1
|
Liu X, Han B, He PL, Wang Q, Chen ZQ. Modeling competitive biosorption for methylene blue removal on rape straw powders using response surface methodology in a ternary dye aqueous solution. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1453-1464. [PMID: 38505937 DOI: 10.1080/15226514.2024.2327614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The improvement of biosorption efficiency for selective dye removal in a multi-dye aqueous system has become an increasingly significant research topic. However, the competitive effects of coexisting dyes and the target dye in such systems remain uncertain due to complex interactions between adsorbent and coexisting dyes. Therefore, in this research, response surface methodology (RSM) model was effectively employed to investigate the competitive effects of allura red (AR) and malachite green (MG) on methylene blue (MB) removal in a ternary dye aqueous system using three different parts of rape straw powders. In the current design of RSM, the initial concentrations of AR and MG dyes ranging from 0 mg·L-1 to 500 mg·L-1 were considered as influencing factors, while the removal rates of MB on adsorbents at an initial concentration of 500 mg·L-1 were established as response values. The RSM models exhibited high correlation coefficients with adjusted R2 values of 0.9908 (pith core), 0.9870 (seedpods), and 0.9902 (shells), respectively, indicating a close fitted between predicted and actual values. The proposed models indicated that the perturbation effects of initial AR and MG concentrations were observed on the removal rates of MB by three types of rape straw powders in a ternary dye aqueous system, resulting in a decrease in MB removal rates, particularly at higher initial AR concentration due to stronger competitive effects compared to initial MG concentration. The structures of rape straw powders, including pith core, seedpods and shell, were analyzed using scanning eletron microscoe (SEM), energy dispersive spectroscopy (EDS), N2 physisorption isotherm, frourier transform infared spectroscopy (FTIR), Zeta potential classes and fluorescence spectrum before and after adsorption of MB in various dye aqueous systems. The characteristics of rape straw powders suggested that similar adsorption mechanisms, such as electrostatic attraction, pore diffusion, and group complex formation for MB, AR, and MG, respectively, occurred on the surfaces of adsorbents during their respective adsorption processes. This leads to significant competitive effects on the removal rates of MB in a ternary dye aqueous system, which are particularly influenced by initial AR concentrations as confirmed through fluorescence spectrum analysis.
Collapse
Affiliation(s)
- Xin Liu
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Bin Han
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Pei-Lin He
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Qian Wang
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Zhao-Qiong Chen
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| |
Collapse
|
2
|
de Almada Vilhena AO, Lima KMM, de Azevedo LFC, Rissino JD, de Souza ACP, Nagamachi CY, Pieczarka JC. The synthetic dye malachite green found in food induces cytotoxicity and genotoxicity in four different mammalian cell lines from distinct tissuesw. Toxicol Res (Camb) 2023; 12:693-701. [PMID: 37663817 PMCID: PMC10470350 DOI: 10.1093/toxres/tfad059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/13/2023] [Accepted: 06/02/2023] [Indexed: 09/05/2023] Open
Abstract
Malachite green (MG) is a synthetic dye that uses ranges from its application as a tissue dye to that as an antiparasitic in aquaculture. Several studies have reported the presence of this compound in food dyes and in the meat of fish raised in captivity for human consumption, suggesting risks both for the end user and for as those who handle these products because of MG toxic properties described in the literature. Here we evaluated the cytotoxic and genotoxic profiles of MG in four different cell lines (ACP02, L929, MNP01, and MRC-5). Two of these cell lines are stomach cells (normal and cancer lineages) and the potential ingestion of MG makes this a relevant cell type. Cells were treated with MG at concentrations ranging from 0.1 μM to 100 μM, and tested by MTT assay, a differential apoptosis/necrosis assay (EB/OA), the micronucleus test (MN), and the comet assay. MG exhibits dose-dependent cytotoxicity toward all of the tested cell types; higher concentrations of MG cause cell necrosis, while lower concentrations induce apoptosis. MG has a genotoxic profile increasing the rates of micronuclei, nucleoplasmic bridges, nuclear buds, and DNA fragmentation; L929 and MRC-5 showed more sensibility than ACP02 and MNP01.
Collapse
Affiliation(s)
- Andryo O de Almada Vilhena
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Cultura de Células, Instituto de Ciências Biológicas, Universidade Federal do Pará/Parque de Ciência e Tecnologia do Guamá, Avenida Perimetral da Ciência Km 01 – Guamá, Belém CEP 66075-750, PA, Brazil
- Instituto Tocantinense Presidente Antônio Carlos (ITPAC/Afya), Abaetetuba, PA, Brazil
| | - Karina M M Lima
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Cultura de Células, Instituto de Ciências Biológicas, Universidade Federal do Pará/Parque de Ciência e Tecnologia do Guamá, Avenida Perimetral da Ciência Km 01 – Guamá, Belém CEP 66075-750, PA, Brazil
- Campus Tomé Açu, Universidade Federal Rural da Amazônia, Tomé Açu, PA, Brazil
| | - Luana F C de Azevedo
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Cultura de Células, Instituto de Ciências Biológicas, Universidade Federal do Pará/Parque de Ciência e Tecnologia do Guamá, Avenida Perimetral da Ciência Km 01 – Guamá, Belém CEP 66075-750, PA, Brazil
| | - Jorge D Rissino
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Cultura de Células, Instituto de Ciências Biológicas, Universidade Federal do Pará/Parque de Ciência e Tecnologia do Guamá, Avenida Perimetral da Ciência Km 01 – Guamá, Belém CEP 66075-750, PA, Brazil
| | - Augusto C P de Souza
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Cultura de Células, Instituto de Ciências Biológicas, Universidade Federal do Pará/Parque de Ciência e Tecnologia do Guamá, Avenida Perimetral da Ciência Km 01 – Guamá, Belém CEP 66075-750, PA, Brazil
- Laboratório de Estudos da Ictiofauna da Amazônia, Campus Abaetetuba, Instituto Federal do Pará, Abaetetuba, PA, Brazil
| | - Cleusa Y Nagamachi
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Cultura de Células, Instituto de Ciências Biológicas, Universidade Federal do Pará/Parque de Ciência e Tecnologia do Guamá, Avenida Perimetral da Ciência Km 01 – Guamá, Belém CEP 66075-750, PA, Brazil
| | - Julio C Pieczarka
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Cultura de Células, Instituto de Ciências Biológicas, Universidade Federal do Pará/Parque de Ciência e Tecnologia do Guamá, Avenida Perimetral da Ciência Km 01 – Guamá, Belém CEP 66075-750, PA, Brazil
| |
Collapse
|
3
|
Poopal RK, Ashwini R, Ramesh M, Li B, Ren Z. Triphenylmethane dye (C 52H 54N 4O 12) is potentially a hazardous substance in edible freshwater fish at trace level: toxicity, hematology, biochemistry, antioxidants, and molecular docking evaluation study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28759-28779. [PMID: 36401692 DOI: 10.1007/s11356-022-24206-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Malachite green (C52H54N4O12) is a synthetic dye that is used in textile industries as a colorant and in aquaculture sectors to contain microbial damage. Aquatic contamination of malachite green (MG) has been reported globally. Fish is the highest trophic organism among aquatic inhabitants, highly sensitive to waterborne contaminants (metals, coloring agents, etc.). Toxicity of waterborne chemicals on nontarget organisms can be determined by assessing biomarkers. Assessing blood parameters and tissue antioxidants (enzymatic and nonenzymatic) is useful to evaluate MG toxicity. To initiate the MG toxicity data for freshwater fish (Cyprinus carpio), the median lethal toxicity was primarily evaluated. Then, hematological, blood biochemical (glucose, protein, and cholesterol) and tissue biochemical (amino acids, lipids), and vital tissue (gills, liver, and kidney) antioxidant capacity (CAT, LPO, GST, GR, POxy, vitamin C, and GSH) of C. carpio were analyzed under acute (LC50-96 h) and sublethal (Treatment I-1/10th and Treatment II-1/5th LC50-96 h) exposure periods (28 days). Molecular docking for MG with hemoglobin was also obtained. Biomarkers examined were affected in the MG-treated groups with respect to the control group. Significant changes (p < 0.05) were observed in hematology (Hb, RBCs, and WBCs), glucose, proteins, lipids and tissue CAT, LPO, and GST activities under acute MG exposure. In sublethal treatment groups, biomarkers studied were significant (p < 0.05) throughout the study period. The potential for MG binding to hemoglobin was tested in this study. MG is potentially a multiorgan toxicant. Literally a chemical that is harmful to the aquatic environment if safety is concerned.
Collapse
Affiliation(s)
- Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, TamilNadu, India
| | - Rajan Ashwini
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, TamilNadu, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, TamilNadu, India
| | - Bin Li
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
4
|
Magara G, Sangsawang A, Pastorino P, Bellezza Oddon S, Caldaroni B, Menconi V, Kovitvadhi U, Gasco L, Meloni D, Dörr AJM, Prearo M, Federici E, Elia AC. First insights into oxidative stress and theoretical environmental risk of Bronopol and Detarox® AP, two biocides claimed to be ecofriendly for a sustainable aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146375. [PMID: 34030372 DOI: 10.1016/j.scitotenv.2021.146375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Bronopol and Detarox® AP are broad spectrum antimicrobial biocides of growing interest for the aquaculture sector. While their effectiveness against aquatic pathogens has been demonstrated, toxicity data on wild or farmed species are still lacking, as is information on their potential environmental risk for aquatic ecosystems. With this study, we assessed the acute and sublethal toxicity of Bronopol and Detarox® AP in the freshwater bivalve Sinanodonta woodiana and their theoretical risk for aquatic ecosystem. The 96-h median lethal concentration (LC50) was determined using the acute toxicity test, while for the sublethal toxicity test the bivalves were exposed to two concentrations for 14 days of Bronopol (2.5 and 50 mg/L) and Detarox® AP (1.11 and 22.26 mg/L) followed by a 14-day withdrawal period. Biocide-mediated oxidative processes were investigated via a panel of oxidative stress biomarkers (malondialdehyde, superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase). Theoretical environmental risk assessment of both biocides, with predicted concentration of no effect (PNEC), expected theoretical concentration (TEC) in the environment, and risk quotient (RQ) was performed. TEC was calculated using a model based on the size of the aquaculture facility and the receiving basin, the estimated quantity of biocide dissolved in water, and published data on biocide stability in water. Although the LC50 was higher for Bronopol (2440 mg/L) than for Detarox® AP (126 mg/L), fluctuations in oxidative stress biomarkers levels indicated that both biocides exert a slight oxidative pressure on S. woodiana. Theoretical environmental risk assessment suggested a muted risk with Detarox® AP and greater eco-sustainability compared to Bronopol.
Collapse
Affiliation(s)
- Gabriele Magara
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Akkarasiri Sangsawang
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Department of Aquaculture, Faculty of Fisheries, Kasetsart University. Bangkok 10900, Thailand
| | - Paolo Pastorino
- Veterinary Medical Research Institute for Piedmont, Liguria and Aosta Valley, Torino, Italy.
| | - Sara Bellezza Oddon
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco (TO), Italy
| | - Barbara Caldaroni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Vasco Menconi
- Veterinary Medical Research Institute for Piedmont, Liguria and Aosta Valley, Torino, Italy
| | - Uthaiwan Kovitvadhi
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco (TO), Italy; Institute of Science of Food Production, National Research Council, Grugliasco (TO), Italy
| | - Daniela Meloni
- Veterinary Medical Research Institute for Piedmont, Liguria and Aosta Valley, Torino, Italy
| | | | - Marino Prearo
- Veterinary Medical Research Institute for Piedmont, Liguria and Aosta Valley, Torino, Italy
| | - Ermanno Federici
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Antonia Concetta Elia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE. A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules 2021; 26:3813. [PMID: 34206669 PMCID: PMC8270347 DOI: 10.3390/molecules26133813] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/07/2022] Open
Abstract
The history of colour is fascinating from a social and artistic viewpoint because it shows the way; use; and importance acquired. The use of colours date back to the Stone Age (the first news of cave paintings); colour has contributed to the social and symbolic development of civilizations. Colour has been associated with hierarchy; power and leadership in some of them. The advent of synthetic dyes has revolutionized the colour industry; and due to their low cost; their use has spread to different industrial sectors. Although the percentage of coloured wastewater discharged by the textile; food; pharmaceutical; cosmetic; and paper industries; among other productive areas; are unknown; the toxic effect and ecological implications of this discharged into water bodies are harmful. This review briefly shows the social and artistic history surrounding the discovery and use of natural and synthetic dyes. We summarise the environmental impact caused by the discharge of untreated or poorly treated coloured wastewater to water bodies; which has led to physical; chemical and biological treatments to reduce the colour units so as important physicochemical parameters. We also focus on laccase utility (EC 1.10.3.2), for discolouration enzymatic treatment of coloured wastewater, before its discharge into water bodies. Laccases (p-diphenol: oxidoreductase dioxide) are multicopper oxidoreductase enzymes widely distributed in plants, insects, bacteria, and fungi. Fungal laccases have employed for wastewater colour removal due to their high redox potential. This review includes an analysis of the stability of laccases, the factors that influence production at high scales to achieve discolouration of high volumes of contaminated wastewater, the biotechnological impact of laccases, and the degradation routes that some dyes may follow when using the laccase for colour removal.
Collapse
Affiliation(s)
- Leidy D. Ardila-Leal
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Raúl A. Poutou-Piñales
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Aura M. Pedroza-Rodríguez
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Microbiología Ambiental y de Suelos, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Balkys E. Quevedo-Hidalgo
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Aplicada, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| |
Collapse
|