1
|
Flach H, Pfeffer S, Dietmann P, Kühl M, Kühl SJ. Glyphosate formulations cause mortality and diverse sublethal defects during embryonic development of the amphibian Xenopuslaevis. CHEMOSPHERE 2024; 367:143624. [PMID: 39461437 DOI: 10.1016/j.chemosphere.2024.143624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
The human impact on environmental landscapes, such as land use, climate change or pollution, is threatening global biodiversity and ecosystems maintenance. Pesticides like the herbicide glyphosate have garnered considerable attention due to their well-documented harmful effects on non-target species. During application, the active ingredient glyphosate is utilized in various formulations, each containing different additive adjuvants. However, the possible effects of these formulations on amphibians - the group with the highest decline rates among vertebrates - remain largely unknown. Therefore, the present study investigated the effects of four glyphosate formulations (Glyphosat TF, Durano TF, Helosate 450 TF, Kyleo) on the embryonic development of the model organism Xenopus laevis (South African clawed frog). Embryos at the 2-cell stage were exposed to various concentrations of glyphosate formulations (glyphosate: 0.01-100 mg/L), and mortality as well as sublethal effects on different organs and tissues were analyzed. The results indicated that the formulations had different effects, particularly on the mortality of Xenopus laevis embryos. At sublethal concentrations, the formulations altered the embryos' external appearance, leading to malformations such as reduced eye and head size. In addition, exposure to formulations impaired heart morphology and function, and the expression of heart-specific genes was altered at a molecular level. Our results confirmed that glyphosate formulations had a stronger effect on Xenopus laevis embryogenesis than pure glyphosate. Therefore, it is crucial to evaluate the active ingredient and the co-formulations independently, as well as the combined, commercially available products, during pesticide risk assessments and renewal procedures of agrochemicals. The severe global decline of amphibians, partly due to herbicide use, highlights the need for strict and efficient monitoring of environmental pesticide loads and application areas.
Collapse
Affiliation(s)
- Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sarah Pfeffer
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
2
|
Pompermaier A, Alves C, Chagas FB, Tamagno WA, Bridi C, Ferreira GF, Hartmann PA, Hartmann M. Effects of glyphosate based herbicide exposure in early developmental stages of Physalaemus gracilis. Sci Rep 2024; 14:25652. [PMID: 39465295 PMCID: PMC11514183 DOI: 10.1038/s41598-024-76338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
The impact of environmental pollutants has been a focus of investigation in recent years. Studies assessing the effects of these pollutants are essential for understanding the challenges faced by non-target species. Among the many substances used for agricultural purposes, the herbicide glyphosate is one of the most widely marketed in recent years. This broad-spectrum herbicide is commonly used to protect a variety of crops. In this study, we evaluated the effects of chronic glyphosate exposure on a native amphibian species, Physalaemus gracilis. Amphibians, which develop in aquatic environments, are highly sensitive to pesticides. Because of this, we investigated morphological, physiological, behavioral, and biochemical parameters in the early stages of development. The animals were exposed to environmentally relevant concentrations of a glyphosate-based herbicide (0, 100, 350, and 700 µg L⁻¹) during their first seven days of life. As a result, we observed impairments in anti-predatory behavior, reduced body mass index, and scaled mass index, malformations of the mouth and intestine, increased acetylcholinesterase activity, cardiotoxicity, and oxidative stress. These findings underscore the importance of studying native non-target species and highlight the need to evaluate the effects of environmentally relevant concentrations, as well as to review legislation regarding permissible levels of glyphosate in surface water and public water supplies.
Collapse
Affiliation(s)
- Aline Pompermaier
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim, RS, Brazil.
| | - Carla Alves
- Federal Institute of Education, Science and Technology of Rio Grande do Sul, Sertão, RS, Brazil
| | - Flavia Bernardo Chagas
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim, RS, Brazil
| | | | - Cristina Bridi
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim, RS, Brazil
| | | | - Paulo Afonso Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim, RS, Brazil
| | - Marilia Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim, RS, Brazil
| |
Collapse
|
3
|
Santos GD, Rutkoski CF, Folador A, Skovronski VJ, Müller C, Pompermaier A, Hartmann PA, Hartmann M. 2,4-D-based herbicide underdoses cause mortality, malformations, and nuclear abnormalities in Physalaemus cuvieri tadpoles. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109840. [PMID: 38218566 DOI: 10.1016/j.cbpc.2024.109840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Amphibians are considered bioindicators of the environment due to their high sensitivity and involvement in terrestrial and aquatic ecosystems. In the last two decades, 2,4-D has been one of the most widely used herbicides in Brazil and around the world, as its use has been authorized for genetically modified crops and therefore has been detected in surface and groundwater. Against this background, the aim of this work was to investigate the effects of environmentally relevant concentrations of 2,4-D-based herbicides on survival, malformations, swimming activity, presence of micronuclei and erythrocyte nuclear abnormalities in Physalaemus cuvieri tadpoles. The amphibians were exposed to six concentrations of 2,4-D-based herbicides: 0.0, 4.0, 30.0, 52.5, 75.0, and 100 μg L-1, for 168 h. At concentrations higher than 52.5 μg L-1, significantly increased mortality was observed from 24 h after exposure. At the highest concentration (100 μg L-1), the occurrence of mouth and intestinal malformations was also observed. The occurrence of erythrocyte nuclear abnormalities at concentrations of 30.0, 52.5, 75.0 and 100 μg L-1 and the presence of micronuclei at concentrations of 52.5, 75.0, and 100 μg L-1 were also recorded. These effects of 2,4-D in P. cuvieri indicate that the ecological risk observed at concentrations above 10.35 μg L-1 2,4-D may represent a threat to the health and survival of this species, i.e., exposure to 2,4-D at concentrations already detected in surface waters in the species' range is toxic to P. cuvieri.
Collapse
Affiliation(s)
- Gilcinéia Dos Santos
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Camila Fátima Rutkoski
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Alexandre Folador
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Vrandrieli Jucieli Skovronski
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Caroline Müller
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Aline Pompermaier
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Paulo Afonso Hartmann
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Marilia Hartmann
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil.
| |
Collapse
|
4
|
Singh R, Shukla A, Kaur G, Girdhar M, Malik T, Mohan A. Systemic Analysis of Glyphosate Impact on Environment and Human Health. ACS OMEGA 2024; 9:6165-6183. [PMID: 38371781 PMCID: PMC10870391 DOI: 10.1021/acsomega.3c08080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 02/20/2024]
Abstract
With a growing global population, agricultural scientists are focusing on crop production management and the creation of new strategies for a higher agricultural output. However, the growth of undesirable plants besides the primary crop poses a significant challenge in agriculture, necessitating the massive application of herbicides to eradicate this problem. Several synthetic herbicides are widely utilized, with glyphosate emerging as a potential molecule for solving this emerging issue; however, it has several environmental and health consequences. Several weed species have evolved resistance to this herbicide, therefore lowering agricultural yield. The persistence of glyphosate residue in the environment, such as in water and soil systems, is due to the misuse of glyphosate in agricultural regions, which causes its percolation into groundwater via the vertical soil profile. As a result, it endangers many nontarget organisms existing in the natural environment, which comprises both soil and water. The current Review aims to provide a systemic analysis of glyphosate, its various effects on the environment, its subsequent impact on human health and animals, which will lead us toward a better understanding of the issues about herbicide usage and aid in managing it wisely, as in the near the future glyphosate market is aiming for a positive forecast until 2035.
Collapse
Affiliation(s)
- Reenu Singh
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144411, India
| | - Akanksha Shukla
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144411, India
| | - Gurdeep Kaur
- School
of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Madhuri Girdhar
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144411, India
| | - Tabarak Malik
- Department
of Biomedical Sciences, Institute of Health, Jimma University, Jimma 00000, Ethiopia
| | - Anand Mohan
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
5
|
Macagnan N, Rutkoski CF, Folador A, Skovronski VJ, Müller C, Hartmann PA, Hartmann M. Mortality and toxicity of a commercial formulation of cypermethrin in Physalaemus gracilis tadpoles. Sci Rep 2023; 13:17826. [PMID: 37857789 PMCID: PMC10587170 DOI: 10.1038/s41598-023-45090-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023] Open
Abstract
This study evaluated the lethal, sublethal, and toxic of a commercial formulation of cypermethrin in the anuran species Physalaemus gracilis. In the acute test, concentrations of 100-800 μg L-1 were tested over 96 h. In the chronic test, cypermethrin concentrations recorded in nature (1, 3, 6, and 20 μg L-1) were tested for mortality and then used for the micronucleus test and erythrocyte nuclear abnormalities over a 7-days period. The LC50 determined for P. gracilis for the commercial cypermethrin formulation was 273.41 μg L-1. In the chronic test, a mortality of more than 50% was observed at the highest concentration (20 μg L-1), as it caused half of the tadpoles studied to die. The micronucleus test showed significant results at concentrations of 6 and 20 μg L-1 and recorded the presence of several nuclear abnormalities, indicating the genotoxic potential of the commercial cypermethrin formulation for P. gracilis. Cypermethrin presented a high risk to the species, indicating that it has the potential to cause several problems in the short and long term and to affect the dynamics of this ecosystem. Therefore, it can be concluded that the commercial formulation of cypermethrin had toxicological effects on P. gracilis.
Collapse
Affiliation(s)
- Natani Macagnan
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim, RS, 99.700-000, Brazil
| | - Camila Fatima Rutkoski
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim, RS, 99.700-000, Brazil
| | - Alexandre Folador
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim, RS, 99.700-000, Brazil
| | | | - Caroline Müller
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim, RS, 99.700-000, Brazil
| | - Paulo Afonso Hartmann
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim, RS, 99.700-000, Brazil
| | - Marilia Hartmann
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim, RS, 99.700-000, Brazil.
| |
Collapse
|
6
|
Damiani S, Leite Montalvão MT, de Alcântara Mendes R, Gomes da Costa AC, Sousa Passos CJ. Water and sediment pesticide contamination on indigenous lands surrounded by oil palm plantations in the Brazilian Amazon. Heliyon 2023; 9:e19920. [PMID: 37771527 PMCID: PMC10522942 DOI: 10.1016/j.heliyon.2023.e19920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
Large-scale oil palm cultivation with intensive pesticide use has been growing worldwide and reached the Brazilian Amazon. The rapid expansion of this crop over the last decade has reached vast areas, including the boundaries of different indigenous lands. This study aimed at assessing the occurrence of pesticide residues in surface and ground waters as well as drainage sediments in the Turé-Mariquita Indigenous Territory, in addition to other nearby indigenous villages in the northeastern state of Pará. Thirty-three (33) water samples were collected from streams, springs and from active and abandoned wells at 19 sampling points, as well as 16 sediment samples at 9 sampling sites both during dry and rainy seasons. In total, 49 environmental samples were taken during fieldworks and subsequently analyzed by means of liquid chromatography and mass-mass spectrometry. The analytical determination of pesticide residues showed the occurrence of three pesticides in the water both from streams and from wells, two of them knowingly used by the oil palm company: glyphosate-based herbicides (GBHs) and endosulfan insecticides. Although the highest glyphosate and endosulfan levels as well as the maximum concentration of glyphosate found in ground water are within the Brazilian environmental regulatory guidelines, all the values for human consumption found in the glyphosate-containing samples are well above the European Union regulatory standards. Our results draw the attention to the risks of biota contamination and human exposure to multiple-pesticide residues.
Collapse
Affiliation(s)
- Sandra Damiani
- Center for Sustainable Development, University of Brasília, Darcy Ribeiro University Campus, Brasília/DF, 70910-900, Brazil
| | - Maria Tereza Leite Montalvão
- Forest Engineering Department, Technology School, University of Brasília, Darcy Ribeiro University Campus, Brasília/DF, 70910-900, Brazil
| | - Rosivaldo de Alcântara Mendes
- Environmental Health Division, Evandro Chagas Institute, Ministry of Health, Av. Alm. Barroso, 492, Belém, PA, Brazil
| | - Amilton César Gomes da Costa
- Environmental Health Division, Evandro Chagas Institute, Ministry of Health, Av. Alm. Barroso, 492, Belém, PA, Brazil
| | - Carlos José Sousa Passos
- Center for Sustainable Development, University of Brasília, Darcy Ribeiro University Campus, Brasília/DF, 70910-900, Brazil
| |
Collapse
|
7
|
Cheron M, Brischoux F. Exposure to Low Concentrations of AMPA Influences Morphology and Decreases Survival During Larval Development in a Widespread Amphibian Species. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023:10.1007/s00244-023-01008-y. [PMID: 37468648 DOI: 10.1007/s00244-023-01008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/02/2023] [Indexed: 07/21/2023]
Abstract
Glyphosate's primary metabolite, AMPA (aminomethylphosphonic acid), is one of the most widely detected anthropogenic substance in surface waters worldwide. However, ecotoxicological studies on the potential effects of this metabolite at environmental concentrations on wildlife are scarce. Yet, due to its chemical properties, AMPA is likely to affect non-target species. In this study, we investigated sublethal effects of environmental concentrations of AMPA on the larval development of a widespread amphibian species, the spined toad Bufo spinosus. We performed a factorial experiment to study the effect of concentration and the timing of exposure (during embryonic development, larval development or both) to AMPA on the morphology, rate of development and survival of tadpoles. AMPA and timing of exposure interactively affected tadpole size (individuals exposed to AMPA after hatching were transitorily smaller, while individuals exposed to AMPA before hatching were longer), but not duration of development. Most of these effects were linked to exposure during embryonic development. Such effects in individuals exposed during embryonic development solely were long-lasting and persisted until the latest larval stages. Finally, we found that exposure to AMPA after hatching (during the larval stage) increased mortality. Exposure to low environmental concentrations of AMPA could have long-lasting consequences on fitness and population persistence. These findings are especially important to take into account at a time when multiple threats can interact to affect wildlife.
Collapse
Affiliation(s)
- Marion Cheron
- Centre d'Etudes Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360, Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360, Villiers en Bois, France.
| |
Collapse
|
8
|
Flach H, Dietmann P, Liess M, Kühl M, Kühl SJ. Glyphosate without Co-formulants affects embryonic development of the south african clawed frog Xenopus laevis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115080. [PMID: 37262967 DOI: 10.1016/j.ecoenv.2023.115080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/16/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Glyphosate (GLY) is the most widely used herbicide in the world. Due to its mode of action as an inhibitor of the 5-enolpyruvylshikimate-3-phosphate synthase, an important step in the shikimate pathway, specifically in plants, GLY is considered to be of low toxicity to non-target organisms. However, various studies have shown the negative effects of GLY on the mortality and development of different non-target organisms, including insects, rodents, fish and amphibians. To better understand the various effects of GLY in more detail, we studied the effects of GLY without co-formulants during the embryogenesis of the aquatic model organism Xenopus laevis. RESULTS A treatment with GLY affected various morphological endpoints in X. laevis tadpoles (body length, head width and area, eye area). Additionally, GLY interfered with the mobility as well as the neural and cardiac development of the embryos at stage 44/45. We were able to detect detailed structural changes in the cranial nerves and the heart and gained insights into the negative effects of GLY on cardiomyocyte differentiation. CONCLUSION The application of GLY without co-formulants resulted in negative effects on several endpoints in the early embryonic development of X. laevis at concentrations that are environmentally relevant and concentrations that reflect the worst-case scenarios. This indicates that GLY could have a strong negative impact on the survival and lives of amphibians in natural waters. As a result, future GLY approvals should consider its impact on the environment.
Collapse
Affiliation(s)
- Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Matthias Liess
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
9
|
Alves-Ferreira G, Katzenberger M, Fava FG, Costa RN, Carilo Filho LM, Solé M. Roundup Original DI® and thermal stress affect survival, morphology and thermal tolerance in tadpoles of Boana faber (Hylidae, Anura). ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:93-101. [PMID: 36653510 DOI: 10.1007/s10646-023-02622-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
In amphibians, stressful environments can lead to accelerated metamorphosis at the expense of total length, resulting in the occurrence of morphological abnormalities. Many studies have linked the occurrence of these phenomena to the pollution of habitats by pesticides and thermal stress. Here, we assessed how exposure to Roundup Original DI® and higher constant temperatures affect the survival of Boana faber tadpoles and estimate the CL5096hs for the population. In addition, we evaluated how exposure to Roundup affects larval growth, morphology and thermal tolerance. Our findings suggest that even at sublethal doses, Roundup Original DI® may affect the survival of Boana faber larvae. There also appears to be an additive effect between Roundup and temperature increase on larval survival, however, we need to further explore this point to determine a pattern, proving to be a promising issue to be investigated in the future. We observed effects of chronic exposure to the herbicide formulation on the morphology and growth of the tadpoles, resulting in a reduction in total length and differences in the shape of the larvae. Although we did not recover any direct effects of herbicide exposure on CTMax, we did observe an upward trend in CTMax for tadpoles exposed to Roundup. Understanding how anthropogenic changes affect anuran persistence is fundamental for the management and conservation of the species and can be considered an initial step toward the formulation of legislations that regulate the use of herbicides.
Collapse
Affiliation(s)
- Gabriela Alves-Ferreira
- Tropical Herpetology Lab, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, Bahia, Brasil.
- Kunhã Asé Network of Women in Science, Salvador, Bahia, Brasil.
| | - Marco Katzenberger
- Laboratório de Bioinformática e Biologia Evolutiva, Department of Genetics, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50670-901, Recife, Pernambuco, Brasil
| | - Fernanda Guimarães Fava
- Tropical Herpetology Lab, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, Bahia, Brasil
| | - Renan Nunes Costa
- Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais, Praça dos Estudantes 23, Santa Emília, CEP 36800-000, Carangola, Minas Gerais, Brasil
| | - Leildo Machado Carilo Filho
- Tropical Herpetology Lab, Programa de Pós-Graduação em Zoologia, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, Bahia, Brasil
| | - Mirco Solé
- Tropical Herpetology Lab, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, Bahia, Brasil
- Tropical Herpetology Lab, Programa de Pós-Graduação em Zoologia, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, Bahia, Brasil
- Herpetology Section, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, North Rhine-Westphalia, Germany
| |
Collapse
|
10
|
Pontes JRS, Lopes I, Ribeiro R, Araújo CVM. Humane acute testing with tadpoles for risk assessment of chemicals: Avoidance instead of lethality. CHEMOSPHERE 2022; 303:135197. [PMID: 35691390 DOI: 10.1016/j.chemosphere.2022.135197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In spite of the sensitivity of amphibians to contamination, data from fish have been commonly used to predict the effects of chemicals on aquatic life stages. However, recent studies have highlighted that toxicity data derived from fish species may not protect all the aquatic life stages of amphibians. For pesticide toxicity assessment (PTA), EFSA has highlighted that more information on lethal toxicity for the aquatic life stages of amphibians is still needed to reduce uncertainties. The current review aims to propose a test with amphibians based on spatial avoidance, as a more humane alternative method to the lethality tests for chemicals. A review of lethal toxicity tests carried out with amphibians in the period between 2018 and 2021 is presented, then we discuss the suitability of using fish toxicity data as a surrogate to predict the effects on more sensitive amphibian groups. The possible differences in sensitivity to chemicals may justify the need to develop further tests with amphibian embryos and larvae in order to reduce uncertainties. A new test is proposed focused on the avoidance behaviour of organisms fleeing from contamination to replace lethal tests. As avoidance indicates the threshold at which organisms will flee from contamination, a reduction in the population density, or its disappearance, at the local scale due to emigration is expected, with ecological consequences analogous to mortality. Avoidance tests provide an ethical advantage over lethal tests as they respect the concepts of the 3 Rs (mainly Refinement), reducing the suffering of the organisms.
Collapse
Affiliation(s)
- João Rodolfo S Pontes
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Isabel Lopes
- Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal; Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Ribeiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
11
|
Toxicity and genotoxicity of imidacloprid in the tadpoles of Leptodactylus luctator and Physalaemus cuvieri (Anura: Leptodactylidae). Sci Rep 2022; 12:11926. [PMID: 35831394 PMCID: PMC9279336 DOI: 10.1038/s41598-022-16039-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Imidacloprid is a neonicotinoid insecticide used to control agricultural pests around the world. This pesticide can have adverse effects on non-target organisms, especially in aquatic environments. The present study evaluated the toxicity of an imidacloprid-based insecticide in amphibians, using Leptodactylus luctator and Physalaemus cuvieri tadpoles as study models. Spawning of both species were collected within less than 24 h of oviposition from a non-agricultural land at Erechim, Rio Grande do Sul state, Brazil. Survival, swimming activity, body size, morphological malformations, and genotoxic parameters were analyzed at laboratory conditions. A short-term assay was conducted over 168 h (7 days) with five different concentrations of imidacloprid (3–300 µg L−1) being tested. The insecticide did not affect survival, although the tadpoles of both species presented reduced body size, malformed oral and intestine structures, and micronuclei and other erythrocyte nuclear abnormalities following exposure to this imidacloprid-based compound. Exposure also affected swimming activity in L. luctator, which reflected the greater sensitivity of L. luctator to imidacloprid in comparison with P. cuvieri. The swimming activity, body size, and malformations observed in L. luctator and the morphological malformations found in P. cuvieri indicated that even the lowest tested concentration of the insecticide were harmful to amphibians. At concentrations of over 3 μg L−1, P. cuvieri presents a smaller body size, and both species are affected by genotoxic cell damage. This demonstrates that imidacloprid is potentially toxic for the two study species at environmentally relevant concentrations.
Collapse
|
12
|
Venu G, Venkatachalaiah G, Seetharama HG, Balakrishna GN, Lalremsanga HT, Browne RK, Nijagunaiah R, Raju NG, Varadh K, Ramakrishna S, Henle K. Chromatic and morphological anomalies in gymnophionans from India. HERPETOZOA 2022. [DOI: 10.3897/herpetozoa.35.e76397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Caecilians (Gymnophiona) are commonly known as limbless amphibians and are the least understood vertebrate order. In this paper, we documented skin color, eye, jaw, snout, tentacular aperture and cloacal anomalies in 12 individuals of four species belonging to the three caecilian genera Ichthyophis, Uraeotyphlus and Gegeneophis collected from hotspots of caecilian diversity in India, the Western Ghats and Northeast India. As we found the majority of these individuals in coffee and tea plantations, we discuss the possibility that anomalies are the result of exposure to agrochemicals that are frequently used in plantations.
Collapse
|
13
|
Overview of Environmental and Health Effects Related to Glyphosate Usage. SUSTAINABILITY 2022. [DOI: 10.3390/su14116868] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Since the introduction of glyphosate (N-(phosphomethyl) glycine) in 1974, it has been the most used nonselective and broad-spectrum herbicide around the world. The widespread use of glyphosate and glyphosate-based herbicides is due to their low-cost efficiency in killing weeds, their rapid absorption by plants, and the general mistaken perception of their low toxicity to the environment and living organisms. As a consequence of the intensive use and accumulation of glyphosate and its derivatives on environmental sources, major concerns about the harmful side effects of glyphosate and its metabolites on human, plant, and animal health, and for water and soil quality, are emerging. Glyphosate can reach water bodies by soil leaching, runoff, and sometimes by the direct application of some approved formulations. Moreover, glyphosate can reach nontarget plants by different mechanisms, such as spray application, release through the tissue of treated plants, and dead tissue from weeds. As a consequence of this nontarget exposure, glyphosate residues are being detected in the food chains of diverse products, such as bread, cereal products, wheat, vegetable oil, fruit juice, beer, wine, honey, eggs, and others. The World Health Organization reclassified glyphosate as probably carcinogenic to humans in 2015 by the IARC. Thus, many review articles concerning different glyphosate-related aspects have been published recently. The risks, disagreements, and concerns regarding glyphosate usage have led to a general controversy about whether glyphosate should be banned, restricted, or promoted. Thus, this review article makes an overview of the basis for scientists, regulatory agencies, and the public in general, with consideration to the facts on and recommendations for the future of glyphosate usage.
Collapse
|
14
|
Cheron M, Costantini D, Brischoux F. Nicosulfuron, a sulfonylurea herbicide, alters embryonic development and oxidative status of hatchlings at environmental concentrations in an amphibian species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113277. [PMID: 35123186 DOI: 10.1016/j.ecoenv.2022.113277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of agrochemicals for controlling pests and diseases of crops is recognized as a main threat to biodiversity. Sulfonylurea herbicides are being increasingly used and display low levels of degradation in water which suggest that they might affect non-target organisms. In a common garden experiment, eggs of a widespread amphibian (Bufo spinosus) were exposed to sublethal environmentally relevant concentrations of a widely used sulfonylurea herbicide, nicosulfuron, during the whole embryonic development. We assessed development-related traits (i.e., development duration, hatching success, hatchling size and occurrence of malformation) as well as antioxidant markers in response to contamination (i.e., SOD, GPx, catalase, thiols and relevant ratios thereof). We found that sublethal concentrations of nicosulfuron increased embryonic development duration, increased hatchling size and tended to increase malformations. Embryos exposed to nicosulfuron displayed decreased thiols and increased catalase activity suggesting alteration of oxidative status. We did not find any effect of nicosulfuron on SOD and GPx levels. Interestingly, higher catalase activity was linked to higher proportion of malformed individuals, suggesting that exposure to nicosulfuron induced teratogenic effects. Our results suggest that alteration of antioxidant levels might be one physiological mechanism through which nicosulfuron might cause detrimental effects on amphibian embryos. Sublethal effects of pesticides at environmentally relevant concentrations have been overlooked and require further investigations, especially in non-target taxa occurring in agricultural landscapes.
Collapse
Affiliation(s)
- Marion Cheron
- Centre d'Études Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360 Villiers en Bois, France.
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), UMR 7221 Muséum National d'Histoire Naturelle, CNRS, CP32, 7 Rue Cuvier, Paris, France
| | - François Brischoux
- Centre d'Études Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360 Villiers en Bois, France
| |
Collapse
|
15
|
Cheron M, Costantini D, Angelier F, Ribout C, Brischoux F. Aminomethylphosphonic acid (AMPA) alters oxidative status during embryonic development in an amphibian species. CHEMOSPHERE 2022; 287:131882. [PMID: 34509012 DOI: 10.1016/j.chemosphere.2021.131882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 05/09/2023]
Abstract
Glyphosate's primary metabolite (aminomethylphosphonic acid, AMPA) is known to alter embryonic development at environmentally relevant concentrations in amphibians. However, we have limited understanding of the physiological mechanisms through which AMPA affects organisms. In this study, we tested whether alteration of the oxidative status is one mechanism through which AMPA affects organism performance. To this end, we analysed several oxidative status markers in hatchling tadpoles that were exposed to sublethal concentrations of AMPA during embryonic development (~16 days). We compared the influence of environmentally relevant concentrations of AMPA (from 0.07 to 3.57 μg l-1) on the relation between developmental traits (i.e, embryonic development duration, embryonic mortality and hatchling size) and oxidative status markers known to alter homeostasis when unbalanced (superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), thiols and ratios thereof). We included measures of telomere length as an indicator of physiological state. We found that AMPA concentrations induce non-monotonic effects on some oxidative status markers with hatchlings displaying elevated antioxidant responses (elevated thiols and unbalanced SOD/(GPx + CAT) ratio). The lack of effect of AMPA on the relation between developmental traits, oxidative status and telomere length suggests that selective mortality of embryos susceptible to oxidative stress may have occurred prior to hatching in individuals less resistant to AMPA which display lower hatching success. Future studies are required to disentangle whether oxidative unbalance is a cause or a consequence of AMPA exposition. This study highlights the need to investigate effects of the metabolites of contaminants at environmental concentrations to comprehensively assess impacts of anthropogenic contamination on wildlife.
Collapse
Affiliation(s)
- Marion Cheron
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers en Bois, France.
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), UMR 7221 Muséum National d'Histoire Naturelle, CNRS, CP32, 7 Rue Cuvier, Paris, France
| | - Frédéric Angelier
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Cécile Ribout
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - François Brischoux
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| |
Collapse
|
16
|
Cunha GG, Dalzochio MS, Tozetti AM. Anuran diversity in ponds associated with soybean plantations. AN ACAD BRAS CIENC 2021; 93:e20201926. [PMID: 34909823 DOI: 10.1590/0001-3765202120201926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
Anurans are considered one of the most threatened animal groups in the world. Agricultural activities are related to water pollution and contamination, which affects biphasic organisms such as amphibians. Brazilian soybean cultivation covers about 36 million hectares and encompasses many remaining ponds used as breeding sites for amphibians. In this study, we evaluated richness, abundance and composition of the anuran communities in ponds with different levels of association with soybean cultivation. A total of 18 anuran species were recorded with an abundance of 421 collected tadpoles and 1230 adult males on average. Ponds presented in soybean plantations were distinct from those adjacent to plantations regarding water properties and tadpole richness and abundance, as well as composition of tadpoles and adults. Ponds inserted in plantations had communities with lower diversity and abundance. One explanation for these results is likely the detrimental effect of soybean management, which suggests that this decrease is a result of community changes. This serves as an alert about the importance of buffer areas around plantations and the use of adequate techniques for pesticide application.
Collapse
Affiliation(s)
- Guilherme G Cunha
- Universidade do Vale do Rio dos Sinos, Laboratório de Ecologia de Vertebrados Terrestres, Av. Unisinos, 950, Cristo Rei, 93022-000 São Leopoldo, RS, Brazil
| | - Marina S Dalzochio
- Universidade do Vale do Rio dos Sinos, Laboratório de Ecologia de Vertebrados Terrestres, Av. Unisinos, 950, Cristo Rei, 93022-000 São Leopoldo, RS, Brazil
| | - Alexandro M Tozetti
- Universidade do Vale do Taquari, Av. Avelino Talini, 171, Universitário, 95914-014 Lajeado, RS, Brazil
| |
Collapse
|
17
|
Lopes A, Benvindo-Souza M, Carvalho WF, Nunes HF, de Lima PN, Costa MS, Benetti EJ, Guerra V, Saboia-Morais SMT, Santos CE, Simões K, Bastos RP, de Melo E Silva D. Evaluation of the genotoxic, mutagenic, and histopathological hepatic effects of polyoxyethylene amine (POEA) and glyphosate on Dendropsophus minutus tadpoles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117911. [PMID: 34365244 DOI: 10.1016/j.envpol.2021.117911] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Herbicides improve the productivity of a monoculture by eliminating weeds, although they may also be toxic and have negative effects on non-target organisms, such as amphibians. The present study evaluated the genotoxic, mutagenic, and histopathological hepatic responses of Dendropsophus minutus tadpoles to acute exposure (96 h) to the herbicide glyphosate (GLY, 65, 130, 260 and 520 μg/L) and the surfactant polyoxyethylene amine (POEA, 1.25, 2.5, 5 and 10 μg/L). On average, 174 % more genomic damage was observed in the tadpoles exposed to all concentrations of POEA in comparison with the control, while up to seven times more micronuclei were recorded, on average, at a concentration of 5 μg/L of POEA. All the individuals exposed to 10 μg/L of POEA died. The tadpoles exposed to GLY presented 165 % more DNA damage than the control, on average, at the highest concentrations (260 and 520 μg/L), and up to six times more micronuclei at 520 μg/L. The Erythrocyte Nuclear Abnormality test (ENA) detected a relatively high frequency of cells with lobed nuclei in the tadpoles expose to POEA at 5 μg/L and binucleated cells in those exposed to GLY at 520 μg/L. The hepatic histopathological observations revealed several types of lesions in the tadpoles exposed to both GLY and POEA. Overall, then, the results of the study indicate that both GLY and POEA have potential genotoxic, mutagenic, and hepatotoxic effects in D. minutus tadpoles. We emphasize the need for further studies to monitor the amphibian populations, such as those of D. minutus, which breed in aquatic environments associated with agricultural areas. The release of pollutants into natural habitats may have significant long-term impacts on the survival of anuran tadpoles.
Collapse
Affiliation(s)
- Alice Lopes
- Laboratory of Mutagenesis, Institute of Biological Sciences, ICB I - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Marcelino Benvindo-Souza
- Laboratory of Mutagenesis, Institute of Biological Sciences, ICB I - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Wanessa Fernandes Carvalho
- Laboratory of Mutagenesis, Institute of Biological Sciences, ICB I - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Hugo Freire Nunes
- Laboratory of Mutagenesis, Institute of Biological Sciences, ICB I - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Phamella Neres de Lima
- Laboratory of Human and Animal Morphology, Institute of Biological Sciences, ICB III - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Matheus Santos Costa
- Laboratory of Human and Animal Morphology, Institute of Biological Sciences, ICB III - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Edson José Benetti
- Laboratory of Human and Animal Morphology, Institute of Biological Sciences, ICB III - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Vinicius Guerra
- Graduate Program in Ecology and Natural Resource Management, Center for Biological and Natural Sciences, Federal University of Acre, Rio Branco Campus, Rio Branco, Acre, CEP: 69915-900, Brazil.
| | - Simone Maria Teixeira Saboia-Morais
- Cell Behavior Laboratory, Institute of Biological Sciences IV - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Carolina Emilia Santos
- Laboratory of Herpetology and Animal Behavior, Institute of Biological Sciences, ICB V - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Karina Simões
- Laboratory of Human and Animal Morphology, Institute of Biological Sciences, ICB III - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Rogério Pereira Bastos
- Laboratory of Herpetology and Animal Behavior, Institute of Biological Sciences, ICB V - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Daniela de Melo E Silva
- Laboratory of Mutagenesis, Institute of Biological Sciences, ICB I - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| |
Collapse
|
18
|
Charlie-Silva I, Araújo APC, Guimarães ATB, Veras FP, Braz HLB, de Pontes LG, Jorge RJB, Belo MAA, Fernandes BHV, Nóbrega RH, Galdino G, Condino-Neto A, Galindo-Villegas J, Machado-Santelli GM, Sanches PRS, Rezende RM, Cilli EM, Malafaia G. Toxicological insights of Spike fragments SARS-CoV-2 by exposure environment: A threat to aquatic health? JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126463. [PMID: 34216962 PMCID: PMC8226002 DOI: 10.1016/j.jhazmat.2021.126463] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/26/2021] [Accepted: 06/21/2021] [Indexed: 05/06/2023]
Abstract
The Spike protein (S protein) is a critical component in the infection of the new coronavirus (SARS-CoV-2). The objective of this work was to evaluate whether peptides from S protein could cause negative impact in the aquatic animals. The aquatic toxicity of SARS-CoV-2 Spike protein peptides derivatives has been evaluated in tadpoles (n = 50 tadpoles/5 replicates of 10 animals) from species Physalaemus cuvieri (Leptodactylidae). After synthesis, purification, and characterization of peptides (PSDP2001, PSDP2002, PSDP2003) an aquatic contamination has been simulated with these peptides during 24 h of exposure in two concentrations (100 and 500 ng/mL). The control group ("C") was composed of tadpoles kept in polyethylene containers containing de-chlorinated water. Oxidative stress, antioxidant biomarkers and AChE activity were assessed. In both concentrations, PSPD2002 and PSPD2003 increased catalase and superoxide dismutase antioxidants enzymes activities, as well as oxidative stress (nitrite levels, hydrogen peroxide and reactive oxygen species). All three peptides also increased acetylcholinesterase activity in the highest concentration. These peptides showed molecular interactions in silico with acetylcholinesterase and antioxidant enzymes. Aquatic particle contamination of SARS-CoV-2 has cholinesterasic effect in P. cuvieri tadpoles. These findings indicate that the COVID-19 can constitute environmental impact or biological damage potential.
Collapse
Affiliation(s)
- Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil
| | - Amanda P C Araújo
- Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urata Campus, GO, Brazil
| | - Abraão T B Guimarães
- Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urata Campus, GO, Brazil
| | - Flávio P Veras
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Helyson L B Braz
- Postgraduate Program in Morphological Science, Department of Morphology, School of Medicine, Federal University of Ceara, Delmiro de Farias St., 60.430-170 Fortaleza, CE, Brazil
| | - Letícia G de Pontes
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil
| | - Roberta J B Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center, Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Marco A A Belo
- Laboratory of Animal Pharmacology and Toxicology, Brazil University, Descalvado, SP, Brazil; Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Bianca H V Fernandes
- Laboratório de Controle Genético e Sanitário, Diretoria Técnica de Apoio ao Ensino e Pesquisa, Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Rafael H Nóbrega
- Reproductive and Molecular Biology Group, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Giovane Galdino
- Institute of Motricity Sciences, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Antônio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil
| | | | | | - Paulo R S Sanches
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara SP, Brazil
| | - Rafael M Rezende
- Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, United States
| | - Eduardo M Cilli
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara SP, Brazil
| | - Guilherme Malafaia
- Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urata Campus, GO, Brazil.
| |
Collapse
|
19
|
Rezende ECN, Carneiro FM, de Moraes JB, Wastowski IJ. Trends in science on glyphosate toxicity: a scientometric study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56432-56448. [PMID: 34057629 DOI: 10.1007/s11356-021-14556-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
As part of the most used herbicides, glyphosate is the most successful ingredient of agrochemical companies. The main objective of this study was to demonstrate research trends related to the glyphosate toxicity and its main effects on human and environmental health. For this purpose, 443 articles published, from 1995 to 2020, on the platform Web of Science™ Thomson Reuters were selected. The main toxicity results related in literature are genotoxicity, cytotoxicity, and endocrine disruption. The environmental effects come mostly from the contamination of groundwater and soils. Several studies have concluded that herbicide concentrations right below the official safety limits induced toxic effects. The results presented a highlighted harmful effect of glyphosate on both human and environmental health. It has been observed that countries where publish the most about the glyphosate toxicity are great investors in large-scale agriculture. It is important to ponder that these countries are in a route of ecosystem exploitation that includes not only fauna and flora, but also human beings. Unfortunately, science does not provide concise data for these pesticide disapproval in the global consumer market. It is necessary to search sustainable global interest alternatives to increase agriculture production based on peoples' food sovereignty.
Collapse
Affiliation(s)
| | | | | | - Isabela Jubé Wastowski
- Mestrado em Ambiente e Sociedade/UEG, Morrinhos, Brazil
- Universidade Estadual de Goiás UEG, Goiânia, Goiás, Brazil
| |
Collapse
|
20
|
Marques JGDC, Veríssimo KJDS, Fernandes BS, Ferreira SRDM, Montenegro SMGL, Motteran F. Glyphosate: A Review on the Current Environmental Impacts from a Brazilian Perspective. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:385-397. [PMID: 34142191 DOI: 10.1007/s00128-021-03295-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
The indiscriminate use of glyphosate is one of the main agricultural practices to combat weeds and grasses; however, its incorrect application increases soil and water contamination caused by the product. This situation is even more critical due to its great versatility for use in different cultivars and at lower prices, making it the most used pesticide in the world. Nevertheless, there is still a lack of in-depth studies regarding the damage that its use may cause. Therefore, this review focused on the analysis of environmental impacts at the soil-water interface caused by the use of glyphosate. In this sense, studies have shown that the intensive use of glyphosate has the potential to cause harmful effects on soil microorganisms, leading to changes in soil fertility and ecological imbalance, as well as impacts on aquatic environments derived from changes in the food chain. This situation is similar in Brazil, with the harmful effects of glyphosate in nontarget species and the contamination of the atmosphere. Therefore, it is necessary to change this scenario by modifying the type of pest control in agriculture, and actions such as crop rotation and biological control.
Collapse
Affiliation(s)
- Jonathas Gomes de Carvalho Marques
- Department of Civil Engineering, Federal University of Pernambuco - UFPE. Rua Acadêmico Hélio Ramos, s/n, Cidade Universitária, Recife, PE, 50740-530, Brazil.
| | - Klayde Janny da Silva Veríssimo
- Department of Civil Engineering, Federal University of Pernambuco - UFPE. Rua Acadêmico Hélio Ramos, s/n, Cidade Universitária, Recife, PE, 50740-530, Brazil
| | - Bruna Soares Fernandes
- Department of Civil Engineering, Federal University of Pernambuco - UFPE. Rua Acadêmico Hélio Ramos, s/n, Cidade Universitária, Recife, PE, 50740-530, Brazil
| | - Silvio Romero de Melo Ferreira
- Department of Civil Engineering, Federal University of Pernambuco - UFPE. Rua Acadêmico Hélio Ramos, s/n, Cidade Universitária, Recife, PE, 50740-530, Brazil
| | - Suzana Maria Gico Lima Montenegro
- Department of Civil Engineering, Federal University of Pernambuco - UFPE. Rua Acadêmico Hélio Ramos, s/n, Cidade Universitária, Recife, PE, 50740-530, Brazil
| | - Fabrício Motteran
- Department of Civil Engineering, Federal University of Pernambuco - UFPE. Rua Acadêmico Hélio Ramos, s/n, Cidade Universitária, Recife, PE, 50740-530, Brazil
| |
Collapse
|
21
|
Milesi MM, Lorenz V, Durando M, Rossetti MF, Varayoud J. Glyphosate Herbicide: Reproductive Outcomes and Multigenerational Effects. Front Endocrinol (Lausanne) 2021; 12:672532. [PMID: 34305812 PMCID: PMC8293380 DOI: 10.3389/fendo.2021.672532] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Glyphosate base herbicides (GBHs) are the most widely applied pesticides in the world and are mainly used in association with GBH-tolerant crop varieties. Indiscriminate and negligent use of GBHs has promoted the emergence of glyphosate resistant weeds, and consequently the rise in the use of these herbicides. Glyphosate, the active ingredient of all GBHs, is combined with other chemicals known as co-formulants that enhance the herbicide action. Nowadays, the safety of glyphosate and its formulations remain to be a controversial issue, as evidence is not conclusive whether the adverse effects are caused by GBH or glyphosate, and little is known about the contribution of co-formulants to the toxicity of herbicides. Currently, alarmingly increased levels of glyphosate have been detected in different environmental matrixes and in foodstuff, becoming an issue of social concern. Some in vitro and in vivo studies have shown that glyphosate and its formulations exhibit estrogen-like properties, and growing evidence has indicated they may disrupt normal endocrine function, with adverse consequences for reproductive health. Moreover, multigenerational effects have been reported and epigenetic mechanisms have been proved to be involved in the alterations induced by the herbicide. In this review, we provide an overview of: i) the routes and levels of human exposure to GBHs, ii) the potential estrogenic effects of glyphosate and GBHs in cell culture and animal models, iii) their long-term effects on female fertility and mechanisms of action, and iv) the consequences on health of successive generations.
Collapse
Affiliation(s)
- María Mercedes Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Milena Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - María Florencia Rossetti
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| |
Collapse
|
22
|
Pavan FA, Samojeden CG, Rutkoski CF, Folador A, Da Fré SP, Müller C, Hartmann PA, Hartmann MT. Morphological, behavioral and genotoxic effects of glyphosate and 2,4-D mixture in tadpoles of two native species of South American amphibians. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103637. [PMID: 33753236 DOI: 10.1016/j.etap.2021.103637] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Pesticide contamination is an important factor in the global decline of amphibians. The herbicides glyphosate and 2,4-D are the most applied worldwide. These herbicides are often found in surface waters close to agricultural areas. This study aims at evaluating the chronic effects caused by glyphosate + 2,4-D mixture in Boana faber and Leptodactylus latrans tadpoles. The combined solution of the glyphosate and 2,4-D, in 5 different concentrations, was applied for 168 h. Herbicide mixtures did not affect the survival of the exposed tadpoles but growth and swimming activity were altered; besides causing several damages in the mouth and intestine. The erythrocytes showed micronuclei and other nuclear abnormalities. There is an ecological risk in the exposure of tadpoles of B. faber and L. latrans from the mixture of glyphosate + 2,4-D. Therefore, the approach used in this study provides important information on how commonly used pesticides can affect non-target organisms.
Collapse
Affiliation(s)
- Felipe André Pavan
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Caroline Garcia Samojeden
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Camila Fátima Rutkoski
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Alexandre Folador
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Silvia Pricila Da Fré
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Caroline Müller
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Paulo Afonso Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Marilia Teresinha Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| |
Collapse
|
23
|
Cuzziol Boccioni AP, Lajmanovich RC, Peltzer PM, Attademo AM, Martinuzzi CS. Toxicity assessment at different experimental scenarios with glyphosate, chlorpyrifos and antibiotics in Rhinella arenarum (Anura: Bufonidae) tadpoles. CHEMOSPHERE 2021; 273:128475. [PMID: 33069438 DOI: 10.1016/j.chemosphere.2020.128475] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
The presence of pesticides as well as that of several antibiotics provided at a great scale to poultry, cattle, and swine in aquatic environments within agroecosystems is a matter of growing concern. The objective of the present study was to characterize the sublethal effects of four environmental toxic compounds at two experimental pollution scenarios on the morphology, development and thyroid (T4), acetylcholinesterase (AChE) and glutathione S-transferase (GST) levels in Rhinella arenarum tadpoles. The first experimental pollution scenario aimed to evaluate the individual and mixed toxicity (50:50% v/v) of a glyphosate-based herbicide (GBH) and the antibiotic ciprofloxacin (CIP) on earlier developmental stages. The second experimental pollution scenario aimed to evaluate the effects of other toxic compounds (the insecticide chlorpyrifos (CP) and the antibiotic amoxicillin (AMX)) added to the ones from the first scenario on previously exposed premetamorphic tadpoles. In all the treatments of the first pollution scenario, the most conspicuous effect observed in early-stage tadpoles was a high prevalence of morphological abnormalities. Exposure to GBH and to its mixture with CIP also led to a significant decrease in T4 levels and lower development. Both pollutant combinations from the second experimental scenario significantly increased T4 levels, inhibited AChE activities, and led to lower development, whereas the quaternary mixture led to a significant decrease in GST levels. The alterations here revealed by our approaches in several morphological and biochemical endpoints allow characterizing the ecotoxicological risk for anurans exposed to complex mixtures of pollutants that frequently occur in aquatic systems.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| | - Candela S Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| |
Collapse
|
24
|
Romano RM, de Oliveira JM, de Oliveira VM, de Oliveira IM, Torres YR, Bargi-Souza P, Martino Andrade AJ, Romano MA. Could Glyphosate and Glyphosate-Based Herbicides Be Associated With Increased Thyroid Diseases Worldwide? Front Endocrinol (Lausanne) 2021; 12:627167. [PMID: 33815286 PMCID: PMC8018287 DOI: 10.3389/fendo.2021.627167] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The increased incidence of thyroid diseases raises a series of questions about what the main predisposing factors are nowadays. If dietary restriction of iodine was once a major global health concern, today, the processes of industrialization of food and high exposure to a wide variety of environmental chemicals may be affecting, directly or indirectly, thyroid function. The homeostasis of hypothalamus-pituitary-thyroid (HPT) axis is finely regulated through the negative feedback mechanism exerted by thyroid hormones. Allostatic mechanisms are triggered to adjust the physiology of HPT axis in chronic conditions. Glyphosate and glyphosate-based herbicides are pesticides with controversial endocrine disrupting activities and only few studies have approached their effects on HPT axis and thyroid function. However, glyphosate has an electrophilic and nucleophilic zwitterion chemical structure that may affect the mechanisms involved in iodide oxidation and organification, as well as the oxidative phosphorylation in the ATP synthesis. Thus, in this review, we aimed to: (1) discuss the critical points in the regulation of HPT axis and thyroid hormones levels balance, which may be susceptible to the toxic action of glyphosate and glyphosate-based herbicides, correlating the molecular mechanisms involved in glyphosate toxicity described in the literature that may, directly or indirectly, be associated to the higher incidence of thyroid diseases; and (2) present the literature regarding glyphosate toxicity in HPT axis.
Collapse
Affiliation(s)
| | | | | | | | | | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | |
Collapse
|
25
|
Herek JS, Vargas L, Rinas Trindade SA, Rutkoski CF, Macagnan N, Hartmann PA, Hartmann MT. Genotoxic effects of glyphosate on Physalaemus tadpoles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103516. [PMID: 33080355 DOI: 10.1016/j.etap.2020.103516] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Genotoxicity studies have revealed that pesticides bind to genetic material in non-target vertebrates, thereby impairing the genetic integrity of these animals. The main objective of this study was to determine the genotoxic damage in erythrocytes of two native South American amphibian Physalaemus cuvieri and Physalaemus gracilis, both species exposed to a glyphosate-based herbicide. We evaluated the presence of micronuclei (MN) and erythrocyte nuclear abnormalities (ENA) as biomarkers for potential genotoxic compounds. Tadpoles were exposed to doses permitted by Brazilian legislation and concentrations found naturally in Brazilian and Argentinian waters (500, 700 and 1000 μg/L). Glyphosate-based herbicide caused micronuclei formation and several types of erythrocyte nuclear abnormalities in both Physalaemus species. The total frequency of MN and ENA demonstrated the occurrence of cell damage at all tested concentrations. Glyphosate herbicide can be considered a genotoxic that may impact the genetic integrity of native populations of P. cuvieri and P. gracilis.
Collapse
Affiliation(s)
- Jéssica Samara Herek
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, Brazil, ERS 135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Luana Vargas
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, Brazil, ERS 135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Suélen Andressa Rinas Trindade
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, Brazil, ERS 135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Camila Fatima Rutkoski
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, Brazil, ERS 135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Natani Macagnan
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, Brazil, ERS 135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Paulo Afonso Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, Brazil, ERS 135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Marilia Teresinha Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, Brazil, ERS 135 - Km 72, nº 200, Erechim, RS, Brazil.
| |
Collapse
|