations were determined by indoor fumigation experiments, and the benzene absorption and purification abilityability of indoor plants were comprehensively evaluated. The results showed that (1) there was a significant correlation between benzene concentration and purification rate and purification amount per unit leaf area. (2) At the three concentrations, Spathiphyllum floribundum showed the highest purification rate and Sansevieria trifasciata var. laurentii showed the highest purification per unit leaf area. (3) The combined results showed that Sansevieria trifasciata var. laurentii, Spathiphyllum floribundum and Aloe arborescens were the strongest absorbers and purifiers, while Podocarpus nagi and Anthurium andraeanum 'Pink champin' had the weakest absorption and purification capacity. The results of this study provide a theoretical basis and reference for the selection of plants with strong capacities to adsorb and purify benzene pollution in indoor air.
Collapse
Affiliation(s)
- Donghe Li
- School of Architecture and Built Environment, Faculty of Science Engineering and Built Environment, Deakin University, Geelong, VIC, 3220, Australia
- Landscape Architecture Research Center, Shandong Jianzhu Univerity, Jinan, 250101, Shandong, China
| | - Han Wang
- Landscape Architecture Research Center, Shandong Jianzhu Univerity, Jinan, 250101, Shandong, China
| | - Qingyu Gao
- Landscape Architecture Research Center, Shandong Jianzhu Univerity, Jinan, 250101, Shandong, China
| | - Min Lu
- Landscape Architecture Research Center, Shandong Jianzhu Univerity, Jinan, 250101, Shandong, China.
| |
Collapse
|
12
|
Permana BH, Thiravetyan P, Treesubsuntorn C. Exogenous of different elicitors: proline and ornithine on Sansevieria trifasciata under particulate matter (PM) and volatile organic compounds (VOC). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34028-34037. [PMID: 38693456 DOI: 10.1007/s11356-024-33513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Phytoremediation has become famous for removing particulate matter (PM) and volatile organic compounds (VOC) in situ. Plants for removing PM and VOC were associated with botanical biofilters to attract pollution to the plant. On the other hand, persistent pollution exposure can lower plant health and phytoremediation effectiveness; therefore, improving plant tolerance against stress is necessary. Various elicitors can enhance plant tolerance to certain stressors. This study aims to investigate different elicitors to maintain plant health and improve the use of plants in phytoremediation for PM and VOC pollution. This experiment used Sansevieria trifasciata hort. ex Prain under PM and VOC stress. Exogenous elicitors, such as proline, ornithine, and a commercial product, were applied to the leaf parts before exposure to PM and VOC stress. The initial concentrations of PM1, PM2.5, and PM10 were 300-350, 350-450, and 400-500 µg m-3, respectively, while the VOC concentration was 2.5-3.0 mg m-3. The plant was stressed for 7 days. The result indicated that ornithine 10 mM is vital in improving plant tolerance and inducing antioxidant enzymes against PM and VOC, while proline 50 mM and a commercial product could not reduce plant stress. This study suggests that ornithine might be an important metabolite to improve plant tolerance to PM and VOC.
Collapse
Affiliation(s)
- Bayu Hadi Permana
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chairat Treesubsuntorn
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
13
|
Vashist M, Kumar TV, Singh SK. A comprehensive review of urban vegetation as a Nature-based Solution for sustainable management of particulate matter in ambient air. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26480-26496. [PMID: 38570430 DOI: 10.1007/s11356-024-33089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Air pollution is one of the most pressing environmental threats worldwide, resulting in several health issues such as cardiovascular and respiratory disorders, as well as premature mortality. The harmful effects of air pollution are particularly concerning in urban areas, where mismanaged anthropogenic activities, such as growth in the global population, increase in the number of vehicles, and industrial activities, have led to an increase in the concentration of pollutants in the ambient air. Among air pollutants, particulate matter is responsible for most adverse impacts. Several techniques have been implemented to reduce particulate matter concentrations in the ambient air. However, despite all the threats and awareness, efforts to improve air quality remain inadequate. In recent years, urban vegetation has emerged as an efficient Nature-based Solution for managing environmental air pollution due to its ability to filter air, thereby reducing the atmospheric concentrations of particulate matter. This review characterizes the various mitigation mechanisms for particulate matter by urban vegetation (deposition, dispersion, and modification) and identifies key areas for further improvements within each mechanism. Through a systematic assessment of existing literature, this review also highlights the existing gaps in the present literature that need to be addressed to maximize the utility of urban vegetation in reducing particulate matter levels. In conclusion, the review emphasizes the urgent need for proper air pollution management through urban vegetation by integrating different fields, multiple stakeholders, and policymakers to support better implementation.
Collapse
Affiliation(s)
- Mallika Vashist
- Department of Environmental Engineering, Delhi Technological University, Bawana Road, Shahbad Daulatpur, Delhi, India, 110042.
| | | | - Santosh Kumar Singh
- Department of Environmental Engineering, Delhi Technological University, Bawana Road, Shahbad Daulatpur, Delhi, India, 110042
- Rajasthan Technical University, Kota (Rajasthan), India
| |
Collapse
|
14
|
Dang N, Xing W, Gai X, Chen G. Modulating phyllosphere microbiome structure and function in Loropetalum chinense and Osmanthus fragrans: The impact of foliar dust and heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170250. [PMID: 38253107 DOI: 10.1016/j.scitotenv.2024.170250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Trees can effectively capture airborne particles and improve air quality. However, the specific response of phyllosphere microbiome (PMo) in different plant species to particulate matter (PM) and the heavy metals it contains are not yet fully understood. In this study, we investigated the impact of PM on the diversity and function of PMo in Loropetalum chinense and Osmanthus fragrans trees grown in industrial and clean zones with varying levels of PM pollution. Our findings revealed that leaf dust had a significant negative effect on microbial richness, with O. fragrans exhibiting higher microbial diversity than L. chinense. The dominant phylum of phyllosphere bacteria in all samples was Proteobacteria, and the dominant genera were Stenotrophomonas and Delftia. The relative abundance of these genera varied significantly among plant species and regions. Our results showed that PM had a significant impact on the community composition of PMo, with the presence of heavy metals exerting a greater effect than particle size. Moreover, the foliar microbial community of plants grown in industrial zones exhibited significantly higher metabolic functions related to stress resistance and disease resistance compared to plants in control zones. These findings highlight the structural and functional responses of PMo to PM and indicate their potential for enhancing plant adaptation to environmental stress.
Collapse
Affiliation(s)
- Ning Dang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Wenli Xing
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xu Gai
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| |
Collapse
|
15
|
Mukhopadhyay S, Dutta R, Das P. Greenery planning for urban air pollution control based on biomonitoring potential: Explicit emphasis on foliar accumulation of particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120524. [PMID: 38461639 DOI: 10.1016/j.jenvman.2024.120524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
In this study, efficiencies of eight indigenous plants of Baishnabghata Patuli Township (BPT), southeast Kolkata, India, were explored as green barrier species and potentials of plant leaves were exploited for biomonitoring of particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs). The present work focused on studying PM capturing abilities (539.32-2766.27 μg cm-2) of plants (T. divaricata, N. oleander and B. acuminata being the most efficient species in retaining PM) along with the estimation of foliar contents of PM adhered to leaf surfaces (total sPM (large + coarse): 526.59-2731.76 μg cm-2) and embedded within waxes (total wPM (large + coarse): 8.73-34.51 μg cm-2). SEM imaging used to analyse leaf surfaces affirmed the presence of innate corrugated microstructures as main drivers for particle capture. Accumulation capacities of PAHs of vehicular origin (total index, TI > 4) were compared among the species based on measured concentrations (159.92-393.01 μg g-1) which indicated T. divaricata, P. alba and N. cadamba as highest PAHs accumulators. Specific leaf area (SLA) of plants (71.01-376.79 cm2 g-1), a measure of canopy-atmosphere interface, had great relevance in PAHs diffusion. Relative contribution (>90%) of 4-6 ring PAHs to total carcinogenic equivalent and potential as well as 5-6 ring PAHs to total mutagenic equivalent and potential had also been viewed with respect to benzo[a]pyrene. In-depth analysis of foliar traits and adoption of plant-based ranking strategies (air pollution tolerance index (APTI) and anticipated performance index (API)) provided a rationale for green belting. Each of the naturally selected plant species showed evidences of adaptations during abiotic stress to maximize survival and filtering effects for reductive elimination of ambient PM and PAHs, allowing holistic management of green spaces.
Collapse
Affiliation(s)
- Shritama Mukhopadhyay
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata 700032, India.
| | - Ratna Dutta
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata 700032, India.
| | - Papita Das
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
16
|
Roy A, Mandal M, Das S, Popek R, Rakwal R, Agrawal GK, Awasthi A, Sarkar A. The cellular consequences of particulate matter pollutants in plants: Safeguarding the harmonious integration of structure and function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169763. [PMID: 38181950 DOI: 10.1016/j.scitotenv.2023.169763] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Particulate matter (PM) pollution is one of the pressing environmental concerns confronting human civilization in the face of the Anthropocene era. Plants are continuously exposed to an accelerating PM, threatening their growth and productivity. Although plants and plant-based infrastructures can potentially reduce ambient air pollutants, PM still affects them morphologically, anatomically, and physiologically. This review comprehensively summarizes an up-to-date review of plant-PM interaction among different functional plant groups, PM deposition and penetration through aboveground and belowground plant parts, and plants' cellular strategies. Upon exposure, PM represses lipid desaturases, eventually leading to modification of cell wall and membrane and altering cell fluidity; consequently, plants can sense the pollutants and, thus, adapt different cellular strategies. The PM also causes a reduction in the photosynthetically active radiation. The study demonstrated that plants reduce stomatal density to avoid PM uptake and increase stomatal index to compensate for decreased gaseous exchange efficiency and transpiration rates. Furthermore, genes and gene sets associated with photosynthesis, glycolysis, gluconeogenesis, and the TCA cycle were dramatically lowered by PM stress. Several transcription factors, including MYB, C2H2, C3H, G2-like, and WRKY were induced, and metabolites such as proline and soluble sugar were accumulated to increase resistance against stressors. In addition, enzymatic and non-enzymatic antioxidants were also accumulated to scavenge the PM-induced reactive oxygen species (ROS). Taken together, this review provides an insight into plants' underlying cellular mechanisms and gene regulatory networks in response to the PM to determine strategies to preserve their structural and functional blend in the face of particulate pollution. The study concludes by recommending that future research should precisely focus on plants' response to short- and long-term PM exposure.
Collapse
Affiliation(s)
- Anamika Roy
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India
| | - Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India
| | - Sujit Das
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India
| | - Robert Popek
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, Warsaw, Poland
| | - Randeep Rakwal
- Institute of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan; GRADE Academy (Pvt.) Ltd., Birgunj, Nepal
| | | | - Amit Awasthi
- Department of Applied Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India.
| |
Collapse
|
17
|
Moniuszko H, Puchalska E, Mikowska K, Wójcik-Gront E, Popek R, Lewandowski M, Przybysz A. Is there a downside to plant ecological services in the city? Influences of particulate matter on the two-spotted spider mite (Tetranychus urticae) foraging on the small-leaved lime in urban conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167567. [PMID: 37802333 DOI: 10.1016/j.scitotenv.2023.167567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023]
Abstract
The aim of this research was to examine how particulate matter (PM) pollution affects the life history of the two-spotted spider mite (TSSM), Tetranychus urticae (Trombidiformes: Tetranychidae), in modelled urban conditions. For this purpose, experimental populations of TSSM were cultured on the foliage of small-leaved lime (Tilia cordata) contaminated with PM at intensities corresponding to differing city zones such as a park, a busy road and an industrial area. The control samples in the study were washed, unpolluted leaves. The spider mite was selected as a model organism due to its cosmopolitan distribution, broad host spectrum, resistance to a variety of pesticides and food-intake mode involving cell-content sucking, while T. cordata is widely planted in cities and has demonstrated a considerable capability for PM capture. Data on the longevity and mortality of particular instars and on female fecundity at different pollution levels were collected and statistically evaluated. Concentrations of PM typical for roads and industrial city zones significantly reduced total female fecundity (avg. 53.9 and 55.9 eggs/female, respectively, vs 79.2 in control), which entailed a slower population increase, while the survival rate of particular developmental instars (P = 0.52) and fertility curves (P = 0.19) remained unchanged. The presence of PM caused physiological effects in the mites, despite the lack of direct consumption of the pollutant by adult and juvenile instars. Considering the incomparable resilience of TSSM to unfavourable environmental factors, it is predicted that the detrimental influence of PM on other representatives of urban arthropods may be even more severe. The results suggest that there is a need for further investigations into the ecological ramifications of air purification provided by urban green spaces.
Collapse
Affiliation(s)
- H Moniuszko
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - E Puchalska
- Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - K Mikowska
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - E Wójcik-Gront
- Department of Biometry, Institute of Agriculture, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - R Popek
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - M Lewandowski
- Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - A Przybysz
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
18
|
Steinparzer M, Schaubmayr J, Godbold DL, Rewald B. Particulate matter accumulation by tree foliage is driven by leaf habit types, urbanization- and pollution levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122289. [PMID: 37532217 DOI: 10.1016/j.envpol.2023.122289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Particulate matter (PM) pollution poses a significant threat to human health. Greenery, particularly trees, can act as effective filters for PM, reducing associated health risks. Previous studies have indicated that tree traits play a crucial role in determining the amount of PM accumulated on leaves, although findings have often been site-specific. To comprehensively investigate the key factors influencing PM binding to leaves across diverse tree species and geographical locations, we conducted an extensive analysis using data extracted from 57 publications. The data covers 11 countries and 190 tree species from 1996 to 2021. We categorized tree species into functional groups: evergreen conifers, deciduous conifers, deciduous broadleaves, and evergreen broadleaves based on leaf habit and phylogeny. Evergreen conifers exhibited the highest PM accumulation on leaves, and in general, evergreen leaves accumulated more PM compared to deciduous leaves across all PM size classes. Specific leaf traits, such as epicuticular wax, played a significant role. The highest PM loads on leaves were observed in peri-urban areas along the rural-peri-urban-urban gradient. However, the availability of global data was skewed, with most data originating from urban and peri-urban areas, primarily from China and Poland. Among different climate zones, substantial data were only available for warm temperate and cold steppe climate zones. Understanding the problem of PM pollution and the role of greenery in urban environments is crucial for monitoring and controlling PM pollution. Our systematic review of the literature highlights the variation on PM loading among different vegetation types with varying leaf characteristics. Notably, epicuticular wax emerged as a marker trait that exhibited variability across PM size fractions and different vegetation types. In conclusion, this review emphasizes the importance of greenery in mitigation PM pollution. Our findings underscore the significance of tree traits in PM binding. However, lack of data stresses the need for further research and data collection initiatives.
Collapse
Affiliation(s)
- Matthias Steinparzer
- Institute of Forest Ecology, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Johanna Schaubmayr
- Institute of Forest Ecology, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Douglas L Godbold
- Institute of Forest Ecology, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria; Department of Forest Protection and Wildlife Management, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Boris Rewald
- Institute of Forest Ecology, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria; Vienna Scientific Instruments GmbH, Alland, Austria.
| |
Collapse
|
19
|
Hong J, Lee M, Huh W, Kim TK, Jeon J, Lee H, Kim K, Byeon S, Park C, Kim HS. Comparisons of PM 2.5 mitigation with stand characteristics between evergreen Korean pine plantations and deciduous broad-leaved forests in the Republic of Korea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122240. [PMID: 37482339 DOI: 10.1016/j.envpol.2023.122240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Owing to industrialization and urbanization in recent decades, fine particulate matter (PM2.5) in the atmosphere has become a major environmental problem worldwide. This environmental issue pushed the use of forests as air filtering tools. However, there is a lack of continuous and long-term forest management to efficiently mitigate PM2.5. In this study, we assessed the potential of different forest types to control air pollution by measuring the seasonal PM2.5 concentrations inside and outside the forest for one year. In addition, the PM2.5 reduction efficiencies (PMREs) of two forest types were compared, and their relationship with stand characteristics was analyzed. The results showed that the average PMRE inside the forests was approximately 18.2%; the seasonal PMRE was highest in winter (approximately 28.1%) and lowest in summer (approximately 9.6%). The average PMRE of the Taehwa deciduous broad-leaved forest (TDF) (approximately 18.8%) was significantly higher than that of the Taehwa coniferous forest (TCF) (approximately 17.5%) (P < 0.001); differences were also observed seasonally. The PMRE in the TCF was higher in spring and summer (P < 0.001), while that in the TDF was higher in autumn and winter (P < 0.001). Furthermore, the PMRE in the TDF was negatively correlated with stand density (P = 0.003) and positively correlated with the average diameter at breast height (DBH) (P = 0.028). However, the PMRE in the TCF did not significantly correlate with stand characteristics. As such, the results of this study revealed the differences in PM2.5 mitigation according to stand characteristics, which should be considered in urban forest management.
Collapse
Affiliation(s)
- Jeonghyun Hong
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minsu Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woojin Huh
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Kyung Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihyeon Jeon
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hojin Lee
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kunhyo Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Siyeon Byeon
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chanoh Park
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea; Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
20
|
Sabir MA, Guo W, Nawaz MF, Yasin G, Yousaf MTB, Gul S, Hussain T, Rahman SU. Assessing the effects of limestone dust and lead pollution on the ecophysiology of some selected urban tree species. FRONTIERS IN PLANT SCIENCE 2023; 14:1144145. [PMID: 37255552 PMCID: PMC10225577 DOI: 10.3389/fpls.2023.1144145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Soil and air pollution caused by heavy metals and limestone dust are prevalent in urban environments and they are an alarming threat to the environment and humans. This study was designed to investigate the changes in morphological and physiological traits of three urban tree species seedlings (Bombax ceiba, Conocarpus lancifolius, and Eucalyptus camaldulensis) under the individual as well as synergetic effects of heavy metal lead (Pb) and limestone dust toxicities. The tree species were grown under controlled environmental conditions with nine treatments consisting of three levels of dust (0, 10, and 20 g) and three levels of Pb contaminated water irrigation (0, 5, and 10 mg L-1). The results depicted that the growth was maximum in T1 and minimum in T9 for all selected tree species. B. ceiba performed better under the same levels of Pb and limestone dust pollution as compared with the other two tree species. The B. ceiba tree species proved to be the most tolerant to Pb and limestone pollution by efficiently demolishing oxidative bursts by triggering SOD, POD, CAT, and proline contents under different levels of lead and dust pollution. The photosynthetic rate, stomatal conductance, evapotranspiration rate, and transpiration rate were negatively influenced in all three tree species in response to different levels of lead and dust applications. The photosynthetic rate was 1.7%, 3.1%, 7.0%, 11.03%, 16.2%, 23.8%, 24.8%, and 30.7%, and the stomatal conductance was 5%, 10.5%, 23.5%, 40%, 50.01%, 61.5%, 75%, and 90.9%, greater in T2, T3, T4, T5, T6, T7, T8, and T9 plants of B. ceiba, respectively, as compared to T1. Based on the findings, among these three tree species, B. ceiba is strongly recommended for planting in heavy metal and limestone dust-polluted areas followed by E. camaldulensis and C. lancifolius due to their better performance and efficient dust and heavy metal-scavenging capability.
Collapse
Affiliation(s)
| | - Wei Guo
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
| | | | - Ghulam Yasin
- Department of Forestry and Range Management, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Sadaf Gul
- Department of Botany, University of Karachi, Karachi, Pakistan
| | - Tanveer Hussain
- Institute of Forest Sciences, The Islamia University, Bahawalpur, Pakistan
| | - Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
21
|
Ohta A, Takahashi K, Sase H, Murao N, Takada K, Yamaguchi M, Murakami H, Nakaba S, Watanabe M, Mizukawa K, Takada H, Izuta T. Relationship between the amount of black carbon particles deposited on the leaf surface and leaf surface traits in nine urban greening tree species. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023:1-13. [PMID: 37148212 DOI: 10.1080/15226514.2023.2204148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To select urban greening tree species suitable for the purification of the atmosphere polluted by black carbon (BC) particles, it is necessary to clarify the determinants of the amount of BC particles deposited on the tree leaves. In the present study, we investigated the relationship between the amount of BC particles that were deposited from the atmosphere and firmly adhered to the leaf epicuticular wax, and leaf surface traits in seedlings of nine tree species grown for two years under natural conditions (Fuchu, Tokyo, Japan). There was a significant interspecific difference in the maximum amount of BC particles deposited on the leaf surface, and the order was as follows: Ilex rotunda > Cornus florida > Osmanthus fragrans > Cornus kousa > Quercus glauca ≒ Quercus myrsinifolia > Magnolia kobus ≒ Zelkova serrata ≒ Styrax japonicus. In the nine tree species, significant highly positive correlations were observed between the amount of BC particles deposited on the leaf surface, and the hydrophobicity of leaf epicuticular wax determined by its chemical composition. Therefore, we concluded that the hydrophobicity of leaf epicuticular wax is an important determinant of the amount of BC particles deposited on the leaf surface of urban greening tree species.
Collapse
Affiliation(s)
- Akari Ohta
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kei Takahashi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Hiroyuki Sase
- Asia Center for Air Pollution Research, Niigata, Japan
| | - Naoto Murao
- Graduate School of Engineering, Hokkaido University, Sapporo, Japan
| | - Keiichi Takada
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Masahiro Yamaguchi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Hisashi Murakami
- Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Satoshi Nakaba
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kaoruko Mizukawa
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Hideshige Takada
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Takeshi Izuta
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
22
|
Skaldina O, Łukowski A, Leskinen JTT, Koistinen AP, Eeva T. Mobile samplers of particulate matter - Flying omnivorous insects in detection of industrial contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161511. [PMID: 36632898 DOI: 10.1016/j.scitotenv.2023.161511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Flying insects are potential mobile samplers of airborne particulate matter (PM). However, current knowledge on their susceptibility to PM is limited to pollinators. Insects' capacity for particle surface accumulation depends on the lifestyle, structure of the body integuments, and behavioral patterns. Here, we investigate how two species of flying omnivorous insects from the genus Vespula, possessing direct interactions with air, soil, plants, and herbivores, indicate industrial pollution by accumulating coarse (PM10) and fine (PM2.5) particles on their bodies. The internal accumulation of particles in wasps' gut tissues is assessed considering heavy metals exposure to reveal and discuss the potential magnitude of ecotoxicological risks. Female individuals of Vespula vulgaris and V. germanica were sampled with a hand-netting near to Harjavalta Cu-Ni smelter and in the control areas in southwestern Finland. They were analyzed with light microscopy (LM), electron microscopy (SEM, TEM), and energy-dispersive X-ray spectroscopy (EDX) methods. Near to the smelter, wasps trapped significantly more particles, which were of bigger size and their surface optical density was higher. Vespula vulgaris accumulated larger particles than V. germanica, but that wasn't associated with morphological characteristics such as body size or hairiness. In both areas, accumulated surface PM carried clays and silicates. Only in polluted environments PM consistently contained metallic and nonmetallic particles (from high to moderate weight %) of Fe, Ni, Cu, and S - major pollutants emitted from the smelter. Wasps from industrially polluted areas carried significantly more granules in the columnar epithelial midgut cells. TEM-EDX analyses identified those structures were associated with metal ions such as Cr, Cu, Ni, and Fe. As epithelial gut cells accumulated metal particles, midgut confirmed as a barrier for metal exposure in wasps. External PM contamination in wasps is suggested as a qualitative, yet a natural and simple descriptor of local industrial emissions.
Collapse
Affiliation(s)
- Oksana Skaldina
- Department of Biology, University of Turku, 20014, Turku, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211, Kuopio, Finland.
| | - Adrian Łukowski
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71E, 60-625 Poznań, Poland.
| | - Jari T T Leskinen
- SIB Labs Unit, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland.
| | - Arto P Koistinen
- SIB Labs Unit, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland.
| | - Tapio Eeva
- Department of Biology, University of Turku, 20014, Turku, Finland.
| |
Collapse
|
23
|
Chaurasia M, Patel K, Tripathi I, Rao KS. Impact of dust accumulation on the physiological functioning of selected herbaceous plants of Delhi, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80739-80754. [PMID: 35729390 DOI: 10.1007/s11356-022-21484-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Plants are now widely recognized for their potential role in improving the air quality by dispersion and deposition of atmospheric dust particles. However, suspended dust particles negatively affect plant growth and physiological development. The present study aims to assess the amount of dust accumulation on the leaf surface and to evaluate the effect of foliar dust on leaf gas exchange parameters, photosynthetic pigment, and metabolite content of five roadside herbaceous plant species (Amaranthus viridis, Achyranthes aspera, Acalypha indica, Parthenium hysterophorus, Trianthema portulacastrum). Two sites (site I and site II) were selected that differed in their surrounding anthropogenic activities and dust pollution levels. Results showed that the average amount of dust accumulated on the leaf surface was significantly greater in plants grown at the polluted site. Among the five species examined, the highest amount of foliar dust load was observed for A. aspera (0.49 mg cm-2). Dust accumulation caused substantial changes in plant physiology as indicated by the significant decline in chlorophyll content, photosynthetic rate, stomatal conductivity, and transpiration rate in plants grown at the polluted site. Moreover, an increase in antioxidant activity, total ascorbate, and metabolite content, responsible for maintaining plant defense, was higher in plants at polluted site. Biochemical response of the individual plants studied was variable, which suggests that different plants adopted different mechanisms to cope with the stress induced by dust particles.
Collapse
Affiliation(s)
| | - Kajal Patel
- Department of Botany, University of Delhi, New Delhi, 110007, India
| | - Indu Tripathi
- Department of Botany, University of Delhi, New Delhi, 110007, India
- Department of Environmental Studies, University of Delhi, New Delhi, 110007, India
| | | |
Collapse
|
24
|
Glinyanova I, Asanova N. Research of urban atmospheric aerosols of the Lower Volga under conditions of anthropogenic load and active zones of Earth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71380-71399. [PMID: 35596864 DOI: 10.1007/s11356-022-20865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
In settlements, special attention is given to the study of anthropogenic aerosol pollution, and insufficient attention is given to natural sources of pollution, especially from active zones of the Earth. The aim of this work was to study atmospheric pollution (the Srednyaya Akhtuba village (Volgograd region, Russia)) using indicators (pH; EC, μS/cm) of aerosol suspensions (washing off aerosols from the leaves of Prunus armeniaca L.) during 2018-2020 and the forecast of pollution sources. Research hypothesis: low mineralization and close to neutral acidity of aerosol suspensions indicate the purity of the atmospheric air, and there is no load of anthropogenic and natural sources. Acid mineralized aerosols were found in the residential area of Srednyaya Akhtuba, which indicates air pollution during 2018-2020. The correlation relationship between pH and EC in μS/cm was investigated using standard least squares regression. The results obtained indicate statistically significant differences between the experimental territory and the (relatively) clean location from 2018 to 2020 in terms of the studied indicators, as well as the revealed correlation between them in Srednyaya Akhtuba village, which indicates the revealed patterns and the influence of the system factor. Anthropogenic and natural sources were the system factors. The authors predict an active underground ancient volcanic zone in the area of Srednyaya Akhtuba with a possible natural load on the residential areas of the village, the assumption of which is based on analysis of heat anomaly maps using the Landsat-8 program and other programs.
Collapse
Affiliation(s)
- Irina Glinyanova
- Department of Life Safety in Construction and Urban Economy of Volgograd State Technical University, 28 Lenin Av, 400005, Volgograd, Russia.
| | - Natali Asanova
- Department of Applied Mathematics of Volgograd State Technical University, 28 Lenin Av, 400005, Volgograd, Russia
| |
Collapse
|
25
|
Popek R, Mahawar L, Shekhawat GS, Przybysz A. Phyto-cleaning of particulate matter from polluted air by woody plant species in the near-desert city of Jodhpur (India) and the role of heme oxygenase in their response to PM stress conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70228-70241. [PMID: 35585451 DOI: 10.1007/s11356-022-20769-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Particulate matter (PM) is one of the most dangerous pollutants in the air. Urban vegetation, especially trees and shrubs, accumulates PM and reduces its concentration in ambient air. The aim of this study was to examine 10 tree and shrub species common for the Indian city of Jodhpur (Rajasthan) located on the edge of the Thar Desert and determine (1) the accumulation of surface and in-wax PM (both in three different size fractions), (2) the amount of epicuticular waxes on foliage, (3) the concentrations of heavy metals (Cd and Cu) on/in the leaves of the examined species, and (4) the level of heme oxygenase enzyme in leaves that accumulate PM and heavy metals. Among the investigated species, Ficus religiosa L. and Cordia myxa L. accumulated the greatest amount of total PM. F. religiosa is a tall tree with a lush, large crown and leaves with wavy edge, convex veins, and long petioles, while C. myxa have hairy leaves with convex veins. The lowest PM accumulation was recorded for drought-resistant Salvadora persica L. and Azadirachta indica A. Juss., which is probably due to their adaptation to growing conditions. Heavy metals (Cu and Cd) were found in the leaves of almost every examined species. The accumulation of heavy metals (especially Cu) was positively correlated with the amount of PM deposited on the foliage. A new finding of this study indicated a potentially important role of HO in the plants' response to PM-induced stress. The correlation between HO and PM was stronger than that between HO and HMs. The results obtained in this study emphasise the role of plants in cleaning polluted air in conditions where there are very high concentrations of PM.
Collapse
Affiliation(s)
- Robert Popek
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Lovely Mahawar
- Plant Biotechnology and Molecular Biology Laboratory, Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | - Gyan Singh Shekhawat
- Plant Biotechnology and Molecular Biology Laboratory, Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | - Arkadiusz Przybysz
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
26
|
Prigioniero A, Zuzolo D, Niinemets Ü, Postiglione A, Mercurio M, Izzo F, Trifuoggi M, Toscanesi M, Scarano P, Tartaglia M, Sciarrillo R, Guarino C. Particulate matter and polycyclic aromatic hydrocarbon uptake in relation to leaf surface functional traits in Mediterranean evergreens: Potentials for air phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129029. [PMID: 35525010 DOI: 10.1016/j.jhazmat.2022.129029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
We explored relationships between particulate matter (PM) and polycyclic aromatic hydrocarbon (PAHs) leaf concentrations, uptake rates and leaf surface functional traits in four Mediterranean evergreen trees (Chamaerops humilis, Citrus × aurantium, Magnolia grandiflora, and Quercus ilex) during a dry month. Pollutant leaf concentration at different dates and uptake rate were correlated. We quantified PM by gravimetric analysis, PAHs were extracted from intact and dewaxed leaves and analyzed by GC-MS, and cuticle thickness, number and surface of stomata (Ns and SS) and trichomes (Nt and St) were determined by optical microscopy. Infrared spectroscopy was used to investigate the leaves surfaces composition and assess esterification index (E). Studied species were characterized by unique combinations of functional traits and pollutant uptake capacities. PM10 uptake scaled positively with SS, St and upper cuticle thickness (Tc,u) across species. PM2.5 uptake scaled positively with Tc,u, and thicker cuticles were also associated with greater shares of uptake of hydrophobic PM fractions. Uptakes of different fractions of PAH were generally weakly related to different leaf functional traits, except for some correlations with E and SS. We conclude that both plant surface morphological and chemical leaf traits influence PM and PAH retention, unveiling their potential role in air phytoremediation.
Collapse
Affiliation(s)
- Antonello Prigioniero
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento 82100, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento 82100, Italy.
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu 51006, Estonia
| | - Alessia Postiglione
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento 82100, Italy
| | - Mariano Mercurio
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento 82100, Italy
| | - Francesco Izzo
- Department of Earth Sciences, Environment and Resources, University of Naples Federico II, via Cintia, Naples 80126, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, Naples 80126, Italy
| | - Maria Toscanesi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, Naples 80126, Italy
| | - Pierpaolo Scarano
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento 82100, Italy
| | - Maria Tartaglia
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento 82100, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento 82100, Italy
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento 82100, Italy
| |
Collapse
|
27
|
Dang N, Zhang H, Abdus Salam MM, Li H, Chen G. Foliar dust particle retention and metal accumulation of five garden tree species in Hangzhou: Seasonal changes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119472. [PMID: 35580713 DOI: 10.1016/j.envpol.2022.119472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
As particulate matter and heavy metals in the atmosphere affect the atmospheric quality, they pose a threat to human health through the respiratory system. Vegetation can remove airborne particles and purify the atmosphere. Plant leaves are capable of effectively absorbing heavy metals contained by particulates. To evaluate the effects of different garden plants on the particulate matter retention and heavy metal accumulation, the seasonal changes of dust retention of five typical garden plants were compared in the industrial and non-industrial zones in Hangzhou. Results revealed that these species differed in dust retention with the descending order of Loropetalum chinense > Osmanthus fragrans > Pittosporum tobira > Photinia × fraseri > Cinnamomum camphora, which were related to the microstructure feature of the leaf. These species also showed seasonal variation in dust retention, with the highest in summer, followed by winter, autumn, and spring, respectively. The total suspended particle per unit leaf area was higher in the industrial site (80.54 g m-2) than in the non-industrial site (19.77 g m-2). Leaf particles in different size fractions differed among species, while coarse particles (d > ten μm) predominated in most cases. The L. chinense and C. camphora plants accumulated the greatest Pb and Ni compared to other plants. Overall, L. chinense was the best suitable plant species to improve the air quality.
Collapse
Affiliation(s)
- Ning Dang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China; College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Handan Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Mir Md Abdus Salam
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80100, Joensuu, Finland; Natural Resources Institute Finland (LUKE), Yliopistokatu 6B, 80100, Joensuu, Finland
| | - Haimei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China.
| |
Collapse
|
28
|
Zhou S, Cong L, Liu J, Zhang Z. Consistency between deposition of particulate matter and its removal by rainfall from leaf surfaces in plant canopies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113679. [PMID: 35640352 DOI: 10.1016/j.ecoenv.2022.113679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The leaf surfaces of plants are important organs for retaining particulate matter (PM). They can be renewed via washout processes (e.g., rainfall), thereby restoring the ability to retain new PM. Most of the current studies have focused on the mechanisms of rainfall characteristics on the renewal of PM on plant leaf surfaces and interspecific differences, while the effects of different leaf heights on PM renewal within the same plant canopy have been less studied. In addition, the dynamics of PM during rainfall, especially the water-soluble ions (WSII) component, are often neglected. This research used Salix matsudana, a tree species with a significant natural height difference between the upper and lower leaves of its canopy, as its study object. Using artificially simulated rainfall, the rainfall intensity was quantified as low, medium, and high (i.e., 30 mm/h, 45 mm/h, and 60 mm/h), and the rainfall process was divided into three sub-stages: pre (0-20 min), mid (20-40 min), and post (40-60 min). The experimental setup was divided into upper (2 m) and lower leaves (1 m) according to the height of the canopy. The concentration and distribution of water-insoluble PM (WIPM) were obtained using the elution weighing method, whereas WSII were obtained using ion chromatography. The dynamics of WIPM and WSII during the removal of PM from the leaf surface by rainfall were studied at different canopy heights, and the results showed that the composition and proportions of WIPM and WSII varied at different stages of the rainfall process and that the concentrations of WIPM and WSII removed from the upper leaves differed slightly from those of the lower leaves. In particular, the concentrations of WIPM and WSII removed from the lower leaves were greater than those from the upper leaves at high rainfall intensity (60 mm/h), showing consistency between rainfall removal of PM from the leaf surface at different heights within the plant canopy and deposition of PM, while at low (30 mm/h) and medium (45 mm/h) rainfall intensities the performance was slightly different.
Collapse
Affiliation(s)
- Shijun Zhou
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing 100083, China.
| | - Ling Cong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing 100083, China.
| | - Jiakai Liu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing 100083, China.
| | - Zhenming Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing 100083, China.
| |
Collapse
|
29
|
Takahashi K, Ohta A, Sase H, Murao N, Takada K, Yamaguchi M, Nakaba S, Watanabe M, Izuta T. Seasonal variations in the amount of black carbon particles deposited on the leaf surfaces of nine Japanese urban greening tree species and their related factors. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:252-262. [PMID: 35549775 DOI: 10.1080/15226514.2022.2072808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As black carbon (BC) particles can be deposited on the leaf surfaces, urban greening is considered to be effective in purifying urban air. However, little information on the seasonal variations in the amount of BC particles deposited on the leaf surfaces (BC amount on the leaves) is available in Japanese urban greening tree species. Therefore, we investigated seasonal variations in the BC amount on the leaves of evergreen (Quercus glauca, Quercus myrsinaefolia, Osmanthus fragrans and Ilex rotunda) and deciduous (Zelkova serrata, Styrax japonica, Magnolia kobus, Cornus kousa and Cornus florida) broad-leaved tree species. The BC amount on the leaves tended to increase from April for different periods, and then reached a saturated state in the tree species, excluding M. kobus. In the 4 evergreen broad-leaved trees, the seasonal variation was positively correlated with the atmospheric concentration of BC particle. In the 5 deciduous broad-leaved trees, the seasonal variation was negatively and positively correlated with the water-repellence (water droplet contact angle) and the amount of epicuticular wax on the leaf surface, respectively. Therefore, the BC amounts on the leaves of evergreen and deciduous broad-leaved urban tree species are considered to be mainly regulated by environmental factors and leaf surface characteristics, respectively.
Collapse
Affiliation(s)
- Kei Takahashi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Akari Ohta
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Hiroyuki Sase
- Asia Center for Air Pollution Research, Niigata, Japan
| | - Naoto Murao
- Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Keiichi Takada
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Masahiro Yamaguchi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Satoshi Nakaba
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Takeshi Izuta
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
30
|
Not Only Trees Matter—Traffic-Related PM Accumulation by Vegetation of Urban Forests. SUSTAINABILITY 2022. [DOI: 10.3390/su14052973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In terms of the process of air purification, a lot of attention has been devoted to trees and shrubs. Little attention has been paid to herbaceous vegetation from the lower forest layers. Urban forests are often located on the outskirts of cities and surround exit roads where there is heavy traffic, generating particulate matter (PM) pollution. The aim of this study was to investigate the spread of PM from the road traffic in the air and to investigate how individual layers of urban forests accumulate PM. We conducted comparative analyses of PM accumulation on plants in five zones away from the road, into the forest, in the air, and in four vegetation layers: mosses, herbaceous plants, shrubs and trees. The results show that all forest layers accumulate PM. We show that PM is very efficiently accumulated by herbaceous plants growing along roadsides, and that the PM that was not deposited on herbaceous plants was accumulated by trees and shrubs. With increasing distance from the road into the forest, the PM content on herbaceous plants decreased and the accumulation on trees and shrubs increased. We estimated that PM concentration in the air dropped significantly in the front line of the trees, but it was still detectable up to 50 m into the forest. The results presented herein show that meadow vegetation and urban forests play a very important role in air purification. Our results provide a better understanding of the complexity of urban forest interactions and provide the basis for better planning of urban greenery.
Collapse
|
31
|
Phylloplane Biodiversity and Activity in the City at Different Distances from the Traffic Pollution Source. PLANTS 2022; 11:plants11030402. [PMID: 35161383 PMCID: PMC8839900 DOI: 10.3390/plants11030402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
The phylloplane is an integrated part of green infrastructure which interacts with plant health. Taxonomic characterization of the phylloplane with the aim to link it to ecosystem functioning under anthropogenic pressure is not sufficient because only active microorganisms drive biochemical processes. Activity of the phylloplane remains largely overlooked. We aimed to study the interactions among the biological characteristics of the phylloplane: taxonomic diversity, functional diversity and activity, and the pollution grade. Leaves of Betula pendula were sampled in Moscow at increasing distances from the road. For determination of phylloplane activity and functional diversity, a MicroResp tool was utilized. Taxonomic diversity of the phylloplane was assessed with a combination of microorganism cultivation and molecular techniques. Increase of anthropogenic load resulted in higher microbial respiration and lower DNA amount, which could be viewed as relative inefficiency of phylloplane functioning in comparison to less contaminated areas. Taxonomic diversity declined with road vicinity, similar to the functional diversity pattern. The content of Zn in leaf dust better explained the variation in phylloplane activity and the amount of DNA. Functional diversity was linked to variation in nutrient content. The fraction of pathogenic fungi of the phylloplane was not correlated with any of the studied elements, while it was significantly high at the roadsides. The bacterial classes Gammaproteobacteria and Cytophagia, as well as the Dothideomycetes class of fungi, are exposed to the maximal effect of distance from the highway. This study demonstrated the sensitivity of the phylloplane to road vicinity, which combines the effects of contaminants (mainly Zn according to this study) and potential stressful air microclimatic conditions (e.g., low relative air humidity, high temperature, and UV level). Microbial activity and taxonomic diversity of the phylloplane could be considered as an additional tool for bioindication.
Collapse
|
32
|
Particulate Pollution Capture by Seventeen Woody Species Growing in Parks or along Roads in Two European Cities. SUSTAINABILITY 2022. [DOI: 10.3390/su14031113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This research aims to extend the existing knowledge on air quality improvement by the arboreal–shrub heritage. The PM accumulation (PM10–100, PM2.5–10, and PM0.2–2.5 (µg·cm−2)) was measured with consolidated gravimetric techniques during spring, summer, and fall for 2160 leaf samples belonging to the basal, median, and apical part of the crown of 17 species located in the streets and parks of 2 European cities (Rimini and Krakow). On the same samples, the deposition (PM10 and PM2.5 (µg·cm−2·day−1)) was evaluated according to a model based on the wash-off rain effect. Quercus ilex accumulated more PMx than the other species in Rimini, while in Krakow, the highest accumulators were Pinus nigra for PM10–100, Tilia cordata for PM2.5–10, and Populus nigra for PM0.2–2.5. Only in Krakow was the capture capacity of some species affected by the street or park growing condition. The basal leaves showed greater PM10–100 accumulation than the median and apical ones. In Rimini, the total PM accumulation tended to increase throughout the year, while in Krakow, the opposite occurred. However, as the accumulation increased, the deposition decreased. The PM accumulation was reduced by rainfall and enhanced by the air PM concentration, while the wind speed effect was opposite, depending on the city. These findings are useful for directing decision makers in the design of greener, healthier, and sustainable cities.
Collapse
|
33
|
Differences in Airborne Particulate Matter Concentration in Urban Green Spaces with Different Spatial Structures in Xi’an, China. FORESTS 2021. [DOI: 10.3390/f13010014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
With the acceleration of urbanization and industrialization, air pollution is becoming one of the most serious problems in cities. Urban green spaces, as “green infrastructure”, are an important part of urban ecosystems for air purification. Therefore, 10 typical green spaces of urban parks in the city of Xi’an, China, were selected as study areas according to vegetation structure and species composition. Considering meteorological factors and time changes, the effects of the selected green spaces with different vegetation structures of different heights on the reduction in airborne particulate matter concentration were explored. The results showed that the following: (1) Temperature, relative humidity, wind speed, and air pressure had significant correlation with the concentration of airborne particulate matter at the different heights, and the correlations were the same at 1.5 m and 5 m. (2) After heating in winter, the concentration of airborne particulate matter with different particle sizes increased significantly. The concentration of airborne particulate matter showed different trends throughout the day, and the small particles (PM1 and PM2.5) had a trend of “lower in the morning and evening, and higher at noon”, while the large particles (PM10 and TSP) gradually decreased over time. (3) In the selected green spaces with different vegetation structure types, the concentration of airborne particulate matter below the canopy (1.5 m) was generally higher than that in the middle of the canopy (5 m), but the effects of reducing the concentration of airborne particulate matter were consistent at the different heights. (4) The adsorption capacity of PM1 and PM2.5 concentration was strong in the partially closed broad-leaved one-layered forest (PBO), and poor in the partially closed broad-leaved multi-layered forest (PBM). Partially closed broad-leaved multi-layered forest (PBM) and partially closed coniferous and broad-leaved mixed multi-layered forest (PMM) also had strong dust-retention effect on PM10 and TSP, while closed broad-leaved one-layered forest (CBO) had a poor dust-retention effect. The results showed that the reduction effects of urban green spaces with different spatial structures on air particles were different, and were restricted by various environmental factors, which could provide a theoretical basis for the optimization of urban green space structure and the improvement of urban air quality.
Collapse
|
34
|
Simon E, Molnár VÉ, Lajtos D, Bibi D, Tóthmérész B, Szabó S. Usefulness of Tree Species as Urban Health Indicators. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122797. [PMID: 34961268 PMCID: PMC8709473 DOI: 10.3390/plants10122797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/02/2023]
Abstract
We used the Air Pollution Tolerance Index (APTI), the amount of PM5 and PM10, and the elemental analysis of leaves to explore the sensitivity of tree species to air pollution. We assessed the tolerance of Robinia pseudoacacia, Acer saccharinum, Tilia × europaea, Acer platanoides, Fraxinus excelsior, Betula pendula, Celtis occidentalis, and Platanus × acerifolia to the amount of dust, APTI, and the elemental concentration of leaves. Leaves were collected in Debrecen (Hungary), which has a high intensity of vehicular traffic. The highest amount of PM (both PM10 and PM5) was found on the leaves of A. saccharinum and B. pendula. Our results demonstrated that A. saccharinum was moderately tolerant, while P. acerifolia was intermediate, based on the APTI value. There was a significant difference in the parameters of APTI and the elemental concentration of leaves among species. We found that tree leaves are reliable bioindicators of air pollution in urban areas. Based on the value of APTI, A. saccharinum and P. acerifolia, and based on PM, A. saccharinum and B. pendula are recommended as pollutant-accumulator species, while other studied species with lower APTI values are useful bioindicators of air pollution. The results support landscape engineers and urban developers in finding the best tree species that are tolerant to pollution and in using those as proxies of urban environmental health.
Collapse
Affiliation(s)
- Edina Simon
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; (D.L.); (D.B.)
| | - Vanda Éva Molnár
- Department of Physical Geography and Geoinformatics, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; (V.É.M.); (S.S.)
| | - Domonkos Lajtos
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; (D.L.); (D.B.)
| | - Dina Bibi
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; (D.L.); (D.B.)
| | - Béla Tóthmérész
- MTA-DE Biodiversity and Ecosystem Services Research Group, H-4032 Debrecen, Hungary;
| | - Szilárd Szabó
- Department of Physical Geography and Geoinformatics, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; (V.É.M.); (S.S.)
| |
Collapse
|
35
|
Diener A, Mudu P. How can vegetation protect us from air pollution? A critical review on green spaces' mitigation abilities for air-borne particles from a public health perspective - with implications for urban planning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148605. [PMID: 34271387 DOI: 10.1016/j.scitotenv.2021.148605] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/29/2021] [Accepted: 06/18/2021] [Indexed: 05/25/2023]
Abstract
Air pollution causes the largest death toll among environmental risks globally, but interventions to purify ambient air remain inadequate. Vegetation and green spaces have shown reductive effects on air-borne pollutants concentrations, especially of particulate matter (PM). Guidance on green space utilisation for air quality control remains scarce, however, as does its application in practise. To strengthen the foundation for research and interventions, we undertook a critical review of the state of science from a public health perspective. We used inter-disciplinary search strategies for published reviews on green spaces and air pollution in key scientific databases. Using the PRISMA checklist, we systematically identified reviews with quantitative analyses. For each of the presented PM mitigation mechanisms, we conducted additional searches focused on the most recent articles published between 2016 and early 2021. The included reviews differentiate three mitigation mechanisms of green spaces for PM: deposition, dispersion and modification. The most studied mechanism is deposition, particularly measures of mass and settling velocity of PM on plant leaves. We consolidate how green space setups differ by scale and context in their potentials to reduce peak exposures, stationary (point) or mobile (line) pollution sources, and the potentially most harmful PM components. The assessed findings suggest diverse optimisation options for green space interventions, particularly concerning plant selection, spatial setup, ventilation and maintenance - all alongside the consideration of supplementary vegetation effects like on temperature or water. Green spaces' reductive effects on air-borne PM concentrations are considerable, multi-mechanistic and varied by scale, context and vegetation characteristics. Such effect-modifying factors must be considered when rethinking public space design, as accelerated by the COVID-19 pandemic. Weak linkages amid involved disciplines motivate the development of a research framework to strengthen health-oriented guidance. We conclude on an urgent need for an integrated and risk-based approach to PM mitigation through green space interventions.
Collapse
Affiliation(s)
- Arnt Diener
- European Centre for Environment and Health, Regional Office for Europe, World Health Organization, Platz der Vereinten Nationen 1, 53113 Bonn, North-Rhine Westphalia, Germany; Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Gurlittstr 55/II, 40223 Düsseldorf, North-Rhine Westphalia, Germany.
| | - Pierpaolo Mudu
- Department of Public Health, Environmental and Social Determinants of Health, World Health Organization, Avenue Appia 20, 1211 Geneva, Switzerland; European Centre for Environment and Health, Regional Office for Europe, World Health Organization, Platz der Vereinten Nationen 1, 53113 Bonn, North-Rhine Westphalia, Germany
| |
Collapse
|
36
|
Glinyanova I, Fomichev V, Asanova N. Are aerosols on the leaves of apricot trees (Prunus armeniaca) signalizing the activity of a hidden paleo-supervolcano in a steppe? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57424-57439. [PMID: 34467481 DOI: 10.1007/s11356-021-16135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Aerosols on plant leaves make it possible to assess the quality of air in settlements. The purpose of this work was to assess the acidity and specific electrical conductivity of aerosol suspensions (by washing off aerosol particles from the leaves of apricot trees (Prunus armeniaca)), which characterize the air pollution in the residential area of the Svetly Yar settlement (Volgograd region, Russia) during the spring-summer of 2019. The research hypothesis was as follows: Acidic mineralized aerosols with a mixed source are present in Svetly Yar. The differences were checked by the Student's t-test and evaluated at the level of significance of p = 0.05. The results indicated the presence of acidic (pH = 4.56 + 0.02) and highly mineralized aerosols (EC = 130.41 + 0.17 μS/cm) in the ambient air of the Svetly Yar residential area during the spring-summer of 2019 and revealed environmental risks for the population in comparison with aerosol suspensions from a (relatively) clean location (pH = 6.46 + 0.02; EC = 37.61 + 0.19 μS/cm). The authors confirmed their hypothesis in favor of mixed source acidic mineralized aerosols in the residential area of the Svetly Yar village. The anthropogenic sources were the industrial zones of Svetly Yar, the southern part of the city of Volgograd and artificial sedimentation tanks in the southwestern part of Svetly Yar. A natural source of pollution in the vicinity of Svetly Yar may be hidden geologically active structures: faults in the Earth's crust, a salt diapir, an underground ancient semiactive volcanic zone on a steppe, etc.
Collapse
Affiliation(s)
- Irina Glinyanova
- Institute of Architecture and Construction of the Volgograd State Technical University, Faculty of Еngineering Systems and Technosphere Safety, 1, Akademicheskaya St., 400074, Volgograd, Russia.
| | - Valery Fomichev
- Department of General and Inorganic Chemistry of Volgograd State Technical University, 28 Lenin Av, 400005, Volgograd, Russia
| | - Natali Asanova
- Department of Applied Mathematics of Volgograd State Technical University, 28 Lenin Av, 400005, Volgograd, Russia
| |
Collapse
|
37
|
Assessment of Air Pollution Tolerance and Particulate Matter Accumulation of 11 Woody Plant Species. ATMOSPHERE 2021. [DOI: 10.3390/atmos12081067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High concentration of particulate matter (PM) threatens public health and the environment. Increasing traffic in the city is one of the main factors for increased PM in the air. Urban green spaces play an important role in reducing PM. In this study, the leaf surface and in-wax PM (sPM and wPM) accumulation were compared for 11 plant species widely used for landscaping in South Korea. In addition, biochemical characteristics of leaves (ascorbic acid chlorophyll content, leaf pH, and relative water content) were analyzed to determine air pollution tolerance. Plant species suitable for air quality improvement were selected based on their air pollution tolerance index (APTI) and anticipated performance index (API). Results showed a significant difference according to the accumulation of sPM and wPM and the plant species. PM accumulation and APTI showed a positive correlation. Pinus strobus showed the highest PM accumulation and APTI values, while Cercis chinensis showed the lowest. In 11 plants, API was divided into five groups. Pinus densiflora was classified as the best group, while Cornus officinalis and Ligustrum obtusifolium were classified as not recommended.
Collapse
|
38
|
Xu L, Yan Q, Lin Y, Zhen Z, Liu L, Duan Y. Selective retention of particulate matter by nine plant species in central Shanxi Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35902-35910. [PMID: 33682054 DOI: 10.1007/s11356-021-13262-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Plant leaves can accumulate particulate matter (PM) from the air, thus mitigating air pollution. Nine plant species from the central part of Shanxi Province, China, were investigated to characterize differences in their PM retention capacity and the grain sizes of the collected PM. Styphnolobium japonicum, Syringa oblata, and Cerasus serrulata demonstrated strong retention capacity for PM particles of diverse size fractions. Philadelphus incanus, Viburnum opulus, and Yulania biondii had relatively weak retention capacity for overall and fine PM. Generally, species with smaller leaves and roughness surfaces, waxy leaves, or leaves with hair had strong PM retention capacity. Leaves with suitable groove widths better retained fine PM. Foliar dust observed on leaves presented multimodal distribution curves, including bimodal, trimodal, and four-peak distributions, which differed from the trimodal distribution of natural dustfall. The different PM retention capacities of the nine investigated species and the differing grain sizes between foliar dust and atmospheric dustfall indicated that plant leaves could selectively retain PM. The results of this study provide a scientific basis for the use of the plant to mitigate particulate air pollution.
Collapse
Affiliation(s)
- Lishuai Xu
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Qian Yan
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yongchong Lin
- School of History and Geography, Minnan Normal University, Zhangzhou, 363000, Fujian, China
| | - Zhilei Zhen
- College of Urban and Rural Construction, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Liwen Liu
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yonghong Duan
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
39
|
Particulate Matter Removal Ability of Ten Evergreen Trees Planted in Korea Urban Greening. FORESTS 2021. [DOI: 10.3390/f12040438] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Broad-leaved evergreen trees create urban forests for mitigation of climate warming and adsorption of particulate matter (PM). This study was performed to identify the species suitable for urban greening by examining the adsorption capacity of the evergreen species in urban areas in Korea, the adsorption points and the elemental composition of PM in the adsorbed tree. Leaf sampling was carried out four times (period of seven months from October 2017 to May 2018) and used after drying (period 28 to 37 days). Particulate matter (PM) was classified and measured according to size PM2.5 (0.2–2.5 μm), PM10 (2.5–10 μm), PM100 (10–100 μm). The total amount of PM adsorbed on the leaf surface was highest in Pinus densiflora (24.6 μg∙cm−2), followed by Quercus salicina (47.4 μg∙cm−2). The composition of PM adsorbed by P. densiflora is 4.0% PM2.5, 39.5% PM10 and 56.5% PM100, while those adsorbed by Q. salicina are evergreen at 25.7% PM2.5, 27.4% PM10 and 46.9% PM100. When the amount of PM adsorbed on the leaf was calculated by LAI, the species that adsorbed PM the most was P. densiflora, followed by Q. salicina, followed by Q. salicina in the wax layer, then P. densiflora. As a result of this study, the amount of PM adsorbed per unit area of leaves, and the amount of PM calculated by LAI, showed a simpler pattern. The hardwoods had a high adsorption rate of PM2.5. The adsorption ratio of ultra-fine PM2.5 by evergreen broad-leaved trees was greater than that of coniferous trees. Therefore, broad-leaved evergreens such as Q. salicina are considered very suitable as species for adsorbing PM in the city. PM2.5 has been shown to be adsorbed through the pores and leaves of trees, indicating that the plant plays an important role in alleviating PM in the atmosphere. As a result of analyzing the elemental components of PM accumulated on leaf leaves by scanning electron microscopy (SEM)/ energy dispersive x-ray spectroscopy (EDXS) analysis, it was composed of O, C, Si, and N, and was found to be mainly generated by human activities around the road. The results of this study provide basic data regarding the selection of evergreen species that can effectively remove aerial PM. It also highlights the importance of evergreen plants for managing PM pollution during the winter and provides insights into planning additional green infrastructure to improve urban air quality.
Collapse
|
40
|
Fares S, Conte A, Alivernini A, Chianucci F, Grotti M, Zappitelli I, Petrella F, Corona P. Testing Removal of Carbon Dioxide, Ozone, and Atmospheric Particles by Urban Parks in Italy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14910-14922. [PMID: 33169986 DOI: 10.1021/acs.est.0c04740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cities are responsible for more than 80% of global greenhouse gas emissions. Sequestration of air pollutants is one of the main ecosystem services that urban forests provide to the citizens. The atmospheric concentration of several pollutants such as carbon dioxide (CO2), tropospheric ozone (O3), and particulate matter (PM) can be reduced by urban trees through processes of adsorption and deposition. We predict the quantity of CO2, O3, and PM removed by urban tree species with the multilayer canopy model AIRTREE in two representative urban parks in Italy: Park of Castel di Guido, a 3673 ha reforested area located northwest of Rome, and Park of Valentino, a 42 ha urban park in downtown Turin. We estimated a total annual removal of 1005 and 500 kg of carbon per hectare, 8.1 and 1.42 kg of ozone per hectare, and 8.4 and 8 kg of PM10 per hectare. We highlighted differences in pollutant sequestration between urban areas and between species, shedding light on the importance to perform extensive in situ measurements and modeling analysis of tree characteristics to provide realistic estimates of urban parks to deliver ecosystem services.
Collapse
Affiliation(s)
- Silvano Fares
- National Research Council (CNR), Institute of BioEconomy (IBE), Rome 00100, Italy
- Council for Agricultural Research and Economics (CREA), Research Centre for Forestry and Wood, Rome 00166, Italy
| | - Adriano Conte
- Council for Agricultural Research and Economics (CREA), Research Centre for Forestry and Wood, Rome 00166, Italy
| | - Alessandro Alivernini
- Council for Agricultural Research and Economics (CREA), Research Centre for Forestry and Wood, Rome 00166, Italy
| | - Francesco Chianucci
- Council for Agricultural Research and Economics (CREA), Research Centre for Forestry and Wood, Rome 00166, Italy
| | - Mirko Grotti
- Council for Agricultural Research and Economics (CREA), Research Centre for Forestry and Wood, Rome 00166, Italy
- Department of Architecture and Design, Sapienza University of Rome, Rome 00185, Italy
| | - Ilaria Zappitelli
- Council for Agricultural Research and Economics (CREA), Research Centre for Forestry and Wood, Rome 00166, Italy
| | - Fabio Petrella
- Istituto per le Piante da Legno e l'Ambiente (IPLA), Turin 10132, Italy
| | - Piermaria Corona
- Council for Agricultural Research and Economics (CREA), Research Centre for Forestry and Wood, Rome 00166, Italy
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo 01100, Italy
| |
Collapse
|