1
|
Jiang F, Liu M, Li S, Liang M, Hu X, Li F. Mechanism Study on the Immobilization of Cu 2+/Pb 2+ in Aqueous Phase by Mineral Co-Milling-Modified Biochar. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39146477 DOI: 10.1021/acs.langmuir.4c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A large number of studies have shown that the modification of biochar can greatly improve its adsorption capacity. This study adopts a one-step ball milling technology without solvent medium, using sawdust biochar (600 °C) and attapulgite/diatomaceous earth to prepare MABC10%/MDBC10% (mass ratio: 10% attapulgite/diatomite +90% biochar coabrasive). Characterization experiments show that attapulgite/diatomite was successfully loaded on biochar and has more C/O functional groups and wider adsorption pore sizes. Adsorption kinetics and isotherm experiments show that the adsorption process of MABC10% and MDBC10% on Cu2+/Pb2+ was mainly multilayer chemical adsorption. The adsorption capacities of MABC10% and MDBC10% for Cu2+ were 40.85 and 65.20 mg·L-1, respectively. The adsorption amounts of Pb2+ were 82.63 and 71.32 mg·L-1, respectively. The particle diffusion model shows that the adsorption process was controlled by both the surface adsorption rate limitation and boundary layer diffusion. The higher acidity in the solution will cause part of the negative charges on the surface of attapulgite/diatomite to be neutralized, thereby hindering its adsorption of Cu2+/Pb2+. The presence of coexisting ions did not significantly affect the adsorption performance. Mechanistic studies have shown that pore diffusion, active sites provided by C/O functional groups, electrostatic interactions, and cation exchange are the main mechanisms of MABC10% adsorption of Cu2+/Pb2+. In summary, MABC10% has a significant adsorption synergistic effect compared to MBC. It was an economical and effective adsorbent, and the higher the pH value of the wastewater, the more significant the adsorption effect.
Collapse
Affiliation(s)
- Fei Jiang
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Min Liu
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Shuangjiang Li
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Mengdi Liang
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Xingyu Hu
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Feiyue Li
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
- Institute of Soil Remediation and Solid Waste Recycling, Anhui Science and Technology University, Fengyang 233100, China
| |
Collapse
|
2
|
Baloch SB, Ali S, Bernas J, Moudrý J, Konvalina P, Mushtaq Z, Murindangabo YT, Onyebuchi EF, Baloch FB, Ahmad M, Saeed Q, Mustafa A. Wood ash application for crop production, amelioration of soil acidity and contaminated environments. CHEMOSPHERE 2024; 357:141865. [PMID: 38570047 DOI: 10.1016/j.chemosphere.2024.141865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Agriculture is vital to human life and economic development even though it may have a detrimental influence on soil quality. Agricultural activities can deteriorate the soil quality, endangers the ecosystem health and functioning, food safety, and human health. To resolve the problem of soil degradation, alternative soil conditioners such as wood ash are being explored for their potential to improve soil-plant systems. This study provides an overview of the production, properties, and effects of wood ash on soil properties, crop productivity, and environmental remediation. A comprehensive search of relevant databases was conducted in order to locate and assess original research publications on the use of wood ash in agricultural and environmental management. According to the findings, wood ash, a byproduct of burning wood, may improve the structure, water-holding capacity, nutrient availability, and buffering capacity of soil as well as other physico-chemical, and biological attributes of soil. Wood ash has also been shown to increase agricultural crop yields and help with the remediation of polluted regions. Wood ash treatment, however, has been linked to several adverse effects, such as increased trace element concentrations and altered microbial activity. The examination found that wood ash could be a promising material to be used as soil conditioner and an alternative supply of nutrients for agricultural soils, while, wood ash contributes to soil improvement and environmental remediation, highlighting its potential as a sustainable solution for addressing soil degradation and promoting environmental sustainability in agricultural systems.
Collapse
Affiliation(s)
- Sadia Babar Baloch
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Shahzaib Ali
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Jaroslav Bernas
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Jan Moudrý
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Petr Konvalina
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Zain Mushtaq
- Department of Soil Science, University of Punjab, Lahore, Pakistan
| | - Yves Theoneste Murindangabo
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Eze Festus Onyebuchi
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Faryal Babar Baloch
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 12, 110866, China
| | - Maqshoof Ahmad
- Department of Soil Science, Faculty of Agriculture and Environment, the Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Qudsia Saeed
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Adnan Mustafa
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
3
|
Deng B, Liu Z, Gong T, Xu C, Zhang X, Cao H, Yuan Q. Addition of plantation waste to the bioconversion of pig manure by black soldier fly larvae: Effects on heavy metal content and bioavailability. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 176:64-73. [PMID: 38266476 DOI: 10.1016/j.wasman.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
During the conversion of pig manure by black soldier fly larvae (BSFL), the accumulation and speciation changes of heavy metals (HMs) have adverse effects on the environment. In this study, corn straw, rice straw, bamboo chips (BC), wood chips, and rice husk char were added to a bioconversion system to study the accumulation, migration, speciation changes, and microbial correlations of HMs. The results indicated that the addition of BC was most beneficial for the accumulation of HMs (47-72 %) in the BSFL body. In the BC group, the accumulation effect of the BSFL body on zinc (Zn) and arsenic (As) was the most evident (72 and 71 %, respectively). The results of linear fitting (R2 > 0.90) and redundancy analysis (RDA; 90 %) indicated that the bacterium Bacillaceae (Bacillus) was beneficial for increasing the larval weight (LW) of BSFL, and a higher LW accumulated HMs. The addition of BC helped reduce the total amount (6-51 %) of available states (weak acid extraction and reducible states) in the BSFL residue. The RDA results indicated that bacteria (55-92 %) affected the transformation of HM speciation. For example, Zn and cadmium were mainly affected by Firmicutes, whereas copper and chromium were affected by Bacteroidetes. Proteobacteria and Pseudomonas formosensis affected the conversion of lead and As. This study provides important insights into the adsorption of HMs from pig manure by BSFL.
Collapse
Affiliation(s)
- Bo Deng
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziqi Liu
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Gong
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Xu
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Zhang
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongliang Cao
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoxia Yuan
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Li P, Chen J, Ying S, Chen N, Fang S, Ye M, Zhang C, Li C, Ge Y. Different responses of Sinorhizobium sp. upon Pb and Zn exposure: Mineralization versus complexation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123260. [PMID: 38159637 DOI: 10.1016/j.envpol.2023.123260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Lead (Pb) and zinc (Zn) have been discharged into environment and may negatively impact ecological security. Rhizobia has gained attention due to their involvement in the restoration of metal polluted soils. However, little is known about the responses of rhizobia under Pb and Zn stress, especially the roles played by extracellular polymeric substances (EPS) in the resistance of these two metals. Here, Sinorhizobium sp. C10 was isolated from soil around a mining area and was exposed to a series of Pb/Zn treatments. The cell morphology and surface mineral crystals, EPS content and fluorescent substances were determined. In addition, the extracellular polysaccharides and proteins were characterized by attenuated total reflection infrared spectroscopy (ATR-IR) and X-ray photoelectron spectroscopy (XPS). The results showed that Zn stress induced the synthesis of EPS by C10 cells. Functional groups of polysaccharides (CO) and proteins (C-O/C-N) were involved in complexation with Zn. In contrast, C10 resisted Pb stress by forming lead phosphate (Pb3(PO4)2) on the cell surface. Galactose (Gal) and tyrosine played key roles in resistance to the Zn toxicity, whereas glucosamine (N-Glc) was converted to glucose in large amounts during extracellular Pb precipitation. Together, this study demonstrated that C10 possessed different strategies to detoxify the two metals, and could provide basis for bioremediation of Pb and Zn polluted sites.
Collapse
Affiliation(s)
- Peihuan Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiale Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shumin Ying
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nike Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu Fang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Menglei Ye
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunhua Zhang
- Demonstration Laboratory of Element and Life Science Research, Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chonghua Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Li C, Li P, Fu H, Chen J, Ye M, Zhai S, Hu F, Zhang C, Ge Y, Fortin C. A comparative study of the accumulation and detoxification of copper and zinc in Chlamydomonas reinhardtii: The role of extracellular polymeric substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161995. [PMID: 36739008 DOI: 10.1016/j.scitotenv.2023.161995] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Extracellular polymeric substances (EPS) form an interface between microalgae and the surrounding water environment. Copper (Cu) and zinc (Zn) are essential micronutrients but may negatively affect microbial growth when their concentrations reach toxic thresholds. However, how EPS affect the accumulation and resistance of Cu and Zn in microalgae remains largely unknown. Here, we investigated EPS production upon Cu/Zn exposure and compared the tolerance strategies to the two metals by Chlamydomonas reinhardtii with and without EPS. Microalgal EPS synthesis was induced by Cu/Zn treatments, and the functional groups of polysaccharides and proteins were involved in complexation with metal ions. The extraction of EPS aggravated the toxicity and reduced the removal of metals from solution, but the effect was more pronounced for Cu than for Zn. Copper bound on the cell surface accounted for 54.6 ± 2.0 % of the Cu accumulated by C. reinhardtii, whose EPS components strongly correlated with Cu adsorption. In contrast, 74.3 ± 3.0 % of accumulated Zn was absorbed in cells, and glutathione synthesis was significantly induced. Redundancy and linear correlation analyses showed that the polysaccharide, protein and DNA contents in EPS were significantly correlated with Cu accumulation, absorption and adsorption but not with Zn. Data fitted to a Michaelis-Menten model further showed that the EPS-intact cells had higher binding capacity for Cu2+ but not for Zn2+. These differential impacts of EPS on Cu/Zn sorption and detoxification contribute to a more comprehensive understanding of the roles of microalgal EPS in the biogeochemical cycle of metals.
Collapse
Affiliation(s)
- Chonghua Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peihuan Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongxuan Fu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiale Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Menglei Ye
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Suhua Zhai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunhua Zhang
- Demonstration Laboratory of Element and Life Science Research, Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Claude Fortin
- EcotoQ, Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9, Canada
| |
Collapse
|
6
|
Deng B, Wang G, Yuan Q, Zhu J, Xu C, Zhang X, Wang P. Enrichment and speciation changes of Cu and Cd in black soldier fly (Hermetia illucens) larval compost and their effects on larval growth performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157299. [PMID: 35842144 DOI: 10.1016/j.scitotenv.2022.157299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Municipal sludge (MS), rainwater sludge (RS), and kitchen waste (KW) were used as nutritional supplements for black soldier fly larvae (BSFL). Cd (52.3 %) was more easily assimilated in the BSFL body than Cu (34.8 %). After biotransformation in BSFL, the weak acid-soluble fraction (F1) of Cu and Cd increased by an average of 29.0 % and 42.7 %, respectively, whereas the reducible fraction (F2) of Cu and Cd decreased by an average of 13.8 % and 56.4 %, respectively, in the BSFL sand (BSFL feces and waste residues). A significant correlation (P < 0.01) was found between pH and the speciation of Cu and Cd. The abundance of Bacteroides had a positive correlation (P < 0.05) with the F1 of Cu, an extremely significant negative correlation (P < 0.001) with the F2 of Cd, and an extremely significant positive correlation with the F1 of Cd (P < 0.001). In addition, Cu and Cd exposures significantly (P < 0.01) reduced larval weight by 67.7 % and 45.3 %, respectively, pupation rate by 46.3 % and 26.5 %, respectively, and eclosion rate by 35.5 % and 33.4 %, respectively. Exposure to high concentrations of Cu and Cd also prolonged the development cycle (1-12 days) of BSFL and led to the failure of BSFL to complete their metamorphosis.
Collapse
Affiliation(s)
- Bo Deng
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoqing Wang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoxia Yuan
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Junyu Zhu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Xu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Panpan Wang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Xiao Y, Luo R, Ji Y, Li S, Hu H, Zhang X. Removal of Copper(II) from Aqueous Environment Using Silk Sericin-Derived Carbon. Int J Mol Sci 2022; 23:ijms231911202. [PMID: 36232512 PMCID: PMC9570140 DOI: 10.3390/ijms231911202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Sericin is a by-product of the silk industry. Its recycling contributes to environmental protection and the sustainable development of the cocoon silk industry. In this paper, on the basis of realizing sericin enrichment in solution, the Cu(II) adsorption capacities of sericin-derived carbon (SC), prepared at different pyrolysis temperatures, were studied. SC was characterized using scanning electron microscopy (SEM) and the zeta potential. The effects of the initial concentration of Cu(II), pH, adsorption temperature, and contact time on the adsorption process were evaluated, followed by an investigation of the mechanism of Cu(II) adsorption by SC. The results showed that SC has a porous structure that provides sites for Cu(II) adsorption. The maximum adsorption capacity of Cu(II) onto SC1050, 17.97 mg/g, was obtained at an adsorption temperature of 35 °C and a pH of 5.5. In addition, the pseudo-second-order kinetic model and Langmuir isotherm model correctly described the adsorption process of Cu(II) onto SC1050. Therefore, SC can act as a potential adsorbent for removing Cu(II) from water. This study helps promote the effective use of cocoon silk resources.
Collapse
Affiliation(s)
- Yuting Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Westa College, Southwest University, Chongqing 400715, China
| | - Ruixiao Luo
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yansong Ji
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Shiwei Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Westa College, Southwest University, Chongqing 400715, China
| | - Hongmei Hu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Xiaoning Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Correspondence:
| |
Collapse
|
8
|
Biswal BK, Vijayaraghavan K, Tsen-Tieng DL, Balasubramanian R. Biochar-based bioretention systems for removal of chemical and microbial pollutants from stormwater: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126886. [PMID: 34419842 DOI: 10.1016/j.jhazmat.2021.126886] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 05/14/2023]
Abstract
Biochar has been increasingly used as a filter medium in engineered low impact development systems (e.g., bioretention systems) for decontamination of urban stormwater and management of hydrology. This review paper critically analyzes the performance of biochar-based biofiltration systems for removal of chemical and microbial pollutants present in urban runoff. Biochar-amended biofiltration systems efficiently remove diverse pollutants such as total nitrogen (32 - 61%), total phosphorus: (45 - 94%), heavy metals (27 - 100%), organics (54 - 100%) and microbial pollutants (log10 removal: 0.78 - 4.23) from urban runoff. The variation of biofiltration performance is due to changes in biochar characteristics, the abundance of dissolved organic matter and/or stormwater chemistry. The dominant mechanisms responsible for removal of chemical pollutants are sorption, ion exchange and/or biotransformation, whereas filtration/straining is the major mechanism for bacteria removal. The pseudo-second order and Langmuir isotherm are the best models that describe the kinetics and chemical equilibrium of pollutants, respectively. This critical review provides the fundamental scientific knowledge for designing highly efficient biochar-based bioretention systems for removal of diverse pollutants from urban stormwater. The key knowledge gaps that should be addressed in future research include long-term field-scale bioretention study, development of novel methods for filter media regeneration/reuse, and dynamics of filter media microbial communities.
Collapse
Affiliation(s)
- Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Kuppusamy Vijayaraghavan
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Daryl Lee Tsen-Tieng
- Centre for Urban Greenery and Ecology, National Parks Board, 1 Cluny Road, 259563, Singapore
| | | |
Collapse
|
9
|
Thuile Bistarelli L, Poyntner C, Santín C, Doerr SH, Talluto MV, Singer G, Sigmund G. Wildfire-Derived Pyrogenic Carbon Modulates Riverine Organic Matter and Biofilm Enzyme Activities in an In Situ Flume Experiment. ACS ES&T WATER 2021; 1:1648-1656. [PMID: 34278381 PMCID: PMC8276270 DOI: 10.1021/acsestwater.1c00185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 05/23/2023]
Abstract
Wildfires produce large amounts of pyrogenic carbon (PyC), including charcoal, known for its chemical recalcitrance and sorption affinity for organic molecules. Wildfire-derived PyC can be transported to fluvial networks. Here it may alter the dissolved organic matter (DOM) concentration and composition as well as microbial biofilm functioning. Effects of PyC on carbon cycling in freshwater ecosystems remain poorly investigated. Employing in-stream flumes with a control versus treatment design (PyC pulse addition), we present evidence that field-aged PyC inputs to rivers can increase the dissolved organic carbon (DOC) concentration and alter the DOM composition. DOM fluorescence components were not affected by PyC. The in-stream DOM composition was altered due to leaching of pyrogenic DOM from PyC and possibly concurrent sorption of riverine DOM to PyC. Decreased DOM aromaticity indicated by a lower SUVA245 (-0.31 unit) and a higher pH (0.25 unit) was associated with changes in enzymatic activities in benthic biofilms, including a lower recalcitrance index (β-glucosidase/phenol oxidase), suggesting preferential usage of recalcitrant over readily available DOM by biofilms. The deposition of particulate PyC onto biofilms may further modulate the impacts of PyC due to direct contact with the biofilm matrix. This study highlights the importance of PyC for in-stream biogeochemical organic matter cycling in fire-affected watersheds.
Collapse
Affiliation(s)
| | - Caroline Poyntner
- Institute
of Microbiology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Cristina Santín
- Research
Unit of Biodiversity, Spanish National Research
Council (CSIC), E-33600 Mieres, Spain
- Department
of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, U.K.
| | - Stefan Helmut Doerr
- Department
of Geography, Swansea University, Singleton Park, Swansea SA2 8PP, U.K.
| | - Matthew V. Talluto
- Institute
of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Gabriel Singer
- Institute
of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Gabriel Sigmund
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Althanstraße 14, 1090 Wien, Austria
| |
Collapse
|
10
|
Jaiswal KK, Kumar V, Verma R, Verma M, Kumar A, Vlaskin MS, Nanda M, Kim H. Graphitic bio-char and bio-oil synthesis via hydrothermal carbonization-co-liquefaction of microalgae biomass (oiled/de-oiled) and multiple heavy metals remediations. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124987. [PMID: 33450509 DOI: 10.1016/j.jhazmat.2020.124987] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 05/27/2023]
Abstract
Thermochemical transformation of microalgae biomass into graphitic bio-chars entices as proficient bio-adsorbents for heavy metal contaminants. This study explores the synergistic impact of Chlorella sorokiniana on biomass generation and wastewater remediation in high rate algae pond (HRAP). Biomass produced was applied for hydrothermal carbonization-co-liquefaction (HTCL). The structural and morphological characteristics of HTCL products (i.e. bio-chars and bio-oils) have been systematically studied by XRD, Raman, FTIR, elemental analyzer, SEM, BET, and 1H NMR spectroscopy. The crystallite size of the graphite 2H indexing planes was to be 4.65 nm and 14.07 nm in the bio-chars of oiled biomass (MB-OB) and de-oiled biomass (MB-DOB), respectively. The increase in the ID/IG ratio of MB-DOB indicated the highly disordered graphitic structure due to the appearance of carbonyl, hydroxyl, and epoxy functionalities in the line of high C/N and low C/H ratio. Also, the multiple heavy metals remediation of MB-DOB revealed better efficiency as ~100% in 720 min. The kinetics analysis shows the correlation coefficient of pseudo-second-order is well fitted compared to the pseudo-first-order. The Langmuir adsorption model signifies the adsorption of heavy metal ions in a monolayer adsorption manner. The study proposes the microalgae bio-char potential for multiple heavy metals remediation alongside bio-oils.
Collapse
Affiliation(s)
- Krishna Kumar Jaiswal
- Algae Research & Bio-Energy Laboratory, Department of Chemistry, Uttaranchal University, Dehradun, Uttarakhand 248007, India
| | - Vinod Kumar
- Algae Research & Bio-Energy Laboratory, Department of Chemistry, Uttaranchal University, Dehradun, Uttarakhand 248007, India.
| | - Ravikant Verma
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry 605014, India
| | - Monu Verma
- Department of Environmental Engineering, University of Seoul, Seoul 130743, South Korea
| | - Arvind Kumar
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry 605014, India
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 13/2 Izhorskaya St, Moscow 125412, Russia.
| | - Manisha Nanda
- Department of Biotechnology, Dolphin (P.G.) Institute of Biomedical and Natural Sciences, Dehradun 248001, India
| | - Hyunook Kim
- Department of Environmental Engineering, University of Seoul, Seoul 130743, South Korea
| |
Collapse
|