1
|
Azari A, Kamani H, Sarkhosh M, Vatankhah N, Yousefi M, Mahmoudi-Moghaddam H, Razavinasab SA, Masoudi MR, Sadeghi R, Sharifi N, Yaghmaeain K. Nectarine core-derived magnetite biochar for ultrasound-assisted preconcentration of polycyclic aromatic hydrocarbons (PAHs) in tomato paste: A cost-effective and sustainable approach. Food Chem X 2024; 24:101810. [PMID: 39310888 PMCID: PMC11414710 DOI: 10.1016/j.fochx.2024.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
A novel ultrasound-assisted magnetic solid-phase extraction coupled with gas chromatography-mass spectrometry (US-MSPE-GC/MS) was developed to detect trace amounts of polycyclic aromatic hydrocarbons (PAHs) in tomato paste, using a magnetic biochar adsorbent derived from nectarine cores. The highest extraction recovery was attained under 10 mg adsorbent mass, 30 min extraction time, 9 % (w/v) sodium chloride, and elution with 200 μL of dichloromethane. Under optimum conditions, the method demonstrated excellent linearity (R2 > 0.992) across a wide concentration range (0.01-100 ng g-1) with high sensitivity (LODs: 0.028-0.053 ng g-1, LOQs: 0.094-0.176 ng g-1) and good repeatability (RSDs <5.96 %). The application of the US-MSPE-GC/MS method was tested on four brands of real tomato paste and no PAHs were detected in unspiked samples, indicating no background contamination. This method showed high relative recoveries 88.03-98.52 %) and good reproducibility (<9.19 %.) at two concentration levels, confirming its effectiveness for PAH analysis in real samples.
Collapse
Affiliation(s)
- Ali Azari
- Sirjan School of Medical Sciences, Sirjan, Iran
- National Elites Foundation, Tehran, Iran
| | - Hossein Kamani
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Maryam Sarkhosh
- Department of Environmental Health Engineering, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Vatankhah
- Department of Pharmaceutical, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmood Yousefi
- Department of Environmental Health Engineering, School of Health, Khoy University of Medical Sciences, Khoy, Iran
| | - Hadi Mahmoudi-Moghaddam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | | | | | - Kamyar Yaghmaeain
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Asadi Touranlou F, Hashemi M, Ghavami V, Tavakoly Sany SB. Concentration of polycyclic aromatic hydrocarbons (PAHs) in bread and health risk assessment across the globe: A systematic review and meta-analysis. Compr Rev Food Sci Food Saf 2024; 23:e13411. [PMID: 39245919 DOI: 10.1111/1541-4337.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/30/2024] [Indexed: 09/10/2024]
Abstract
Although bread is the principal food in most countries, polycyclic aromatic hydrocarbons (PAHs) may be present and pose a potential risk to consumers. The aim of this review is to provide a comprehensive report on the concentration and health risks associated with PAHs in bread around the world. Various databases, such as Scopus, PubMed, Science Direct, and Google Scholar, were searched from their beginnings until December 2023 for this systematic review, which included 34 potentially relevant articles with data relating to 1057 bread samples. Utilizing a multilevel regression modeling approach, the study evaluated various factors such as fuel type, bread type, and geographical location. Following the initial evaluation, in 26.47% and 20.28% of all studies, the levels of Bap and PAH4 were higher than the permissible limit values, respectively. Based on the isomer ratios, 55.88% of the studies associated the presence of PAHs in bread samples with pyrogenic/coal combustion sources. According to the carcinogenic risk results, bread consumers in all studies have been exposed to moderate or high levels of carcinogenicity. The most significant risk levels are associated with the consumption of bread in Egypt, Kuwait, Iran, and India. Moreover, meta-regression analysis demonstrated significantly higher toxicity equivalent quotient and cancer risk mean values in bread baked using fossil fuels compared to other sources (p < .05). The high concentrations of PAHs, especially Benzo[a]pyrene, in bread pose a serious public health risk. Stringent regulations and monitoring are crucial to reduce contamination. Further research is necessary to develop safe processing methods to remove PAHs in bread.
Collapse
Affiliation(s)
- Fateme Asadi Touranlou
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Ghavami
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Belin Tavakoly Sany
- Department of Health, Safety, Environment Management, School of Health Mashhad University of Medical Sciences, Mashhad, Iran
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Teixeira J, Delerue-Matos C, Morais S, Oliveira M. Environmental contamination with polycyclic aromatic hydrocarbons and contribution from biomonitoring studies to the surveillance of global health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54339-54362. [PMID: 39207613 DOI: 10.1007/s11356-024-34727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This work presents an integrated overview of polycyclic aromatic hydrocarbons' (PAHs) ubiquity comprising environmental contamination in the air, aquatic ecosystems, and soils; characterizes the contamination in biota; and identifies main biomonitors and human exposure to PAHs and associated health risks. Urban centers and industrial areas present increased concentrations in the air (1344.4-12,300 versus 0.03-0.60 ng/m3 in industrial/urban and rural zones) and soils (0.14-1.77 × 106 versus 2.00-9.04 × 103 versus 1.59-5.87 × 103 ng/g in urban, forest, and rural soils), respectively. Increased concentrations were found in coastal zones and superficial waters as well as in sediments (7.00 × 104-1.00 × 109 ng/g). Benzo(a)pyrene, a carcinogenic PAH, was found in all environmental media. Mosses, lichens, tree leaves, bivalves, cephalopods, terrestrials' snails, and honeybees are good biomonitors of biota contamination. More studies are needed to improve characterization of PAHs' levels, distribution, and bioaccumulation in the environmental media and assess the associated risks for biota and human health. Actions and strategies to mitigate and prevent the bioaccumulation of PAHs in the environment and trophic chains toward the WHO's One-Health Perspective to promote the health of all ecosystems and human life are urgently needed.
Collapse
Affiliation(s)
- Joana Teixeira
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal.
| |
Collapse
|
4
|
Ziyaei K, Mokhtari M, Hashemi M, Rezaei K, Abdi F. Association between exposure to water sources contaminated with polycyclic aromatic hydrocarbons and cancer risk: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171261. [PMID: 38417520 DOI: 10.1016/j.scitotenv.2024.171261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
The recent scientific focus on polycyclic aromatic hydrocarbons (PAHs) has stemmed from their recognized genotoxic, mutagenic, and carcinogenic properties. This systematic review seeks to evaluate the nexus between exposure to water sources contaminated with PAHs and the associated cancer risk among global populations, encompassing both children and adults. Web of Science (WoS), Cochrane Library, PubMed, ProQuest, Scopus, and Google Scholar, were searched following the PRISMA guidelines, until December 31, 2023. Quality assessment of the selected studies was performed using the Newcastle-Ottawa Scale. The increased lifetime cancer risk (ILCR) attributed to PAH exposure through ingestion and dermal absorption was thoroughly examined across diverse age groups. After extensive searching, screening, and eligibility, 30 articles were included in this review, which was conducted in different parts of the world, including Nigeria (n = 11), China (n = 7), India (n = 4), Iran (n = 3), South Africa (n = 2), Italy (n = 1), Colombia (n = 1), and Iraq (n = 1). Our analysis underscores Nigeria's alarming prevalence of PAH contamination in its rivers, groundwaters, and seawater. Remarkably, the highest cancer risk was identified among children and adults, notably in proximity to the Atlas Cove jetty (seawater) and various Nigerian rivers. This elevated risk is primarily attributed to the combined effects of ingestion and dermal absorption. Furthermore, our findings emphasize the prominent role of combustion-derived and pyrogenic sources of PAH in the examined aquatic ecosystems. This study unequivocally establishes that PAH-contaminated water sources significantly amplify the risk of cancer among both children and adults. The extent of risk variation is influenced by the specific water source, duration of exposure, and age group. Consequently, proactive identification of contaminated water sources and their pollution origins, coupled with targeted educational campaigns, holds promise for reducing the global burden of PAH-related cancer.
Collapse
Affiliation(s)
- Kobra Ziyaei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Majid Mokhtari
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran.
| | - Masoumeh Hashemi
- Department of Midwifery, Arak Branch, Islamic Azad University, Arak, Iran
| | - Kiadokht Rezaei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Fatemeh Abdi
- Nursing and Midwifery Care Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Duker RQ, Asare NK, Obodai EA, Adjei JK, Acheampong E, Chuku EO. Ecotoxicological and health risks associated with sediment-bound polycyclic aromatic hydrocarbons in peri-urban closed and open coastal lagoons. MARINE POLLUTION BULLETIN 2024; 202:116351. [PMID: 38640765 DOI: 10.1016/j.marpolbul.2024.116351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Coastal urbanisation has ramifications for the sustainable development of developing nations. There are often unquantified ecological and health risks associated with urbanisation. Sixteen polycyclic aromatic hydrocarbons (PAHs) were analysed in surface sediment from three peri-urban coastal lagoons in southern Ghana. We found significant spatial variations of sediment PAHs. These variations were attributed to physiography of the lagoons and diverse anthropogenic activities surrounding them. Total PAHs ranged from 20.81 to 24,801.38 μg/kg (dry weight), underscoring a low to very high pollution level. Diagnostic ratios revealed both pyrogenic and petrogenic origins. Over 50 % of individual PAHs were of moderate ecological risk to benthic organisms, and cancer risk to humans was above the World Health Organisation's recommended safety limit (1 × 10-6). These ecological and health risks should be wake-up call for a more integrated urban planning approach to coastal urbanisation as coastal communities largely depend on natural ecosystems for food and livelihood opportunities.
Collapse
Affiliation(s)
- Rahmat Quaigrane Duker
- Department of Fisheries and Aquatic Sciences, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana; Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana.
| | - Noble Kwame Asare
- Department of Fisheries and Aquatic Sciences, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana; Centre for Coastal Management, Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape Coast, Ghana
| | - Edward Adzesiwor Obodai
- Department of Fisheries and Aquatic Sciences, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Joseph Kweku Adjei
- Department of Chemistry, School of Physical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Acheampong
- Department of Fisheries and Aquatic Sciences, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana; Centre for Coastal Management, Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape Coast, Ghana
| | - Ernest Obeng Chuku
- Centre for Coastal Management, Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape Coast, Ghana; Institute for Marine and Antarctic Studies, University of Tasmania, Tasmania, Australia
| |
Collapse
|
6
|
Sun N, Wang T, Qi B, Yu S, Yao Z, Zhu G, Fu Q, Li C. Inhibiting release of phenanthrene from rice-crab coculture sediments to overlying water with rice stalk biochar: Performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168385. [PMID: 37952670 DOI: 10.1016/j.scitotenv.2023.168385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Rice crab coculture is a new ecological agriculture model combining rice cultivation and crab farming. Current research related to rice crab coculture only focuses on production theory and technical system establishment, while ignoring the potential ecological risk of Polycyclic aromatic hydrocarbon(PAHs) in rice crab coculture sediment. In this study, rice straw was used to make rice straw biochar to explore the performance and mechanism of inhibiting release of phenanthrene(PHE) from rice-crab coculture sediments to overlying water with rice stalk biochar. The kinetic and isotherm adsorption data were best represented by the Langmuir model and pseudo-second-order model with a maximum adsorption capacity of 53.35 mg/g at 12 h contact time. The results showed that PHE was released from the rice-crab substrate to the overlying water in dissolved and particle forms as a result of bioturbation, and the PHE concentrations in dissolved and particle forms were 20.9 μg/L and 14.22 μg/L, respectively. This leads to secondary ecological risks in rice-crab co-culture systems. This is related to dissolved organic carbon(DOC) carrying the dissolved PHE and total suspended solids(TSS) carrying the particle PHE in the overlying water. Due to its large specific surface area, rice straw biochar is rich in functional groups, providing multiple hydrophobic adsorption sites. After adding rice straw biochar at 0.5 % w/w (dry weight) dose, the removal efficiency of dissolved and particulate PHE in the overlying water were 78.99 % and 42.11 %, respectively. Rice straw biochar is more competitively adsorbed PHE in the overlying water than TSS and DOC. The removal efficiency of PHE from the sediment was 52.75 %. This study confirmed that rice stalk biochar could effectively inhibit PHE migration and release in paddy sediment. It provides an environment- friendly in situ remediation method for the management of PAHs pollution from crab crops in rice fields.
Collapse
Affiliation(s)
- Nan Sun
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Academy of Environmental Sciences Postdoctoral Joint Scientific Research Station, Harbin 150030, China
| | - Tianyi Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Bowei Qi
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shijie Yu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Smart Home Business Group, Midea Group, Wuxi 214000, China
| | - Zhongbao Yao
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guanglei Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Chenyang Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
7
|
Atusingwize E, Rohlman D, Hoffman P, Wafula ST, Musoke D, Buregyeya E, Mugambe RK, Ndejjo R, Ssempebwa JC, Anderson KA. Chemical contaminant exposures assessed using silicone wristbands among fuel station attendants, taxi drivers and commercial motorcycle riders in Kampala, Uganda. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2023; 78:401-411. [PMID: 37916578 DOI: 10.1080/19338244.2023.2275144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
There are concerns over traffic-related air pollution in Uganda's capital, Kampala. Individuals in the transportation sector are hypothesized to be at greater risk for exposure to volatile organic compounds, given their proximity to vehicle exhaust. Silicone wristbands are a wearable technology that passively sample individuals' chemical exposures. We conducted a pilot cross sectional study to measure personal exposures to volatile organic compounds among 14 transportation workers who wore a wristband for five days. We analyzed for 75 volatile organic compounds; 33 chemicals (35%) were detected and quantified in at least 50% of the samples and 15 (16%) chemicals were detected and quantified across all the samples. Specific chemicals were associated with participants' occupation. The findings can guide future large studies to inform policy and practice to reduce exposure to chemicals in the environment in Kampala.
Collapse
Affiliation(s)
- Edwinah Atusingwize
- Department of Disease Control and Environmental Health, Makerere University School of Public Health, Kampala, Uganda
| | - Diana Rohlman
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Peter Hoffman
- Food Safety and Environmental Stewardship Program, Oregon State University, Corvallis, OR, USA
| | - Solomon Tsebeni Wafula
- Department of Disease Control and Environmental Health, Makerere University School of Public Health, Kampala, Uganda
| | - David Musoke
- Department of Disease Control and Environmental Health, Makerere University School of Public Health, Kampala, Uganda
| | - Esther Buregyeya
- Department of Disease Control and Environmental Health, Makerere University School of Public Health, Kampala, Uganda
| | - Richard K Mugambe
- Department of Disease Control and Environmental Health, Makerere University School of Public Health, Kampala, Uganda
| | - Rawlance Ndejjo
- Department of Disease Control and Environmental Health, Makerere University School of Public Health, Kampala, Uganda
| | - John C Ssempebwa
- Department of Disease Control and Environmental Health, Makerere University School of Public Health, Kampala, Uganda
| | - Kim A Anderson
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
8
|
Wu K, Yao Y, Meng Y, Zhang X, Zhou R, Liu W, Ding X. Long-Term Atmosphere Surveillance (2016-2021) of PM 2.5-bound Polycyclic Aromatic Hydrocarbons and Health Risk Assessment in Yangtze River Delta, China. EXPOSURE AND HEALTH 2023:1-14. [PMID: 37360513 PMCID: PMC10208184 DOI: 10.1007/s12403-023-00572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/06/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023]
Abstract
Long-term atmospheric quality monitoring of fine particulate matter (PM2.5) and PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) was performed in Wuxi from 2016 to 2021. In total, 504 atmospheric PM2.5 samples were collected, and PM2.5-bound 16 PAHs were detected. The PM2.5 and ∑PAHs level decreased annually from 2016 to 2021, from 64.3 to 34.0 μg/m3 and 5.27 to 4.22 ng/m3, respectively. The benzo[a]pyrene (BaP) levels of 42% of the monitoring days in 2017 exceeded the recommended European Union (EU) health-based standard of 1 ng/m3. Five- and six-ring PAHs were found, including benz[a]anthracene, benzo[k]fluoranthene (Bkf), BaP, and benzo[g,h,i]perylene, which were the dominant components (indicating a prominent petroleum, biomass, and coal combustion contribution) using molecular diagnostic ratios and positive matrix factorization analysis. Moreover, PM2.5 and PAHs were significantly negatively associated with local precipitation over a period of six years. Statistically significant temporal and spatial distribution differences of PM2.5, and ∑PAHs were also found. The toxicity equivalent quotient (TEQ) of total PAHs was 0.70, and the TEQ of BaP (0.178) was the highest, followed by that of Bkf (0.090), dibenz[a,h]anthracene (Dah) (0.048), and indeno[1,2,3-cd]pyrene (0.034). The medians of the incremental lifetime cancer risk for long-term exposure to PAHs were 2.74E-8, 1.98E-8, and 1.71E-7 for children, teenagers, and adults, respectively, indicating that the carcinogenic risk of PAHs pollution in air was acceptable to local residents in this area. Sensitivity analysis revealed that BaP, Bkf, and Dah significantly contributed to carcinogenic toxicity. This research provides comprehensive statistics on the local air persistent organic pollutants profile, helps to identify the principal pollution source and compounds, and contributes to the prevention of regional air pollution. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12403-023-00572-x.
Collapse
Affiliation(s)
- Keqin Wu
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi, 214023 China
| | - Yuyang Yao
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
| | - Yuanhua Meng
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi, 214023 China
| | - Xuhui Zhang
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
| | - Run Zhou
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi, 214023 China
| | - Wenwei Liu
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi, 214023 China
| | - Xinliang Ding
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi, 214023 China
| |
Collapse
|
9
|
Adeniji AO, Okaiyeto K, George MJ, Tanor EB, Semerjian L, Okoh AI. A systematic assessment of research trends on polycyclic aromatic hydrocarbons in different environmental compartments using bibliometric parameters. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1289-1309. [PMID: 35933629 DOI: 10.1007/s10653-022-01353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a large group of diverse hazardous organic compounds that are relatively stable and widely distributed throughout the world's ecosystems due to various anthropogenic activities. They are generally less soluble in water and have a low vapour pressure, but dissolve easily in adipose tissues; and they bioaccumulate into high concentrations in aquatic animals, thereby exerting a variety of hazardous and lethal effects. Despite the plethora of research studies on these pollutants, only few bibliometric reviews on the subject have been documented in the literature. As a result, the present study aimed to assess the research growth on PAHs-related studies across different ecosystems. Science Citation Index-Expanded of Web of Science was explored to obtain the research studies that were conducted between 1991 and 2020, and RStudio was utilized for the data analysis. Annual productivity increased arithmetically over the years, with a 9.2% annual growth rate and a collaboration index of 2.52. Foremost among the trend topics in this field of study include soil, sediments, biodegradation, bioremediation, bioavailability, and source apportionment. China, USA, Spain, France and Germany were the five top-ranked countries in terms of publications and citations over the three decades investigated; however, Korea, Japan, United Kingdom, Germany, and Canada were ranked as the five leading countries in terms of collaboration per published article (MCP ratio). Therefore, efforts to strengthen international collaboration in this field of study especially among the less participating countries and continents are thus encouraged. The findings of this study are expected to provide future direction for the upcoming researchers in identifying the hot spots in this field of study as well as research leaders whom to seek collaboration in their future research plan.
Collapse
Affiliation(s)
- Abiodun O Adeniji
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, National University of Lesotho, P. O. Roma 180, Roma, Lesotho.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
| | - Kunle Okaiyeto
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535, South Africa
| | - Mosotho J George
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, National University of Lesotho, P. O. Roma 180, Roma, Lesotho
- Department of Biochemistry, University of Johannesburg, Auckland Park 2006, Gauteng, South Africa
| | - Emmanuel B Tanor
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, National University of Lesotho, P. O. Roma 180, Roma, Lesotho
| | - Lucy Semerjian
- Department of Environmental Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Department of Environmental Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
10
|
Li J, Bai J, Si X, Jia H, Wu Z. Benzo[a]pyrene induces epithelial tight junction disruption and apoptosis via inhibiting the initiation of autophagy in intestinal porcine epithelial cells. Chem Biol Interact 2023; 374:110386. [PMID: 36754226 DOI: 10.1016/j.cbi.2023.110386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/29/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Ingestion of food contaminated with benzo[a]pyrene (B[a]P) poses health risks to animals and humans. However, the toxicity of B[a]P exposure on the intestinal barrier function and underlying mechanisms remain obscure. In the present study, intestinal porcine epithelial cells (IPEC-1) were challenged with different doses of B[a]P and its deleterious effects were determined. We found that B[a]P exposure led to impaired intestinal tight junction function as evidenced by reduced transepithelial electric resistance, increased permeability, and downregulated intestinal tight junction protein levels. Further study demonstrated that B[a]P treatment induced cell cycle arrest, and resulted in oxidative damage-related apoptosis in IPEC-1 cells. Intriguingly, we observed an inhibition of autophagy and an activation of unfolded protein response (UPR) in B[a]P-challenged cells, when compared with controls. To investigate the role of autophagy on B[a]P-induced epithelial tight junction disruption and apoptosis, cells were cotreated with B[a]P and rapamycin, and rapamycin dramatically improved intestinal tight junction and reduced apoptosis, indicating a protective effect of autophagy for the cells in response to B[a]P treatment. We also explored the role of UPR in B[a]P-induced cellular damage by using 4-phenylbutyric acid, an antagonist of UPR. Interestingly, B[a]P-induced apoptosis and dysfunction of the intestinal tight junction were exacerbated by 4-phenylbutyric acid, and the 4-phenylbutyric acid didn't ameliorate the inhibitory effects of B[a]P on microtubule-associated protein 1 light chain 3 (LC3-II) and lysosomal-associated membrane protein 2 (LAMP2) in IPEC-1 cells. These novel findings provided herein indicated that B[a]P induces intestinal epithelial tight junction disruption and apoptotic cell death via inhibiting autophagy in IPEC-1 cells.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Tening Ndifet CM, Ze Bilo'o P, Mouthe Anombogo GA, Kom Regonne R, Ngassoum MB. The study of three beaches of South-West Cameroon polluted by polycyclic aromatic hydrocarbons. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:506. [PMID: 36961625 DOI: 10.1007/s10661-023-11111-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The US Environmental Protection Agency (US-EPA) published a priority list of 16 polycyclic aromatic hydrocarbons (PAHs), which are compounds that are studied in a variety of matrices due to their wide range of risks. Environmental compartments can be contaminated with PAHs from different sources, such as wastewater from industries and petroleum spills. For the case of Cameroon, there are no recorded data concerning the sources, distributions, and toxicity levels of PAHs in water and sediment from Cameroon beaches which are found in South-West, Littoral, and South Regions. In this work, only three beaches from South-West Region were studied regarding the sources, distributions, and toxicity levels of PAHs in water and sediment. The analyzed samples came from Bobende coastal beach, Down-beach, and Cape-Limboh beach. To achieve the analyses, liquid-liquid extraction and gas chromatography enabled the identification and quantification of PAH compounds from sediments and marine water. Out of the 16 PAHs listed by US-EPA, twelve were identified and quantified among which four of them were light molecular weight PAHs (acenaphthylene, fluorene, phenanthrene, and anthracene). Anthracene in the Cape-Limboh sample presented the highest concentration (477.57 ng/kg weight of dry sediment) of LMW-PAHs. Eight identified and quantified PAHs of high molecular weight as a whole, three absent PAHs (benzo[a]anthracene, dibenzo[a,h]anthracene, and benzo[g,h,i]perylene) in the Cape-Limboh sample, while only one is absent in the Bobende samples (dibenzo[a,h]anthracene) and Down Beach (benzo[g,h,i]perylene). According to the ratios used for the determination of the sources of PAHs, it came out that the source of PAHs from all beaches is pyrolytic. In all samples, BaA is the only high molecular weight PAH presenting serious toxicity and ecological risk.
Collapse
Affiliation(s)
- C M Tening Ndifet
- Laboratory of Industrial Chemistry and Bioressources (LICB), National School of Agro-Industrial Sciences (ENSAI), The University of Ngaoundere, P.O. Box 455, Ngaoundere, Cameroon
| | - P Ze Bilo'o
- Laboratory of Industrial Chemistry and Bioressources (LICB), National School of Agro-Industrial Sciences (ENSAI), The University of Ngaoundere, P.O. Box 455, Ngaoundere, Cameroon.
- Laboratory of Refining and Petrochemistry, National Advanced School of Mines and Petroleum Industries (ENSMIP), The University of Maroua, P.O. Box 08, Kaele, Cameroon.
| | - G A Mouthe Anombogo
- Department of Environmental Sciences, National Advanced School of Engineering of Maroua (ENSPM), The University of Maroua, P.O. Box 46, Maroua, Cameroon
| | - R Kom Regonne
- Laboratory of Industrial Chemistry and Bioressources (LICB), National School of Agro-Industrial Sciences (ENSAI), The University of Ngaoundere, P.O. Box 455, Ngaoundere, Cameroon
| | - M B Ngassoum
- Laboratory of Industrial Chemistry and Bioressources (LICB), National School of Agro-Industrial Sciences (ENSAI), The University of Ngaoundere, P.O. Box 455, Ngaoundere, Cameroon
| |
Collapse
|
12
|
Kocak TK, Kocak GO, Stuart AL. Polycyclic aromatic hydrocarbons in aquatic media of Turkey: A systematic review of cancer and ecological risk. MARINE POLLUTION BULLETIN 2023; 188:114671. [PMID: 36860025 DOI: 10.1016/j.marpolbul.2023.114671] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have gathered worldwide attention due to their carcinogenicity and toxicity. This paper aims to review and extend current knowledge on PAHs in aquatic environments in Turkey, where expansion of the marine industry has caused contamination concerns. To assess cancer and ecological risks associated with PAHs, we systematically reviewed 39 research articles. Mean measured concentrations of total PAHs ranged from 61 to 249,900 ng L-1 in surface waters, 1 to 209,400 ng g-1 in sediments, and 4 to 55,000 ng g-1 in organisms. Estimated cancer risks from concentrations in organisms were higher than those from surface waters and sediments. Negative ecosystem impacts of petrogenic PAHs were estimated to be larger than those of pyrogenic origin, despite the predominance of the latter. Overall, the Marmara, Aegean, and Black seas are highly-polluted and need remedial action, while further study is needed to confirm the status of other water bodies.
Collapse
Affiliation(s)
- Talha Kemal Kocak
- Environmental Sciences, Graduate School of Natural and Applied Sciences, Gazi University, Ankara 06500, Turkey.
| | - Goze Ozlem Kocak
- Department of Sociology, Faculty of Languages and History-Geography, Ankara University, Ankara 06430, Turkey
| | - Amy L Stuart
- College of Public Health, University of South Florida, Tampa, FL 33612, USA; Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
13
|
Naghashan M, Kargarghomsheh P, Nazari RR, Mehraie A, Tooryan F, Shariatifar N. Health risk assessment of PAHs in fruit juice samples marketed in city of Tehran, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20077-20088. [PMID: 36251183 DOI: 10.1007/s11356-022-22763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The objective of the present study was to investigate the level of 16 PAHs in fruit juice samples (orange, apple, peach, pineapple, and mango) with three different packages (PET bottle, Tetra Pak, and canned packaging) by using MSPE/GC-MS (magnetic solid-phase extraction and gas chromatography-mass spectrometry) method. In this method limit of detection (LOD), and limit of quantitation (LOQ), and recovery were 0.030-0.280 μg/L, 0.090-0.840 μg/L, and 94.8-102%, respectively. Our results showed the median of total PAHs and PAH4 (in all samples) were 7.67 ± 3.19 and 0.370 ± 0.160 μg/L, respectively. The median of BaP in samples was )0.060 ± 0.030 μg/L( lower than the standard level (0.200 μg/L in drinking water) of US Environmental Protection Agency (USEPA). Also, our results showed that pineapple juice had a maximum median of total PAHs of 12.4 ± 4.84 μg/L and mango juice had a minimum median of total PAHs of 5.17 ± 1.24 μg/L. Additionally, canned packaging had a maximum average total PAHs of 10.6 ± 5.22 μg/L and PET bottles had a minimum average total PAH of 5.25 ± 2.03 μg/L. A heat map approach was also used to cluster samples. The Monte Carlo results indicated that the estimated daily intake (EDI) rank order was Na > B(g)P > Ch > I(cd)P > B(b)F > Ph > B(k)F > F > Ace > Fl > B(a)P > B(a)A > P >A. The Monte Carlo simulation (MCS) results showed the incremental lifetime cancer risk (ILCR) at the 95th percentiles for adults and children was 4.91 × 10-7 and 9.12 × 10-7, respectively. It is concluded that the concentration of PAHs compounds in Iranian fruit juices is lower than the existing standards, and in terms of the risk of carcinogenesis, it does not threaten the human health (< 10-6).
Collapse
Affiliation(s)
- Mahsa Naghashan
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Pegah Kargarghomsheh
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | | | - Abbas Mehraie
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fahimeh Tooryan
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
- Preventive Veterinary Medicine Graduate Group, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
EL-Saeid MH, Alghamdi AG, Alzahrani AJ. Impact of Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) of Falling Dust in Urban Area Settings: Status, Chemical Composition, Sources and Potential Human Health Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1216. [PMID: 36673970 PMCID: PMC9858625 DOI: 10.3390/ijerph20021216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 05/06/2023]
Abstract
The present work is considered to investigate the sources, concentration, and composition of polycyclic aromatic hydrocarbons (PAHs) and associated health risk assessment of road dust in Riyadh City, Saudi Arabia. The study region included an urban area, strongly affected by traffic, a bare and an industrial area. A total of 50 locations were selected for sampling and 16 different PAHs were determined. The concentration of PAHs in road dust and their estimated lifetime average daily dose (LADD) for adults (human) ranged from 0.01 to 126 ng g−1 and 1950 to 16,010 mg kg−1 day−1, respectively. The ADDing was calculated separately for children (>6), teenagers (6−12), and adults (>12) for all PAHs with each collected sample. Moreover, the average daily exposure dose by ingestion (ADDing) and average daily exposure dose by dermal absorption (ADDder) were more in children (<6 years) as compared to teenagers (6−12 years) and adults (>12 years). Likewise, total equivalency factor based on BaP (TEQBaP) calculations pointed out that PAHs having more benzene rings or having high molecular weight showed high TEQBaP as compared to low molecular weight PAHs. The data revealed that the children population is at high risk for asthma, respiratory and cardiovascular diseases, and immunity suppression as compared to adults in the particular area of investigated region. These outcomes of this study can be used to deliver significant policy guidelines concerning habitants of the area for possible measures for controlling PAHs contamination in Riyadh City to protect human health and to ensure environmental sustainability.
Collapse
Affiliation(s)
- Mohamed Hamza EL-Saeid
- Department of Soil Sciences, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
15
|
Wang C, Thakuri B, Roy AK, Mondal N, Chakraborty A. Phase partitioning effects on seasonal compositions and distributions of terrigenous polycyclic aromatic hydrocarbons along the South China Sea and East China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154430. [PMID: 35276140 DOI: 10.1016/j.scitotenv.2022.154430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/19/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have posed serious risk to marine ecosystems due to their carcinogenic properties, and persistence in the environment and elevated bioaccumulation. It, therefore, becomes essential to examine spatial distribution, composition, and sources of PAHs. In this study, we have examined these PAH variations in the South China Sea (SCS) and East China Sea (ECS), that are experiencing rapid population and economic growth by the surrounding developing countries. It revealed high seasonal variations that significantly differ between dissolved and particulate PAHs concentrations. Spatial variations of PAHs across sites remain relatively insignificant. Persistently high particulate concentrations of the Naphthalene (Nap) were observed, whereas the dissolved concentrations of Fluorene (Flu) and Phenanthrene (Phen) remained prevalent across all the seasons. The result of non-metric multidimensional scaling (NMDS) strongly reflects the weak dispersions of PAHs across the seasons and the contrasting effects of the phase partitioning. Principal component analysis indicates that the primary source of PAH contamination is coal tar or petroleum distillation. However, estimated risk quotient (RQ) values of both the dissolved and particulate PAHs in all the seasons are far below the high-risk levels, while dissolved PAHs displayed relatively higher values. This study signifies the importance of phase petitioning for PAHs monitoring and potential risk assessments.
Collapse
Affiliation(s)
- Ce Wang
- School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210096, PR China.
| | - Bikash Thakuri
- Department of Mathematics, School of Physical Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Amit Kumar Roy
- Department of Mathematics, School of Physical Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Nitish Mondal
- Department of Anthropology, School of Human Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Amit Chakraborty
- Department of Mathematics, School of Physical Sciences, Sikkim University, Gangtok 737102, Sikkim, India.
| |
Collapse
|
16
|
Mustafa YA, Mohammed SJ, Ridha MJM. Polyaromatic hydrocarbons biodegradation using mix culture of microorganisms from sewage waste sludge: application of artificial neural network modelling. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:405-418. [PMID: 35669802 PMCID: PMC9163246 DOI: 10.1007/s40201-022-00787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/01/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE In this study, we aimed to examine the tolerance of mixed culture of microorganisms isolated from sewage waste sludge to degrade high concentrations of polyaromatic hydrocarbons, naphthalene, and phenanthrene. The performance of the artificial neural network (ANN) model to predict and simulate the experimental biodegradation results was investigated. METHODS The mixed culture of microorganisms was isolated from sewage waste sludge and adopted to biodegrade naphthalene and phenanthrene at different concentrations (100-1000mg/L). Sewage waste sludge obtained from wastewater treatment plants. A three-layer feed-forward network with a sigmoid transfer function (logsig) at the hidden layer, a linear transfer function (purelin) at the output layer, and a backpropagation training algorithm was used to set the ANN model. RESULTS The results of this study show that naphthalene at concentrations of 100, 300, 700, and 1000 mg/L was depleted after incubation with the mixed culture for 6, 8, 14, and 16 days, respectively. For phenanthrene, depletion of 100, 300, 600, and 1000 mg/L was achieved after 8, 11, 16, and 19 days of incubation, respectively. A high correlation coefficient of 99.5% between the predicted and the experimental results were obtained by using the AAN model. CONCLUSION The results indicated that the mixed culture of microorganisms from sewage waste sludge could effectively consume naphthalene and phenanthrene as carbon and energy sources. Also, the ANN model could efficiently predict the experimental results for biodegradation treatment.
Collapse
Affiliation(s)
- Yasmen A. Mustafa
- Department of Economics of Oil and Gas, University of Imam Jaafar Al-Sadiq, Baghdad, Iraq
| | - Sinan J. Mohammed
- Department of Economics of Oil and Gas, University of Imam Jaafar Al-Sadiq, Baghdad, Iraq
| | - Mohanad J. M. Ridha
- Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
17
|
Wu M, Luo J, Huang T, Lian L, Chen T, Song S, Wang Z, Ma S, Xie C, Zhao Y, Mao X, Gao H, Ma J. Effects of African BaP emission from wildfire biomass burning on regional and global environment and human health. ENVIRONMENT INTERNATIONAL 2022; 162:107162. [PMID: 35247686 DOI: 10.1016/j.envint.2022.107162] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The vegetation burning caused by wildfires can release significant quantities of aerosols and toxic chemicals into the atmosphere and result in health risk. Among these emitted pollutants, Benzo(a)pyrene (BaP), the most toxic congener of 16 parent PAHs (polycyclic aromatic hydrocarbons), has received widespread concerns because of its carcinogenicity to human health. Efforts have been made to investigate the environmental and health consequences of wildfire-induced BaP emissions in Africa. Still, uncertainties remain due to knowledge and data gaps in wildfire incidences and biomass burning emissions. Based on a newly-developed BaP emission inventory, the present study assesses quantitatively the BaP environment cycling in Africa and its effects on other continents from 2001 to 2014. The new inventory reveals the increasing contribution of BaP emission from African wildfires to the global total primarily from anthropogenic sources, accounting for 48% since the 2000 s. We identify significantly higher BaP emissions and concentrations across sub-Saharan Africa, where the annual averaged BaP concentrations were as high as 5-8 ng/m3. The modeled BaP concentrations were implemented to estimate the lifetime cancer risk (LCR) from the inhalation exposure to BaP concentrations. The results reveal that the LCR values in many African countries exceeded the acceptable risk level at 1 × 10-6, some of which suffer from very high exposure risk with the LCR>1 × 10-4. We show that the African BaP emission from wildfires contributed, to some extent, BaP contamination to Europe as well as other regions, depending on source proximity and atmospheric pathways under favorable atmospheric circulation patterns.
Collapse
Affiliation(s)
- Min Wu
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jinmu Luo
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lulu Lian
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tianlei Chen
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shijie Song
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhanxiang Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuxin Ma
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chaoran Xie
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoxuan Mao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianmin Ma
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
18
|
Dimbarre Lao Guimarães I, Casanova Monteiro F, Vianna da Anunciação de Pinho J, de Almeida Rodrigues P, Gomes Ferrari R, Adam Conte-Junior C. Polycyclic aromatic hydrocarbons in aquatic animals: a systematic review on analytical advances and challenges. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:198-217. [PMID: 35262454 DOI: 10.1080/10934529.2022.2048614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), the main component of petroleum, are a concern due to their environmental persistence, long-range transport, and potential toxic effects on animal, human health, and the environment. PAHs are considered persistent compounds and can be bioaccumulated in sediments and aquatic biota. Determining PAHs in animals and environmental samples consists of three steps: extraction, clean-up or purification, and analytical determination. The matrix complexity and the diversity of environmental contaminants, such as PAHs resulted in the development of numerous analytical techniques and protocols for the extraction of these components and analysis in several samples. This systematic review article seeks to relate the extraction and preparation methods of complex samples from aquatic animals and the two main detection techniques of PAHs. For the elaboration of the research, 67 articles published between 2011 and 2021 were sought, which specifically contemplated the isolation of aquatic extracts and detection and quantification techniques of PAHs.
Collapse
Affiliation(s)
| | | | | | - Paloma de Almeida Rodrigues
- Department of Food Technology, Molecular and Analytical Laboratory Center, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
| | - Rafaela Gomes Ferrari
- Department of Biochemistry, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Zootechnics, Agrarian Sciences Center, Federal University of Paraiba, Paraiba, Brazil
| | - Carlos Adam Conte-Junior
- Department of Biochemistry, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Food Technology, Molecular and Analytical Laboratory Center, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
- National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Koelmel JP, Lin EZ, DeLay K, Williams AJ, Zhou Y, Bornman R, Obida M, Chevrier J, Godri Pollitt KJ. Assessing the External Exposome Using Wearable Passive Samplers and High-Resolution Mass Spectrometry among South African Children Participating in the VHEMBE Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2191-2203. [PMID: 35089017 DOI: 10.1021/acs.est.1c06481] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Children in low- and middle-income countries are often exposed to higher levels of chemicals and are more vulnerable to the health effects of air pollution. Little is known about the diversity, toxicity, and dynamics of airborne chemical exposures at the molecular level. We developed a workflow employing state-of-the-art wearable passive sampling technology coupled with high-resolution mass spectrometry to comprehensively measure 147 children's personal exposures to airborne chemicals in Limpopo, South Africa, as part of the Venda Health Examination of Mothers, Babies, and Their Environment (VHEMBE). 637 environmental exposures were detected, many of which have never been measured in this population; of these 50 airborne chemical exposures of concern were detected, including pesticides, plasticizers, organophosphates, dyes, combustion products, and perfumes. Biocides detected in wristbands included p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), p,p'-dichlorodiphenyldichloroethane (p,p'-DDD), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), propoxur, piperonyl butoxide, and triclosan. Exposures differed across the assessment period with 27% of detected chemicals observed to be either higher or lower in the wet or dry seasons.
Collapse
Affiliation(s)
- Jeremy P Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, United States
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, United States
| | - Kayley DeLay
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, United States
| | - Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Yakun Zhou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, United States
| | - Riana Bornman
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria 0028, South Africa
| | - Muvhulawa Obida
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria 0028, South Africa
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montréal, Québec H3A 1A2, Canada
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, United States
| |
Collapse
|
20
|
Aminiyan MM, Kalantzi OI, Etesami H, Khamoshi SE, Hajiali Begloo R, Aminiyan FM. Occurrence and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in dust of an emerging industrial city in Iran: implications for human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63359-63376. [PMID: 34231139 DOI: 10.1007/s11356-021-14839-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) bounded to street dust are a severe environmental and human health danger. This study provides preliminary information on the abundance of PAHs in street dust from Rafsanjan city, Iran, where industrial emissions are high and data are lacking. Seventy street dust samples were collected from streets with different traffic loads. The United States Environmental Protection Agency (USEPA) Standard Methods 8270D and 3550C were used for the measurement of PAHs using GC mass spectroscopy. The total concentration of PAHs was 1443 ng g-1, with a range of 1380-1550 ng g-1. Additionally, the concentration of carcinogenic PAHs (∑carcPAHs) ranged from 729.5 to 889.4 ng g-1, with a mean value of 798.1 ng g-1. Pyrene was the most abundant PAH, with an average concentration of 257 ng g-1. Source identification analyses showed that vehicle emissions along with incomplete combustion and petroleum were the main sources of PAHs. The ecological risk status of the studied area was moderate. Spatial distribution mapping revealed that the streets around the city center and oil company had higher PAH levels than the other sectors of Rafsanjan. The results indicated that dermal contact and ingestion of contaminated particles were the most important pathways compared to inhalation. The mean incremental lifetime cancer risk (ILCR) was 1.4 × 10-3 and 1.3 × 10-3 for children and adults, respectively. This implies potentially adverse health effects in exposed individuals. The mutagenic risk for both subpopulations was approximately 18 times greater than the one recommended by USEPA. Our findings suggest that children are subjected to a higher carcinogenic and mutagenic risk of PAHs, especially dibenzo[a,h]anthracene (DahA), bounded to street dust of Rafsanjan. Our study highlights the need for the development of emission monitoring and control scenarios.
Collapse
Affiliation(s)
- Milad Mirzaei Aminiyan
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | | | - Hassan Etesami
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Seyyed Erfan Khamoshi
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Raziyeh Hajiali Begloo
- School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Mirzaei Aminiyan
- Civil Engineering Department, College of Engineering, Vali-e-Asr Rafsanjan University, Rafsanjan, Iran
| |
Collapse
|
21
|
Hatami Manesh M, Haghshenas A, Mirzaei M, Azadi H, Marofi S. Seasonal variations of polycyclic aromatic hydrocarbons in coastal sediments of a marine resource hot spot: the case of pars special economic energy zone, Iran. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3897-3919. [PMID: 33742337 DOI: 10.1007/s10653-021-00863-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are an important group of compounds of major environmental concern, which are in the class of persistent organic pollutants. Therefore, the key purpose of this research was to analyze seasonal fluctuations and to determine the probability of polycyclic aromatic hydrocarbons in coastal sediments of the Iranian Marine Resource Center based on the evaluation of 16 US-EPA important PAH compounds. These compounds have been collected from intertidal sediments located in the marine resources of southern Iran in different seasons. These samples of the surficial sediment were collected at the PSEEZ area using a stainless steel grab sampler in four seasons, from depths between 0.5 and 30 m. Surface sediment samples were removed by spoons and carefully placed in an aluminum foil; they were taken to the laboratory on ice and held at 20° C until their study. After extraction, by using a rotary evaporator apparatus, samples were condensed. The assay was added to roughly 2 g of activated copper flasks in the refrigerator for 36 h for desulfurization. Among different seasons, the highest concentration was observed in winter, with a mean of 281.3 ng g-1. According to ecological risk assessment (concentrations of possible effects, low effect range, degree of threshold effects, and median effect range), PAH risks in surface sediments of PSEEZ were lower than the threshold results levels (TEL), possible effects levels (PEL), low range of effects (ERL), and median range of effects (ERM), indicating that a biological effect would rarely occur. The dry weight scale of the concentration of ∑PAHs ranges from 145.7 to 348.42 ng g-1 with a mean quantity of 260.52 ng g-1. Therefore, according to the amount of ∑PAH concentration, the sediments in the PSEEZ area indicated moderate to heavy pollutions. In this way, the sedimentary surface ecosystems of the Persian Gulf were considered as moderately polluted compared with other ecosystems worldwide. Our study highlighted some of the research gaps in PAH contamination studies and the level of PAH contamination. Therefore, this study will provide a scientific background, planning, and policies for PAH pollution control and environmental protection in Iran and similar regions around the world.
Collapse
Affiliation(s)
- Masoud Hatami Manesh
- Young Researcher and Eite Club, Yasouj Branch, Islamic Azad University, Yasouj, Iran
| | - Arash Haghshenas
- Iran Shrimp Research Center, Agricultural Research, Education and Extension Organization, Iranian Fisheries Science Research Institute, Tehran, Iran
| | - Mohsen Mirzaei
- Department of Environment, School of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hossein Azadi
- Department of Geography, Ghent University, Ghent, Belgium
- Research Group Climate Change and Security, Institute of Geography, University of Hamburg, Hamburg, Germany
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Safar Marofi
- Water Engineering Department, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
22
|
Abayi JJM, Gore CT, Nagawa C, Bandowe BAM, Matovu H, Mubiru E, Ngeno EC, Odongo S, Sillanpää M, Ssebugere P. Polycyclic aromatic hydrocarbons in sediments and fish species from the White Nile, East Africa: Bioaccumulation potential, source apportionment, ecological and health risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116855. [PMID: 33706244 DOI: 10.1016/j.envpol.2021.116855] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/01/2021] [Accepted: 02/25/2021] [Indexed: 05/20/2023]
Abstract
The impact of oil exploration and production activities on the environment of sub-saharan African countries is not well studied. This study aimed at determining concentrations, sources, and bioaccumulation of 13 polycyclic aromatic hydrocarbons (PAHs) in sediments and fish from the White Nile near Melut oil fields, South Sudan. The study also assessed the ecological and human health risk associated with PAHs in this aquatic system. Total (∑13) PAH concentrations ranged from 566 to 674 ng g-1dry weight (dw) in sediments, while those in fish were 191-1143 ng g-1 wet weight (ww). ∑13PAH concentrations were significantly higher in C. gariepinus than in other fish species. Low molecular weight PAHs (LPAHs) dominated the profile of PAHs in sediments (constituted 95% of ∑13PAHs) and fish (97% of ∑13PAHs). Compared to Sediment Quality Guidelines of the United States Oceanic and Atmospheric Administration, the levels of LPAHs in this study were all above the threshold effect limits, but below the probable effect level, while those of high molecular weight PAHs (HPAHs) were all below the lowest effect levels. The carcinogenic potency equivalent concentrations of PAHs in L. niloticus and C. gariepinus were above the US EPA screening level; suggesting consumption of these species could adversely affect human health. Biota-sediment accumulation factor values (range: 0.006-3.816 g OC g-1 lipid) for PAHs showed high bioaccumulation of LPAHs in fish muscle, and that bioaccumulation decreased with increase in hydrophobicity of the compounds. This is possibly because LPAHs have higher aqueous solubilities which increases their bioavailability through water-gill transfers compared to HPAHs. Profiles of PAHs in the White Nile environment indicate predominant contribution from petrogenic sources, which could be attributed to presence of crude oil reservoirs and oil production operations. More research into the levels of other environmental pollutants in the oil-rich area is recommended.
Collapse
Affiliation(s)
- Juma John Moses Abayi
- Department of Chemistry, University of Juba, P.O Box 82, Juba, South Sudan; Department of Chemistry, Makerere University, P. O Box 7062, Kampala, Uganda
| | | | - Christine Nagawa
- Department of Forestry, Biodiversity and Tourism, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Benjamin A Musa Bandowe
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| | - Henry Matovu
- Department of Chemistry, Makerere University, P. O Box 7062, Kampala, Uganda; Department of Chemistry, Gulu University, P. O. Box 166, Gulu, Uganda
| | - Edward Mubiru
- Department of Chemistry, Makerere University, P. O Box 7062, Kampala, Uganda
| | | | - Silver Odongo
- Department of Chemistry, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa
| | - Patrick Ssebugere
- Department of Chemistry, Makerere University, P. O Box 7062, Kampala, Uganda.
| |
Collapse
|
23
|
Tirkey SR, Ram S, Mishra S. Naphthalene degradation studies using Pseudomonas sp. strain SA3 from Alang-Sosiya ship breaking yard, Gujarat. Heliyon 2021; 7:e06334. [PMID: 33869819 PMCID: PMC8035486 DOI: 10.1016/j.heliyon.2021.e06334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) remediation has received considerable attention due to their significant health concern and environmental pollution. However, PAHs contaminated sites also contain indigenous microbes that can potentially degrade naphthalene. Therefore, this study aimed to isolate, characterise and optimise process parameters for efficient naphthalene degradation. A total of 50 naphthalene degrading bacteria were isolated from Alang-Sosiya ship breaking yard, Bhavnagar, Gujarat and screened for their naphthalene degrading capacity. The selected isolate, Pseudomonas sp. strain SA3 was found to degrade 98.74 ± 0.00% naphthalene at a concentration of 500 ppm after 96 h. Further, optimisation of environmental parameters using one factor at a time approach using different inoculum sizes (v/v), pH, salinity, temperature, carbon and nitrogen source greatly accelerated the degradation process attaining 98.6 ± 0.46% naphthalene degradation after 72 h. The optimised parameters for maximum naphthalene degradation were pH 8, 0.1% peptone as nitrogen source, 8% salinity and 1% (v/v) inoculum size.
Collapse
Affiliation(s)
- Sushma Rani Tirkey
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Applied Phycology & Biotechnology Division, CSIR- Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
| | - Shristi Ram
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Applied Phycology & Biotechnology Division, CSIR- Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
| | - Sandhya Mishra
- Applied Phycology & Biotechnology Division, CSIR- Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
| |
Collapse
|
24
|
Torres FG, Dioses-Salinas DC, Pizarro-Ortega CI, De-la-Torre GE. Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143875. [PMID: 33310573 DOI: 10.1016/j.scitotenv.2020.143875] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 05/19/2023]
Abstract
Microplastics (<5 mm) are ubiquitous contaminants of growing concern. These have been found in multiple environmental compartments, including remote sites where anthropogenic activity is null. Once released, microplastics interact with multiple chemicals in the environment, many of which are classified as organic contaminants or heavy metals. Some contaminants have an affinity for microplastics, attributed to certain sorption mechanisms, and thus become vectors of hazardous chemicals. Here, we focused on the sorption behavior of degradable and non-degradable microplastics, including field and laboratory experiments. We reviewed the sorption mechanisms, namely hydrophobic interactions, electrostatic interactions, pore-filling, Van der Waals forces, hydrogen bonding, and π-π interactions, and the factors strengthening or weakening these mechanisms. Then, we analyzed the literature investigating the sorption behavior of a wide range of chemicals contaminants on microplastics, and the current knowledge regarding the occurrence of organic contaminants and heavy metals on microplastics extracted from the environment. The future perspectives and research priorities were discussed. It is apparent that degradable microplastics, such as polylactic acid or polybutylene succinate, have a greater affinity for hydrophobic contaminants than conventional synthetic non-degradable microplastics according to recent studies. However, studies assessing degradable microplastics are scarce and much research is required to further prove this point. We stated several knowledge gaps in this new line of research and suggest the future studies to follow an integrative approach, allowing to comprehend the multiple factors involved, such as ecotoxicity, bioaccumulation, and fate of the chemical contaminants.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Catolica del Peru, Av. Universitaria 1801, 15088 Lima, Peru.
| | | | | | | |
Collapse
|
25
|
Yang L, Zhang H, Zhang X, Xing W, Wang Y, Bai P, Zhang L, Hayakawa K, Toriba A, Tang N. Exposure to Atmospheric Particulate Matter-Bound Polycyclic Aromatic Hydrocarbons and Their Health Effects: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2177. [PMID: 33672189 PMCID: PMC7926315 DOI: 10.3390/ijerph18042177] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022]
Abstract
Particulate matter (PM) is a major factor contributing to air quality deterioration that enters the atmosphere as a consequence of various natural and anthropogenic activities. In PM, polycyclic aromatic hydrocarbons (PAHs) represent a class of organic chemicals with at least two aromatic rings that are mainly directly emitted via the incomplete combustion of various organic materials. Numerous toxicological and epidemiological studies have proven adverse links between exposure to particulate matter-bound (PM-bound) PAHs and human health due to their carcinogenicity and mutagenicity. Among human exposure routes, inhalation is the main pathway regarding PM-bound PAHs in the atmosphere. Moreover, the concentrations of PM-bound PAHs differ among people, microenvironments and areas. Hence, understanding the behaviour of PM-bound PAHs in the atmosphere is crucial. However, because current techniques hardly monitor PAHs in real-time, timely feedback on PAHs including the characteristics of their concentration and composition, is not obtained via real-time analysis methods. Therefore, in this review, we summarize personal exposure, and indoor and outdoor PM-bound PAH concentrations for different participants, spaces, and cities worldwide in recent years. The main aims are to clarify the characteristics of PM-bound PAHs under different exposure conditions, in addition to the health effects and assessment methods of PAHs.
Collapse
Affiliation(s)
- Lu Yang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (L.Y.); (H.Z.); (X.Z.); (W.X.); (Y.W.); (P.B.)
| | - Hao Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (L.Y.); (H.Z.); (X.Z.); (W.X.); (Y.W.); (P.B.)
| | - Xuan Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (L.Y.); (H.Z.); (X.Z.); (W.X.); (Y.W.); (P.B.)
| | - Wanli Xing
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (L.Y.); (H.Z.); (X.Z.); (W.X.); (Y.W.); (P.B.)
| | - Yan Wang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (L.Y.); (H.Z.); (X.Z.); (W.X.); (Y.W.); (P.B.)
| | - Pengchu Bai
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (L.Y.); (H.Z.); (X.Z.); (W.X.); (Y.W.); (P.B.)
| | - Lulu Zhang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (L.Z.); (K.H.)
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (L.Z.); (K.H.)
| | - Akira Toriba
- School of Pharmaceutical Sciences, Nagasaki University, Bunkyo-machi, Nagasaki 852-8521, Japan;
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (L.Z.); (K.H.)
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
26
|
Williams J, Petrik L, Wichmann J. PM 2.5 chemical composition and geographical origin of air masses in Cape Town, South Africa. AIR QUALITY, ATMOSPHERE, & HEALTH 2020; 14:431-442. [PMID: 33042291 PMCID: PMC7539287 DOI: 10.1007/s11869-020-00947-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 05/03/2023]
Abstract
PM2.5 in the indoor and outdoor environment has been linked in epidemiology studies to the symptoms, hospital admissions and development of numerous health outcomes including death. The study was conducted during April 2017 and April 2018. PM2.5 samples were collected over 24 h and every third day. The mean PM2.5 level was 13.4 μg m-3 (range: 1.17-39.1 μg m-3). PM2.5 levels exceeded the daily World Health Organization air quality guideline (25 μg m-3) on 14 occasions. The mean soot level was 1.38 m-1 × 10-5 (range: 0 to 5.38 m-1 × 10-5). Cl-, NO3 -, SO4 2-, Al, Ca, Fe, Mg, Na and Zn were detected in the PM2.5 samples. The geographical origin of air masses that passed Cape Town was estimated using the Hybrid Single Particle Lagrangian Integrated Trajectory software. Four air masses were identified in the cluster analysis: Atlantic-Ocean-WSW, Atlantic-Ocean-SW, Atlantic-Ocean-SSW and Indian-Ocean. The population of Cape Town may experience various health outcomes from the outdoor exposure to PM2.5 and the chemical composition of PM2.5.
Collapse
Affiliation(s)
- John Williams
- Environmental and Nano Sciences Group, Department of Chemical Sciences, University of the Western Cape, Cape Town, South Africa
| | - Leslie Petrik
- Environmental and Nano Sciences Group, Department of Chemical Sciences, University of the Western Cape, Cape Town, South Africa
| | - Janine Wichmann
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|