1
|
Zhou A, Du J, Shi Y, Wang Y, Zhang T, Fu Q, Shan H, Ji T, Xu S, Liu Q, Ge J. Hierarchical porous carbon nanofibrous membranes with elaborated chemical surfaces for efficient adsorptive removal of volatile organic compounds from air. J Colloid Interface Sci 2024; 673:860-873. [PMID: 38908285 DOI: 10.1016/j.jcis.2024.06.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Volatile organic compounds (VOCs) in the air pose great health risks to humans and the environment. Adsorptive separation technology has proven effective in mitigating VOC pollution, with the adsorbent being the critical component. Therefore, the development of highly efficient adsorbent materials is crucial. Carbon nanofibers, known for their physical-chemical stability and rapid adsorption kinetics, are promising candidates for removing VOCs from the air. However, the relatively simple porous structures and inert surface chemical properties of traditional carbon nanofibers present challenges in further enhancing their application performance further. Herein, a hierarchical porous carbon nanofibrous membrane was prepared using electrospinning technology and a one-step carbonization & activation method. Phenolic resin and polyacrylonitrile were used as co-precursors, with silica nanoparticles serving as the dopant. The resulting membrane exhibited a specific surface area of up to 1560.83 m2/g and surfaces rich in functional O-/N- groups. With a synergistic effect of developed micro- and meso-pores and active chemical surfaces, the carbon nanofibrous membrane demonstrated excellent adsorption separation performance for various VOCs, with comparable adsorption capacities and fast kinetics. Moreover, the membrane displayed remarkable reusability and dynamic adsorption performance for different VOCs, indicating its potential for practical applications.
Collapse
Affiliation(s)
- Anqi Zhou
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Jing Du
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Yingxin Shi
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Yue Wang
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Tianhao Zhang
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Qiuxia Fu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Haoru Shan
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Tao Ji
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Sijun Xu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Qixia Liu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Jianlong Ge
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China.
| |
Collapse
|
2
|
Liu Y, Long Z, Qiu J, Chen Q, Yang A, Xiao M, Dang S, Zhu Y, Liu Q, Lv Y, Li S, Qin J, Tan Z, Wang D, Chen W, Wei Q, Deng Q, Xing X, Xiao Y. Combined effects of benzene, toluene, xylene, ethylbenzene, and styrene exposure on hearing loss mediated by oxidative stress at realistic low levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125149. [PMID: 39427956 DOI: 10.1016/j.envpol.2024.125149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The link between benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS) exposure and hearing loss (HL) is not well-established. This study investigated 1694 petrochemical workers in southern China to examine the effects of BTEXS urinary metabolites on auditory function, considering oxidative stress (OS) as a potential cause. Using generalized linear models, elastic net regression, and quantile g-computation, we evaluated the single and combined effects of BTEXS, OS indicators, and HL. Subgroup analysis explored interactions between BTEXS and cumulative noise exposure (CNE), while mediation analysis assessed OS's role in BTEXS-related HL. Positive associations were found between hippuric acid (HA) and HL (OR = 1.20, P < 0.05) and high-frequency hearing loss (HFHL) (OR = 1.22, P < 0.05). The ENET model linked 3&4-methylhippuric acid (3&4-MHA) with increased HFHL risk. The qgcomp model showed a 23% increased HL risk and a 20% increased HFHL risk per quartile increase in BTEXS exposure. Toluene metabolites (SBMA and HA) were significant contributors to HL, HFHL, and speech-frequency hearing loss (SFHL). Higher BTEXS SBMA, MA and HA levels exacerbated HL risk in workers exposed to CNE. Interaction analysis revealed synergistic effects between tt-MA and other metabolites on HFHL risk. Total SOD (TSOD) significantly mediated the BTEXS-HL relationship. These findings highlight a dose-effect association between BTEXS exposure and HL due to oxidative damage, with toluene metabolites being critical pollutants. BTEXS exposure also synergistically increased HL risk with noise.
Collapse
Affiliation(s)
- Yan Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Zihao Long
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Jingjing Qiu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, No. 68 Haikang Street, Guangzhou, 510300, Guangdong, China
| | - Qingfei Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Aichu Yang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, No. 68 Haikang Street, Guangzhou, 510300, Guangdong, China
| | - Minghui Xiao
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, No. 68 Haikang Street, Guangzhou, 510300, Guangdong, China
| | - Shanfeng Dang
- Occupational Disease Prevention and Treatment Institute of Sinopec Maoming Petrochemical Company, No. 9 Shuangshan Road 4, Maoming, 525000, Guangdong, China
| | - Yanqun Zhu
- Occupational Disease Prevention and Treatment Institute of Sinopec Maoming Petrochemical Company, No. 9 Shuangshan Road 4, Maoming, 525000, Guangdong, China
| | - Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Yanrong Lv
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Shuangqi Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Jingyao Qin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Zhaoqing Tan
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Dongsheng Wang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Wen Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Qing Wei
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Qifei Deng
- School of Public Health, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, Guangdong, China
| | - Xiumei Xing
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, China.
| |
Collapse
|
3
|
Sun Y, Ahmadi Y, Kim KH. Tuning strategies of MIL metal organic frameworks for adsorptive removal of formaldehyde in air. CHEMOSPHERE 2024; 361:142550. [PMID: 38857633 DOI: 10.1016/j.chemosphere.2024.142550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Materials Institute Lavoisier (MIL) metal organic frameworks (MOFs) are known for their potential to adsorb gaseous organic pollutants. This study explores the synergistic effects between the selection of central metals (e.g., titanium, iron, and aluminum) and the incorporation of -NH2 groups in terms of adsorption efficiency against gaseous formaldehyde (FA). A group of the pristine MIL MOFs is synthesized using three different metals (i.e., titanium, iron, and aluminum) and terephthalic acid along with their NH2 derivatives using 2-aminoterephthalic acid. Among the pristine forms, MIL-125(Ti) achieves the highest FA adsorption capacity (Q) of 26.96 mg g-1 and a partition coefficient (PC) of 0.0898 mol kg-1 Pa-1. Further, amination significantly improves the FA adsorption potential of NH2-MIL-125(Ti) with a Q value of 91.22 mg g-1 (PC = 0.3038 mol kg-1 Pa-1). In situ diffuse reflectance infrared Fourier-transform spectroscopy reveals that the FA adsorption of plain MILs should be governed primarily by physisorption. In contrast, FA adsorption of NH2-MILs appears to be regulated by both physisorption and chemisorption, while the latter being affected mainly through FA-NH2 interactions (Schiff base reactions). These findings provide valuable insights into the utility of aminated MIL sorbents, possibly toward the efficient management of indoor air quality.
Collapse
Affiliation(s)
- Yang Sun
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
4
|
Kutluay S, Şahin Ö, Baytar O. Enhanced benzene vapor adsorption through microwave-assisted fabrication of activated carbon from peanut shells using ZnCl 2 as an activating agent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27935-27948. [PMID: 38523212 PMCID: PMC11058968 DOI: 10.1007/s11356-024-32973-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Herein, microwave-assisted activated carbon (MW-AC) was fabricated from peanut shells using a ZnCl2 activator and utilized for the first time to eliminate benzene vapor as a volatile organic compound (VOC). During the MW-AC production process, which involved two steps-microwave treatment and muffle furnace heating-we investigated the effects of various factors and achieved the highest iodine number of 1250 mg/g. This was achieved under optimal operating conditions, which included a 100% impregnation ratio, CO2 as the gas in the microwave environment, a microwave power set at 500 W, a microwave duration of 10 min, an activation temperature of 500 °C and an activation time of 45 min. The structural and morphological properties of the optimized MW-AC were assessed through SEM, FTIR, and BET analysis. The dynamic adsorption process of benzene on the optimized MW-AC adsorbent, which has a significant BET surface area of 1204.90 m2/g, was designed using the Box-Behnken approach within the response surface methodology. Under optimal experimental conditions, including a contact duration of 80 min, an inlet concentration of 18 ppm, and a temperature of 26 °C, the maximum adsorption capacity reached was 568.34 mg/g. The experimental data are better described by the pseudo-second-order kinetic model, while it is concluded that the equilibrium data are better described by the Langmuir isotherm model. MW-AC exhibited a reuse efficiency of 86.54% for benzene vapor after five consecutive recycling processes. The motivation of the study highlights the high adsorption capacity and superior reuse efficiency of MW-AC adsorbent with high BET surface area against benzene pollutant. According to our results, the developed MW-AC presents itself as a promising adsorbent candidate for the treatment of VOCs in various industrial applications.
Collapse
Affiliation(s)
- Sinan Kutluay
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Ömer Şahin
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Orhan Baytar
- Department of Chemical Engineering, Faculty of Engineering, Siirt University, 56100, Siirt, Turkey.
| |
Collapse
|
5
|
Wang Y, Zhu W, Zhao G, Ye G, Jiao Y, Wang X, Yao F, Peng W, Huang H, Ye D. Precise preparation of biomass-based porous carbon with pore structure-dependent VOCs adsorption/desorption performance by bacterial pretreatment and its forming process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121134. [PMID: 36720338 DOI: 10.1016/j.envpol.2023.121134] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Pore distribution characteristic is one of the most crucial factors for porous adsorption materials, and the variety of volatile organic compounds (VOCs) approaches about how to simply and accurately tailor practical porous carbons for VOCs adsorption has gradually attracted attention. Here, precursors with different lignocellulose mass ratios have been used to produce porous carbon for model experiments to investigate the influence of the precursor lignocellulose contents on the pore structure and distribution characteristics of porous carbon, and the applicability of these mechanisms to real biomass materials has been further verified through bacteria-targeted bagasse decomposition: the microvolumes of ultra-micropores have decreased with decrease in cellulose contents, while mesopores have followed the reverse trend. The dynamic toluene adsorption/desorption performances of the obtained samples have been tested. The BACs-36 exhibits high toluene adsorption performance in low concentration with 635 mg/g while the BACs-48 shows excellent reusability in 10 times cycles. Based on this the balance between the adsorptive and regenerative capacities has been observed which indicates that carbon materials with abundant micropores and narrow mesopores have much better adsorption performance than porous carbon with a hierarchical pore structure, while the latter show better regeneration abilities than the former, which resulting in less desorption as a counter-acting force at the pore wall. Furthermore, the porous carbon has been shaped by one-step co-pyrolysis method using phenolic resin, which can not only maintain the hardness but also can avoid pore plugging phenomenon.
Collapse
Affiliation(s)
- Yuqin Wang
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Wenfu Zhu
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Guangyi Zhao
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Guangzheng Ye
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Yujun Jiao
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Xiaohong Wang
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Fan Yao
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Weixiao Peng
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Haomin Huang
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, 510006, Guangzhou, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), 510006, Guangzhou, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, 510006, Guangzhou, China.
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, 510006, Guangzhou, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), 510006, Guangzhou, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, 510006, Guangzhou, China
| |
Collapse
|
6
|
Bagdat S, Tokay F, Demirci S, Yilmaz S, Sahiner N. Removal of Cd(II), Co(II), Cr(III), Ni(II), Pb(II) and Zn(II) ions from wastewater using polyethyleneimine (PEI) cryogels. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117002. [PMID: 36527951 DOI: 10.1016/j.jenvman.2022.117002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The removal of the target analytes, Cd(II), Co(II), Cr(III), Ni(II), Pb(II), and Zn(II) from contaminated waters was achieved using super porous polyethyleneimine (PEI) cryogels as adsorbent. The optimum values of the sample pH and contact time were determined as 4.0 and 90 min, respectively, for the removal of the analytes. The adsorption capacities of the sorbent were between 19.88 and 24.39 mgg-1 from 10 mL of 50 mgL-1 target metal ion solutions. The sorption kinetics of metal ions were fitted with the pseudo-second-order model. The adsorption isotherms of the target analytes into PEI cryogel were well-fitted to the Langmuir isotherm model as expected from the material homogeneity. The selectivity of the PEI cryogel in the presence of Na+, Ca2+, Mg2+, NO3-, K+ and Cl- ions even at high concentrations was tested, and the tolerance limits were satisfactory enough, e.g., the adsorption of the target analytes was even not affected in the presence of 2000 mgL-1 Ca2+, K+, Na+, Cl- and 5000 mgL-1 NO3- ions. The PEI cryogels were successfully utilized in different industrial wastewater samples that were spiked with a known amount of analytes. The removal of the analytes from wastewater samples was in the following ranges 91.94-99.86% for Cd(II), 89.59-99.89% for Co(II), 80.35-99.76% for Cr(III), 92.02-99.84% for Ni(II), 83.28-99.86% for Pb(II), and 82.94-98.24% for Zn(II), respectively. The presented novel removal strategy offers a selective, efficient, and easy application for target metal ions from industrial wastewater samples.
Collapse
Affiliation(s)
- Sema Bagdat
- Balıkesir University, Faculty of Science, Chemistry Department, 10145, Balıkesir, Turkey
| | - Feyzullah Tokay
- Balıkesir University, Faculty of Science, Chemistry Department, 10145, Balıkesir, Turkey
| | - Sahin Demirci
- Canakkale Onsekiz Mart University, Faculty of Science, Department of Chemistry, Terzioglu Campus, Canakkale, 17100, Turkey; Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey
| | - Selehattin Yilmaz
- Canakkale Onsekiz Mart University, Faculty of Science, Department of Chemistry, Terzioglu Campus, Canakkale, 17100, Turkey
| | - Nurettin Sahiner
- Canakkale Onsekiz Mart University, Faculty of Science, Department of Chemistry, Terzioglu Campus, Canakkale, 17100, Turkey; Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey; Department of Chemical and Biomolecular Engineering, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
7
|
Sun S, Zhu Y, Gu Z, Chu H, Hu C, Gao L, Zhao X. Adsorption of crystal violet on activated bamboo fiber powder from water: preparation, characterization, kinetics and isotherms. RSC Adv 2023; 13:6108-6123. [PMID: 36814871 PMCID: PMC9940309 DOI: 10.1039/d2ra08323j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Biomass-activated carbon has made a great contribution as an adsorbent in the field of dye wastewater treatment. In this study, the response surface method (RSM) based on the Box-Behnken design was used to optimize the preparation process. Bamboo fiber activated carbon (BAC) with a specific surface area of 2892 m2 g-1 and a pore volume of 1.80 cm3 g-1 was prepared. Various characterization methods (SEM, XPS, XRD, and Raman spectroscopy) were used to analyze the micro-structure of BAC. In the microscopic state, the BAC is fibrous and maintains the originally connected pores of the bamboo fiber. After high-temperature activation, the microcrystallinity of BAC decreases, and the degree of graphitization is low, indicating the presence of amorphous carbon. The adsorption capacity of BAC to crystal violet in simulated wastewater was evaluated via an adsorption experiment. Under the following conditions: the dosage of BAC was 0.04 g, the concentration was 600 mg L-1, the adsorption temperature and time were 25 °C and 30 min, respectively, and the as-prepared BAC had a 99.96% removal rate. The adsorption process conformed to the pseudo-second-order kinetic model and Langmuir adsorption isotherm model, indicating that the adsorption process of CV on BAC belonged to monomolecular layer adsorption. The adsorption process occurs spontaneously and is accompanied by heat release, and the maximum adsorption capacity of BAC within a given concentration range could reach 1353.09 mg g-1. SEM-EDS characterization before and after adsorption showed that ion exchange and the presence of oxygen-containing functional groups played an important role in promoting the adsorption process. The results show that BAC considerably affects CV removal, which has great application prospects.
Collapse
Affiliation(s)
- Shushuang Sun
- Institute of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 China .,School of Energy and Environmental Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Yaming Zhu
- Institute of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 China
| | - Zishuo Gu
- Institute of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 China
| | - Hongyu Chu
- Institute of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 China
| | - Chaoshuai Hu
- Institute of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 China
| | - Lijuan Gao
- Institute of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 China
| | - Xuefei Zhao
- Institute of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 China
| |
Collapse
|
8
|
Harnessing the cation-π interactions of metalated gold monolayer-protected clusters to detect aromatic volatile organic compounds. Talanta 2023; 253:123915. [PMID: 36155323 DOI: 10.1016/j.talanta.2022.123915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/18/2022] [Accepted: 09/02/2022] [Indexed: 12/13/2022]
Abstract
The strong, non-covalent interactions between π-systems and cations have been the focus of numerous studies on biomolecule structure and catalysis. These interactions, however, have yet to be explored as a sensing mechanism for detecting trace levels of volatile organic compounds (VOCs). In this article, we provide evidence that cation-π interactions can be used to elicit sensitive and selective chemiresistor responses to aromatic VOCs. The chemiresistors are fitted with carboxylate-linked alkali metals bound to the surface of gold monolayer-protected clusters formulated on microfabricated interdigitated electrodes. Sensor responses to aromatic and non-aromatic VOCs are consistent with a model for cation-π interactions arising from association of electron-rich aromatic π-systems to metal ions with the relative strength of attraction following the order K+ > Na+ > Li+. The results point toward cation-π interactions as a promising research avenue to explore for developing aromatic VOC-selective sensors.
Collapse
|
9
|
Zuliani A, Chelazzi D, Mastrangelo R, Giorgi R, Baglioni P. Adsorption kinetics of acetic acid into ZnO/castor oil-derived polyurethanes. J Colloid Interface Sci 2022; 632:74-86. [DOI: 10.1016/j.jcis.2022.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
|
10
|
Liu Y, Ma C, Zhou J, Zhu L, Cao L, Yang J. Ultra-high adsorption of Hg 0 using impregnated activated carbon by selenium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69450-69461. [PMID: 35576034 DOI: 10.1007/s11356-022-20541-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Activated carbon was one of the main adsorptions utilized in elemental mercury (Hg0) removal from coal combustion flue gas. However, the high cost and low physical adsorption efficiency of activated carbon injection (ACI) limited its application. In this study, an ultra-high efficiency (nearly 100%) catalyst sorbent-Sex/Activated carbon (Sex/AC) was synthesized and applied to remove Hg0 in the simulated flue gas, which exhibited 120 times outstanding adsorption performance versus the conventional activated carbon. The Sex/AC reached 17.98 mg/g Hg0 adsorption capacity at 160 °C under the pure nitrogen atmosphere. Moreover, it maintained an excellent mercury adsorption tolerance, reaching the efficiency of Hg0 removal above 85% at the NO and SO2 conditions in a bench-scale fixed-bed reactor. Characterized by the multiple methods, including BET, XRD, XPS, kinetic and thermodynamic analysis, and the DFT calculation, we demonstrated that the ultrahigh mercury removal performance originated from the activated Se species in Sex/AC. Chemical adsorption plays a dominant role in Hg0 removal: Selenium anchored on the surface of AC would capture Hg0 in the flue gas to form an extremely stable substance-HgSe, avoiding subsequent Hg0 released. Additionally, the oxygen-containing functional groups in AC and the higher BET areas promote the conversion of Hg0 to HgO. This work provided a novel and highly efficient carbon-based sorbent -Sex/AC to capture the mercury in coal combustion flue gas. Graphical abstract Selenium-modified porous activated carbon and the interface functional group promotes the synergistic effect of physical adsorption and chemical adsorption to promote the adsorption capacity of Hg0.
Collapse
Affiliation(s)
- Ye Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, People's Republic of China
| | - Chenglong Ma
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, People's Republic of China
| | - Jiacheng Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, People's Republic of China
| | - Lin Zhu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, People's Republic of China
| | - Limei Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Ji Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
11
|
Maximoff SN, Mittal R, Kaushik A, Dhau JS. Performance evaluation of activated carbon sorbents for indoor air purification during normal and wildfire events. CHEMOSPHERE 2022; 304:135314. [PMID: 35709843 DOI: 10.1016/j.chemosphere.2022.135314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) are a significant class of indoor air pollutants and are known for their adverse effects on health. A common strategy to reduce indoor VOC levels is to use sorbents, including activated carbons (ACs). The amount of activated carbon is critical to achieving a reasonable AC filter lifetime in an air purification device. The study aims to estimate the amount of carbon needed in a typical indoor environment and in a heavy use setting such as during cooking, agriculture field fires, or wildfires. The problem is complex as various types of ACs are used, and the type and concentration of VOCs in the indoor environment also vary in different settings. Therefore, literature data on thermophysical parameters for 45 AC-VOC pairs was used to estimate the required amount of AC under a given set of conditions. The study uses modeling distributions of the footprint of suitable carbon filters for the removal of common VOCs encountered indoors for a period of 30 days. It was found that while 50% of AC-VOC pairs surveyed will require about 190-370 g at low indoor VOCs levels of 0.1-1 μmol/m3(considered a good clean indoor environment), up to 1.1 kg of ACs are needed for a carbon filter to survive 30 days in a typical indoor environment (VOCs levels of 10 μmol/m3). On the other hand, 3-15 kg or more AC will be needed in a filter to survive 30 days during adverse events such as wildfires. The objective of the present study is to aid consumers and businesses in making an informed decision on the type of AC-based indoor air filters that meet their needs. Using this data, an open-access online calculator is being developed to predict the amount of carbon needed in a filter/device at any specific indoor air condition.
Collapse
Affiliation(s)
| | - Rajat Mittal
- Molekule, Inc., 3802 Spectrum Blvd., Tampa FL 33612, USA
| | - Ajeet Kaushik
- Department of Environmental Engineering, Florida Polytechnic University, 4700 Research Way, Lakeland, FL 33805, USA
| | | |
Collapse
|
12
|
Vohra M, Hussaini M, Mohammad T. Olive branches activated carbon: synthesis, phenol adsorption and modeling. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Gorbounov M, Taylor J, Petrovic B, Masoudi Soltani S. To DoE or not to DoE? A Technical Review on & Roadmap for Optimisation of Carbonaceous Adsorbents and Adsorption Processes. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Bathla A, Vikrant K, Kukkar D, Kim KH. Photocatalytic degradation of gaseous benzene using metal oxide nanocomposites. Adv Colloid Interface Sci 2022; 305:102696. [PMID: 35640317 DOI: 10.1016/j.cis.2022.102696] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 01/12/2023]
Abstract
Rapid industrial growth has been accompanied by the pollution of hazardous volatile organic pollutants (VOCs) in air. Among various options available for the treatment of VOCs, the use of metal oxide composites as photocatalysts has been adopted preferably due to their potential to induce the synergistic interactions between the metal nanoparticles (NPs) and metal oxides (especially titanium dioxide (TiO2)). In this context, an in-depth review is offered to describe the fundamental mechanism of metal oxide-based photocatalysis for the oxidation of gaseous benzene as a model VOC. The discussion has been extended further to evaluate their performances in terms of key performance metrics (e.g., quantum yield (QY), space-time yield (STY), and figure of merit (FOM)). The TiO2-based metallic bi-component photocatalysts (e.g., Sr2CeO4/TiO2) generally exhibited better photodegradation efficiency with enhanced light absorption capability than monometallic-TiO2 (e.g., Pd-TiO2) composites or other modified photocatalysts (e.g., metal-organic framework (MOF)-based composites). Finally, we address the current challenges and future perspectives in this highly challenging research field.
Collapse
Affiliation(s)
- Aadil Bathla
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Deepak Kukkar
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali -140413, Punjab, India; Department of Biotechnology, Chandigarh University, Gharuan, Mohali - 140413, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
15
|
Ahmadi Y, Kim KH. Recent Progress in the Development of Hyper-Cross-Linked Polymers for Adsorption of Gaseous Volatile Organic Compounds. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2082470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Younes Ahmadi
- Department of Analytical Chemistry, Kabul University, Kabul, Afghanistan
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Korea
| |
Collapse
|
16
|
He T, Kong XJ, Bian ZX, Zhang YZ, Si GR, Xie LH, Wu XQ, Huang H, Chang Z, Bu XH, Zaworotko MJ, Nie ZR, Li JR. Trace removal of benzene vapour using double-walled metal-dipyrazolate frameworks. NATURE MATERIALS 2022; 21:689-695. [PMID: 35484330 PMCID: PMC9156410 DOI: 10.1038/s41563-022-01237-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/18/2022] [Indexed: 05/08/2023]
Abstract
In principle, porous physisorbents are attractive candidates for the removal of volatile organic compounds such as benzene by virtue of their low energy for the capture and release of this pollutant. Unfortunately, many physisorbents exhibit weak sorbate-sorbent interactions, resulting in poor selectivity and low uptake when volatile organic compounds are present at trace concentrations. Herein, we report that a family of double-walled metal-dipyrazolate frameworks, BUT-53 to BUT-58, exhibit benzene uptakes at 298 K of 2.47-3.28 mmol g-1 at <10 Pa. Breakthrough experiments revealed that BUT-55, a supramolecular isomer of the metal-organic framework Co(BDP) (H2BDP = 1,4-di(1H-pyrazol-4-yl)benzene), captures trace levels of benzene, producing an air stream with benzene content below acceptable limits. Furthermore, BUT-55 can be regenerated with mild heating. Insight into the performance of BUT-55 comes from the crystal structure of the benzene-loaded phase (C6H6@BUT-55) and density functional theory calculations, which reveal that C-H···X interactions drive the tight binding of benzene. Our results demonstrate that BUT-55 is a recyclable physisorbent that exhibits high affinity and adsorption capacity towards benzene, making it a candidate for environmental remediation of benzene-contaminated gas mixtures.
Collapse
Affiliation(s)
- Tao He
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, China
- The Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, China
| | - Xiang-Jing Kong
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, China
- Bernal Institute and Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Zhen-Xing Bian
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, China
| | - Yong-Zheng Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, China
| | - Guang-Rui Si
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, China
| | - Xue-Qian Wu
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, China
| | - Ze Chang
- School of Materials Science and Engineering and TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, China
| | - Xian-He Bu
- School of Materials Science and Engineering and TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, China
| | - Michael J Zaworotko
- Bernal Institute and Department of Chemical Sciences, University of Limerick, Limerick, Ireland.
| | - Zuo-Ren Nie
- The Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, China.
- The Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China.
| |
Collapse
|
17
|
Yu Q, Zhuang R, Yi H, Gao W, Zhang Y, Tang X. Application of MCM-48 with large specific surface area for VOCs elimination: synthesis and hydrophobic functionalization for highly efficient adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33595-33608. [PMID: 35029827 DOI: 10.1007/s11356-021-17356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/30/2021] [Indexed: 06/14/2023]
Abstract
MCM-48 molecular sieve with a large specific area (1470.87 m2/g) was hydrothermally synthesized for VOCs elimination by the adsorption method. The dynamic adsorption behaviors of toluene on this material were evaluated via breakthrough curves under both dry and wet conditions. A high toluene adsorption capacity of 171.13 mg/g was observed under dry conditions; however, in the presence of water vapor (20% RH), the adsorption capacity greatly decreased to 58.88 mg/g due to the competitive occupation of adsorption sites between water molecules and toluene molecules. To improve the affinity to toluene, functionalized MCM-48 materials were obtained by the co-condensation method and grafting method, respectively. It was found that co-M48(1:5)-100/48 sample by co-condensation method presents the highest dynamic adsorption capacity at both dry condition (194.62 mg/g) and 20% RH (122.42 mg/g), which has a significant advantage in the same type of adsorbent. This could be ascribed to the conjugated π-electrons effect between aromatic rings of phenyl groups uniformly distributed in MCM-48 skeleton and toluene molecules, which was qualitatively confirmed by FTIR. Moreover, cycle tests confirmed that this adsorbent possesses superior stability. The Yoon-Nelson model was successfully employed to describe the dynamic adsorption behavior of toluene over the organofunctionalized MCM-48 adsorbents, and the adsorption force of toluene was explained. Finally, a diagram describing the effect of different functionalization methods on the hydrophobicity and organophilicity of MCM-48 was given for a better understanding.
Collapse
Affiliation(s)
- Qingjun Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Recycling of Typical Industrial Pollutants, Beijing, 100083, China
| | - Ruijie Zhuang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Recycling of Typical Industrial Pollutants, Beijing, 100083, China
| | - Wei Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuanyuan Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Recycling of Typical Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
18
|
Halawy SA, Osman AI, Mehta N, Abdelkader A, Vo DVN, Rooney DW. Adsorptive removal of some Cl-VOC's as dangerous environmental pollutants using feather-like γ-Al 2O 3 derived from aluminium waste with life cycle analysis. CHEMOSPHERE 2022; 295:133795. [PMID: 35124083 DOI: 10.1016/j.chemosphere.2022.133795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 05/27/2023]
Abstract
Herein, we designed a cost-effective preparation method of nanocomposite γ-Al2O3 derived from Al-waste. The produced material has a feather-like morphology, and its adsorption of some chlorinated volatile organic compounds (Cl-VOC's) such as benzyl chloride, chloroform and carbon tetrachloride (C7H7Cl, CHCl3 and CCl4) was investigated due to their potential carcinogenic effect on humans. It showed a characteristic efficiency towards the adsorptive removal of these compounds over a long period, i.e., eight continuous weeks, at ambient temperature and atmospheric pressure. After 8-weeks, the adsorbed amounts of these compounds were determined as: 325.3 mg C7H7Cl, 247.6 mg CHCl3 and 253.3 mg CCl4 per g of γ-Al2O3, respectively. CCl4 was also found to be dissociatively adsorbed on the surface of γ-Al2O3, whereas CHCl3 and C7H7Cl were found to be associatively adsorbed. The prepared γ-Al2O3 has a relatively high surface area (i.e., 192.2 m2. g-1) and mesoporosity with different pore diameters in the range of 25-47 Å. Furthermore, environmental impacts of the nanocomposite γ-Al2O3 preparation were evaluated using life cycle assessment. For prepartion of adsorbent utilising 1 kg of scrap aluminium wire, it was observed that potential energy demand was 288 MJ, climate change potential was 19 kg CO2 equivalent, acidification potential was 0.115 kg SO2 equivalent and eutrophication potential was 0.018 kg PO43- equivalent.
Collapse
Affiliation(s)
- Samih A Halawy
- Nanocomposite Catalysts Lab., Chemistry Department, Faculty of Science at Qena, South Valley University, Qena, 83523, Egypt.
| | - Ahmed I Osman
- Nanocomposite Catalysts Lab., Chemistry Department, Faculty of Science at Qena, South Valley University, Qena, 83523, Egypt; School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast BT9 5AG, Northern Ireland, UK.
| | - Neha Mehta
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast BT9 5AG, Northern Ireland, UK; The Centre for Advanced Sustainable Energy, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, UK
| | - Adel Abdelkader
- Nanocomposite Catalysts Lab., Chemistry Department, Faculty of Science at Qena, South Valley University, Qena, 83523, Egypt
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam; College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - David W Rooney
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast BT9 5AG, Northern Ireland, UK
| |
Collapse
|
19
|
Kawamoto K. Adsorption characteristics of the carbonaceous adsorbents for organic compounds in a model exhaust gas from thermal treatment processing. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:463-473. [PMID: 35294315 DOI: 10.1080/10962247.2022.2053244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/21/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the adsorption characteristics of the carbonaceous adsorbents for organic compounds in gas to gain technical knowledge useful for the appropriate operation and management of the incineration plants and industrial heat treatment facilities. The experiments in the study were performed using a dynamic method, employing a small column packed with test adsorbent, into which flowed the model gas, primarily over a temperature range of 150°C to 190°C. Three activated carbon materials and an activated coke were used, with specific surface areas ranging from 250 to 1,100 m2/g-adsorbent. Organic components in the gas were produced and supplied at a concentration of tens of mg/m3, and gaseous mercury was supplied at a concentration of around 100 μg/m3. The experimental results showed the following: 1) The adsorption capacity of every carbonaceous material for organic vapor decreased with increasing temperature, with roughly a three-fold difference in the capacity, between 150°C and 190°C in the dry gas. The equilibrium adsorption amount of benzene could be estimated based on the specific surface area of the adsorbent. 2) Gas moisture reduced the equilibrium adsorption amount of adsorbates by about half. 3) The estimation of the treatment performance for actual adsorption processing suggested the possibility of decreased removal efficiency at higher temperatures above 175°C. Overall, the precise process design should be made based on future practical studies.Implications: Adsorptive characteristics of activated carbon materials were examined for benzene and chlorobenzene in gas within the temperature range of 150°C to 190°C.The adsorption amount of benzene at high temperature and low concentration range below 20 ppm was in the range of 103 to 104 mg/kg-adsorbent.There was a clear difference between the adsorption parameters of activated carbon and coke for the benzene adsorption, depending on their specific surface area values and other factors.
Collapse
Affiliation(s)
- Katsuya Kawamoto
- Institute of Academic and Research, Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
20
|
Huang X, Li H, Wang L, Tang M, Lu S. Removal of toluene and SO 2 by hierarchical porous carbons: a study on adsorption selectivity and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29117-29129. [PMID: 34997509 DOI: 10.1007/s11356-021-18380-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The coal combustion produces a large amount of pollutants such as organic compounds pollutants (such as VOCs, SVOCs) and conventional pollutants (such as SO2, NOx) which need to be controlled in coal-fired plants. Currently, there have been mature emission control technologies for conventional pollutants in coal-combustion flue gas. The complicated conditions of flue gas will have great effects on the property of VOCs adsorbents. Thus, high-quality adsorbents with great adsorption properties and selectivity of VOCs are urgently needed. In this work, a biomass-derived hierarchical porous carbon (HPC-A) with high adsorption capacity (585 mg/g) and great selectivity of toluene was proposed. Analyses through the competitive adsorption tests between toluene and SO2 indicated that the pore size distributions of adsorbents dominate the adsorption capacity and selectivity. The ultramicropores (< 0.7 nm) determine the SO2 adsorption capacity and promote the SO2 adsorption selectivity, while the micropores of 0.7 ~ 2 nm and mesopores are beneficial for toluene adsorption. Intriguingly, the SO2 molecules can promote the toluene adsorption kinetics on hierarchical porous carbons through occupying ultramicropores when competitive adsorption. Besides, we indicated the mechanism of adsorption capacity, selectivity, and kinetics of toluene and SO2, and great reusability of HPC-A was found through toluene cyclic adsorption tests. The HPC-A could be a potential adsorbent for VOCs removal from coal-combustion flue gas.
Collapse
Affiliation(s)
- Xinlei Huang
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongxian Li
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ling Wang
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Minghui Tang
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Shengyong Lu
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
21
|
El-Bery HM, Saleh M, El-Gendy RA, Saleh MR, Thabet SM. High adsorption capacity of phenol and methylene blue using activated carbon derived from lignocellulosic agriculture wastes. Sci Rep 2022; 12:5499. [PMID: 35361831 PMCID: PMC8971380 DOI: 10.1038/s41598-022-09475-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
The resources of clean water worldwide are very limited, and climate change is already affecting the available supplies. Therefore, developing a low-cost, highly efficient, and recyclable adsorbent to upgrade water quality has become an essential task. Herein, we report the fabrication of activated carbon (AC) adsorbents derived from lignocellulosic wastes. Both physical and chemical activation were investigated to modify the surface texture properties. The results indicated that increasing the activation temperature, whether physically or chemically, increases the specific surface area (SBET). On the contrary, increasing the amount of the chemical activating agent significantly decreases the SBET values. The SBET of 1771, 2120, and 2490 m2 g-1 were obtained for water vapor, K2CO3 and KOH, at activation temperatures of 950 °C, 800 °C, and 800 °C, respectively. Methylene blue (MB) and phenol were used as adsorbates for the adsorption experiment. Adsorption of methylene blue dye revealed the ability of the water activated carbon to remove more than 95% of the dye (100 ppm) within 5 min with an adsorption capacity of 148.8 mg g-1. For phenol adsorption, Several parameters were investigated, including initial concentration (50-250 ppm), pH (2-10), contact time (5-60 min), and temperature (25-45 °C). The highest adsorption capacity of phenol achieved was 158.9 mg g-1. The kinetics of adsorption of phenol was better described by pseudo-second-order reaction while the isotherm process using Langmuir model. This study presents a roadmap for conversion of lignocellulosic biomass waste into highly efficient porous carbon adsorbents.
Collapse
Affiliation(s)
- Haitham M El-Bery
- Advanced Multifunctional Materials Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt.
| | - Moushira Saleh
- Advanced Multifunctional Materials Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Reem A El-Gendy
- Advanced Multifunctional Materials Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Mahmoud R Saleh
- Advanced Multifunctional Materials Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt.
| | - Safinaz M Thabet
- Advanced Multifunctional Materials Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
22
|
Karuk Elmas SN. A simple and rapid determination of Al(III) in natural water samples using dispersive liquid-liquid microextraction after complexation with a novel antipyrine-based Schiff base reagent. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 194:47. [PMID: 34970705 DOI: 10.1007/s10661-021-09701-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The purpose of this study is the development of a novel strategy for the determination of Al3+ ions using the combination of dispersive liquid-liquid microextraction (DLLME) and UV-Vis spectrophotometry. The method is grounded in the complexation between a novel antipyrine-based Schiff base reagent (EHMP) and Al3+ ions. Aluminum concentrations were detected using UV-Vis spectrophotometry at 260 nm and this technique was optimized using the absorbance value of EHMP-Al complex. pH, mixing period, type and volume of organic solvent, etc. were optimized stepwise in order to find out optimum experimental conditions. The limit of detection and the limit of quantification values for the improved analytical method were to be estimated 0.31 and 1.03 μmol.L-1, respectively. The new strategy was successfully performed to define Al3+ ions in natural water samples with RSD values (84.01-107.71%) and recovery values (0.01-0.09%).
Collapse
Affiliation(s)
- Sukriye Nihan Karuk Elmas
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey.
| |
Collapse
|
23
|
Ghasemi MH, Neekzad N, Ajdari FB, Kowsari E, Ramakrishna S. Mechanistic aspects of poly(ethylene terephthalate) recycling-toward enabling high quality sustainability decisions in waste management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43074-43101. [PMID: 34146328 DOI: 10.1007/s11356-021-14925-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Since plastic waste pollution is a severe environmental concern in modern life, the demand for recycling poly(ethylene terephthalate) (PET) has increased due to its versatile applications. Taking advantage of plastic recycling methods creates the chances of minimizing overall crude oil-based materials consumption, and as a result, greenhouse gasses, specifically CO2, will be decreased. Although many review articles have been published on plastic recycling methods from different aspects, a few review articles exist to investigate the organic reaction mechanism in plastic recycling. This review aims to describe other processes for recycling bottle waste of PET, considering the reaction mechanism. Understanding the reaction mechanism offers practical solutions toward protecting the environment against disadvantageous outgrowths rising from PET wastes. PET recycling aims to transform into a monomer/oligomer to produce new materials from plastic wastes. It is an application in various fields, including the food and beverage industry, packaging, and textile applications, to protect the environment from contamination and introduce a green demand for the near future. In this review, the chemical glycolysis process as an outstanding recycling technique for PET is also discussed, emphasizing the catalysts' performance, reaction conditions and methods, degradation agents, the kinetics of reactions, and reprocessing products. In general, a correct understanding of the PET recycling reaction mechanism leads to making the right decisions in waste management.
Collapse
Affiliation(s)
- Mohammad Hadi Ghasemi
- Applied Chemistry Research Group, ACECR-Tehran Organization, PO Box 13145-186, Tehran, Iran
| | - Nariman Neekzad
- Department of Chemistry, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran, 1591634311, Iran
| | | | - Elaheh Kowsari
- Department of Chemistry, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran, 1591634311, Iran.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
24
|
Moradpour N, Sedaghat S, Aberoomand Azar P, Behzad K. Synthesis of chitosan and amine functionalized MCM‐41 nanocomposite for the removal of acetylsalicylic acid from water using central composite design. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nina Moradpour
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| | - Sajjad Sedaghat
- Department of Chemistry Islamic Azad University, Shahr‐e‐Qods Branch Shahr‐e‐Qods Iran
| | - Parviz Aberoomand Azar
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| | - Kasra Behzad
- Department of Physics Islamic Azad University, Shahr‐e‐Qods Branch Shahr‐e‐Qods Iran
| |
Collapse
|
25
|
Guo R, Jiang S, Hu M, Zhan Y, Cheng K, Duan G. Adsorption of volatile benzene series compounds by surface-modified glass fibers: kinetics, thermodynamic adsorption efficiencies, and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30898-30907. [PMID: 33594553 DOI: 10.1007/s11356-020-12227-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The presence of volatile benzene series compounds (VBSCs) in the environment is continually increasing, with the potential for negative effects on human health. It is therefore important to develop new materials for the adsorption of these compounds using various modification techniques. Glass fibers are a promising adsorbent for VBSCs and offer a number of advantages. In the present work, the surfaces of glass fibers were modified using hydrogen peroxide, a sodium hydroxide solution, or Piranha solution (a mixture of concentrated sulfuric acid and hydrogen peroxide). The adsorption characteristics of the resulting specimens were investigated, employing 10 volatile benzene-based compounds, and the activated glass fibers showed significantly improved adsorption efficiencies. The fibers activated with the Piranha solution were further modified with a triethoxysilyl benzene compound to obtain an aryl-modified material that demonstrated enhanced adsorption of aniline, salicylaldehyde, benzyl alcohol, and xylene relative to that obtained from a combination of polyurethane foam and XAD-2 resin. The adsorption efficiency of benzyl alcohol by these aryl glass fibers was found to be as high as 93% and the adsorption mechanism is believed to be associated with hydrogen bonding and π-π conjugation. This study provides a reliable technique for the quantification of VBSCs and a basis for the evaluation of various adsorption materials.
Collapse
Affiliation(s)
- Rui Guo
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
- State Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Sijing Jiang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ming Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yuhang Zhan
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Kun Cheng
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Gaigai Duan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
26
|
Genli N, Kutluay S, Baytar O, Şahin Ö. Preparation and characterization of activated carbon from hydrochar by hydrothermal carbonization of chickpea stem: an application in methylene blue removal by RSM optimization. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:88-100. [PMID: 34024213 DOI: 10.1080/15226514.2021.1926911] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, mesoporous activated carbon (AC) was prepared through potassium hydroxide (KOH) activation of hydrochar derived from the hydrothermal carbonization (HTC) of chickpea stem (CS), and successfully applied to remove methylene blue (MB) dye from aqueous solutions in a batch system. The HTC-CSAC was prepared depending on different impregnation ratios (hydrochar:KOH, 50-150%), impregnation times (12-48 h), activation temperatures (400-600°C) and activation times (30-60 min). To define HTC-CSAC, various analytical techniques such as iodine adsorption number (IAN), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) were used. In the removal process of MB by the best HTC-CSAC with a high IAN of 887 mg g-1 obtained under conditions including impregnation ratio of 70%, activation time of 45 min, activation temperature of 600°C and impregnation time of 24 h, the effects of adsorption parameters such as pH factor (2-10), adsorbent dosage (50-100 mg), initial MB concentration (40-80 mg/L) and contact time (90-180 min) were studied. Besides, a detailed evaluation of the adsorption mechanism for the removal of MB by HTC-CSAC was performed. The Langmuir model indicated the best isotherm data correlation, with a maximum monolayer adsorption capacity (Qmax) of 96.15 mg g-1. The adsorption isotherm findings demonstrated that the MB removal process is feasible, and that this process takes place through the physical interaction mechanism. Additionally, the HTC-CSAC adsorbent exhibited a high regeneration and reuse performance in MB removal. After five consecutive adsorption-desorption cycles, HTC-CSAC maintained the reuse efficiency of 77.86%. As a result, the prepared HTC-CSAC with a high BET surface area of 455 m2 g-1 and an average pore diameter of 105 Å could be recommended as a promising and reusable adsorbent in the treatment of synthetic dyes in wastewaters.
Collapse
Affiliation(s)
- Nasrettin Genli
- Vocational School of Diyarbakir, Dicle University, Diyarbakir, Turkey
| | - Sinan Kutluay
- Department of Chemical Engineering, Siirt University, Siirt, Turkey
| | - Orhan Baytar
- Department of Chemical Engineering, Siirt University, Siirt, Turkey
| | - Ömer Şahin
- Department of Chemical Engineering, Siirt University, Siirt, Turkey
| |
Collapse
|
27
|
Ece MŞ. Synthesis and characterization of activated carbon supported magnetic nanoparticles (Fe O4/AC@SiO @Sulfanilamide) and its application in removal of toluene and benzene. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126231] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Şahin Ö, Kutluay S, Horoz S, Ece MŞ. Fabrication and characterization of 3,4-diaminobenzophenone-functionalized magnetic nanoadsorbent with enhanced VOC adsorption and desorption capacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5231-5253. [PMID: 32964387 DOI: 10.1007/s11356-020-10885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The present study, for the first time, utilized 3,4-diaminobenzophenone (DABP)-functionalized Fe3O4/AC@SiO2 (Fe3O4/AC@SiO2@DABP) magnetic nanoparticles (MNPs) synthesized as a nanoadsorbent for enhancing adsorption and desorption capacity of gaseous benzene and toluene as volatile organic compounds (VOCs). The Fe3O4/AC@SiO2@DABP MNPs used in adsorption and desorption of benzene and toluene were synthesized by the co-precipitation and sol-gel methods. The synthesized MNPs were characterized by SEM, FTIR, TGA/DTA, and BET surface area analysis. Moreover, the optimization of the process parameters, namely contact time, initial VOC concentration, and temperature, was performed by applying response surface methodology (RSM). Adsorption results demonstrated that the Fe3O4/AC@SiO2@DABP MNPs had excellent adsorption capacity. The maximum adsorption capacities for benzene and toluene were found as 530.99 and 666.00 mg/g, respectively, under optimum process parameters (contact time 55.47 min, initial benzene concentration 17.57 ppm, and temperature 29.09 °C; and contact time 57.54 min, initial toluene concentration 17.83 ppm, and temperature 27.93 °C for benzene and toluene, respectively). In addition to the distinctive adsorptive behavior, the Fe3O4/AC@SiO2@DABP MNPs exhibited a high reproducibility adsorption and desorption capacity. After the fifth adsorption and desorption cycles, the Fe3O4/AC@SiO2@DABP MNPs retained 94.4% and 95.4% of its initial adsorption capacity for benzene and toluene, respectively. Kinetic and isotherm findings suggested that the adsorption mechanisms of benzene and toluene on the Fe3O4/AC@SiO2@DABP MNPs were physical processes. The results indicated that the successfully synthesized Fe3O4/AC@SiO2@DABP MNPs can be applied as an attractive, highly effective, reusable, and cost-effective adsorbent for the adsorption of VOC pollutants.Graphical abstract.
Collapse
Affiliation(s)
- Ömer Şahin
- Department of Chemical Engineering, Siirt University, 56100, Siirt, Turkey
| | - Sinan Kutluay
- Department of Chemical Engineering, Siirt University, 56100, Siirt, Turkey
| | - Sabit Horoz
- Department of Electrical & Electronics Engineering, Siirt University, 56100, Siirt, Turkey
| | - Mehmet Şakir Ece
- Vocational High School of Health Services, Mardin Artuklu University, 47100, Mardin, Turkey.
| |
Collapse
|
29
|
Kutluay S, Temel F. Silica gel based new adsorbent having enhanced VOC dynamic adsorption/desorption performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125848] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Batur E, Baytar O, Kutluay S, Horoz S, Şahin Ö. A comprehensive new study on the removal of Pb (II) from aqueous solution by şırnak coal-derived char. ENVIRONMENTAL TECHNOLOGY 2021; 42:505-520. [PMID: 32804581 DOI: 10.1080/09593330.2020.1811397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
In this study, char was prepared from the Şırnak coal derivative as a new adsorbent by the pyrolysis process and successfully applied for Pb (II) removal. Prepared char adsorbent was characterized by analysis techniques such as thermogravimetric (TG)/differential thermogravimetric (DTG), iodine number, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) surface area. In the experimental design of the Pb (II) removal process, the relationship between operating factors (contact time, initial Pb (II) concentration and temperature) and process responses (adsorption capacity and removal efficiency) was modelled by applying response surface methodology (RSM). After that, the operating factors for the maximum adsorption capacity and removal efficiency of Pb (II) by char were optimized. In the removal of Pb (II), pseudo-first order and pseudo-second order kinetic models were used to determine the process mechanism. In addition, adsorption isotherm models such as Langmuir, Freundlich, and Dubinin-Radushkevich were applied to the equilibrium data to explain the adsorption mechanism between the adsorbent and adsorbate molecules. According to the results obtained, it was determined that kinetic and equilibrium isotherm data were better defined with pseudo-second order kinetic and Dubinin-Radushkevich isotherm models, respectively. The optimum values of the contact time, initial Pb (II) concentration, and temperature for maximum adsorption capacity (124.64 mg/g) and removal efficiency (92.35%) of Pb (II) were found as 150.00 min, 144.81 ppm, and 35.06°C, respectively. This study indicated the application potential of Şırnak coal-derived char as a promising cost-effective adsorbent for the removal of heavy metals.
Collapse
Affiliation(s)
- Ebru Batur
- Department of Chemical Engineering, Siirt University, Siirt, Turkey
| | - Orhan Baytar
- Department of Chemical Engineering, Siirt University, Siirt, Turkey
| | - Sinan Kutluay
- Department of Chemical Engineering, Siirt University, Siirt, Turkey
| | - Sabit Horoz
- Department of Electrical &Electronics Engineering, Siirt University, Siirt, Turkey
| | - Ömer Şahin
- Department of Chemical Engineering, Siirt University, Siirt, Turkey
| |
Collapse
|
31
|
KUTLUAY S, ECE MŞ, ŞAHİN Ö. Synthesis of magnetic Fe3O4/AC nanoparticles and its application for the removal of gas-phase toluene by adsorption process. ACTA ACUST UNITED AC 2020. [DOI: 10.32571/ijct.755732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Soylak M, Ozdemir B, Yilmaz E. An environmentally friendly and novel amine-based liquid phase microextraction of quercetin in food samples prior to its determination by UV-vis spectrophotometry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118806. [PMID: 32829158 DOI: 10.1016/j.saa.2020.118806] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
A novel and environmentally-friendly method, which includes determination of trace amounts of quercetin in samples by using UV-vis spectrophotometry after enrichment with amine-based liquid phase microextraction (LPME), has been developed. As extraction solvent, N,N-dimethyl-n-octylamine has been used and the quercetin concentration in extraction phase was determined by UV-vis spectrophotometry at 382.5 nm. Important analytical parameters such as pH, extraction solvent type and volume, sample volume, extraction time were optimized by the method. Quercetin in the sample solution was extracted to 200 μL of N,N-dimethyl-n-octylamine phase at pH 4.0. The detection limit (LOD) and the quantitation limit (LOQ) values for quercetin were calculated as 0.07 μg·mL-1 and 0.24 μg·mL-1, respectively. Accuracy studies for the food samples was carried out by addition and recovery experiments. The developed method has been successfully applied to different food samples including spinach, green pepper, red onion and dill weed.
Collapse
Affiliation(s)
- Mustafa Soylak
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, 38039 Kayseri, Turkey.
| | - Bircan Ozdemir
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey
| | - Erkan Yilmaz
- Technology Research and Application Center (TAUM), Erciyes University, 38039 Kayseri, Turkey; Erciyes University, Faculty of Pharmacy, Department of Analytical Chemistry, 38039 Kayseri, Turkey; ERNAM Erciyes University, Nanotechnology Application and Research Center, 38039 Kayseri, Turkey
| |
Collapse
|
33
|
Khoshakhlagh AH, Beygzadeh M, Golbabaei F, Saadati Z, Carrasco-Marín F, Shahtaheri SJ. Isotherm, kinetic, and thermodynamic studies for dynamic adsorption of toluene in gas phase onto porous Fe-MIL-101/OAC composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44022-44035. [PMID: 32748351 DOI: 10.1007/s11356-020-10297-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
In the present paper, micro-mesoporous Fe-MIL-101/OAC composite using in situ incorporation of Fe-MIL-101 into oxidized activated carbon was synthesized and characterized by XRD, FT-IR, SEM, EDS, and BET techniques. The adsorption performances of toluene onto adsorbents in the gas phase were studied using a laboratory-scale dynamic adsorption system under moist ambience. The toluene adsorption capacity of Fe-MIL-101/OAC composite and Fe-MIL-101 were 127 and 97.6 mg g-1, severally. Results revealed that the larger pores in micro-mesoporous Fe-MIL-101/OAC enhanced the molecular diffusion rate. The findings indicated that micro-mesoporous structures played key roles in the capture of toluene molecules. The initial toluene concentration positively affected on toluene adsorption capacity while temperature and humidity negatively affected on toluene adsorption capacity. The Langmuir model and the pseudo-second-order kinetics model described better adsorption process of Fe-MIL-101/OAC composite. Thermodynamic findings determined that toluene adsorption over Fe-MIL-101/OAC was spontaneous, exothermic physisorption. The regeneration of the composite was still up to 72.6% after six cycles. The micro-mesoporous Fe-MIL-101/OAC composite proposes a promising support for the high toluene removal for future. Graphical abstract.
Collapse
Affiliation(s)
- Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Beygzadeh
- Department of Energy, Materials & Energy Research Center, P.O. Box: 14155-4777, Tehran, Iran.
| | - Farideh Golbabaei
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Saadati
- Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| | - Francisco Carrasco-Marín
- Carbon Materials Research Group, Faculty of Science, University of Granada, Avda. Fuente Nueva s/n, Granada, Spain
| | - Seyed Jamaleddin Shahtaheri
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Institute for environmental research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Baytar O, Ceyhan AA, Şahin Ö. Production of activated carbon from Elaeagnus angustifolia seeds using H 3PO 4 activator and methylene blue and malachite green adsorption. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:693-703. [PMID: 33222511 DOI: 10.1080/15226514.2020.1849015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, activated carbon was obtained from Elaeagnus angustifolia seeds and its usability in the adsorption of methylene blue (MB) and malachite green (MG) from aqueous solution was investigated. Activated carbon was synthesized by chemical activation method using H3PO4 as an activator. In the synthesis of the activated carbon, the effects of various parameters such as the rate of impregnation, duration of activation, temperature of activation and duration of activation were investigated. The characterization of the synthesized activated carbons was carried out by FTIR, SEM and BET analyses and the surface area of the produced activated carbon was determined to be 1,194 m2 g-1. The effects of solution initial pH, solution initial concentration and amount of activated carbon on MB and MG adsorption were investigated. The adsorption capacity was found to be higher when the pH of the solution was 8 for MB and 4 for MG. The adsorption kinetics of MB and MG were found to fit the Elovich kinetic model and pseudo-first-order kinetic model, respectively. Adsorption equilibrium data were found to be compatible with Langmuir isotherm for both dyes. According to the Langmuir isotherm, qmax adsorption capacity was found to be 72 mg/g and 115 mg/g for MB and MG, respectively. Novelty Activated carbon was obtained from Elaeagnus angustifolia seeds and its usability in the adsorption of methylene blue (MB) and malachite green (MG) from aqueous solution was investigated. A high surface area activated carbon was synthesized. The surface area of the produced activated carbon was determined to be 1,194 m2 g-1. According to the Langmuir isotherm, qmax adsorption capacity was found to be 72 mg/g and 115 mg/g for MB and MG, respectively. It has been determined that the adsorption capacity of synthesized activated carbon is high.
Collapse
Affiliation(s)
- Orhan Baytar
- Department of Chemical Engineering, Faculty of Engineering, Siirt University, Siirt, Turkey
| | - A Abdullah Ceyhan
- Department of Chemical Engineering, Faculty of Natural and Engineering Sciences, Konya Technical University, Konya, Turkey
| | - Ömer Şahin
- Department of Chemical Engineering, Faculty of Engineering, Siirt University, Siirt, Turkey
| |
Collapse
|
35
|
Ece MŞ, Kutluay S, Şahin Ö, Horoz S. Development of Novel Fe3O4/AC@SiO2@1,4-DAAQ Magnetic Nanoparticles with Outstanding VOC Removal Capacity: Characterization, Optimization, Reusability, Kinetics, and Equilibrium Studies. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03883] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mehmet Şakir Ece
- Vocational High School of Health Services, Mardin Artuklu University, 47100 Mardin, Turkey
| | - Sinan Kutluay
- Department of Chemical Engineering, Siirt University, 56100 Siirt, Turkey
| | - Ömer Şahin
- Department of Chemical Engineering, Siirt University, 56100 Siirt, Turkey
| | - Sabit Horoz
- Department of Electrical &Electronics Engineering, Siirt University, 56100 Siirt, Turkey
| |
Collapse
|
36
|
Temel F, Kutluay S. Investigation of high-performance adsorption for benzene and toluene vapors by calix[4]arene based organosilica (CBOS). NEW J CHEM 2020. [DOI: 10.1039/d0nj02081h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Calix[4]arene based organosilica (CBOS) was successfully prepared, characterized, and used for the adsorption of benzene and toluene vapors for the first time. The benzene and toluene vapor uptake of CBOS was determined to be 606 and 672 mg g−1, respectively.
Collapse
Affiliation(s)
- Farabi Temel
- Konya Technical University, Department of Chemical Engineering
- Konya
- Turkey
| | - Sinan Kutluay
- Department of Chemical Engineering
- Siirt University
- Siirt
- Turkey
| |
Collapse
|