1
|
Shi J, Qian W, Zhou Z, Jin Z. Response of bacterial communities in desert grassland soil profiles to acid mine drainage pollution. CHEMOSPHERE 2024; 369:143831. [PMID: 39608651 DOI: 10.1016/j.chemosphere.2024.143831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
Acid mine drainage (AMD) causes serious environmental pollution, which imposes stresses on soil ecosystems. Therefore, it is critical to study the responses of soil bacterial communities to AMD pollution in ecologically fragile desert grasslands. Here, the bacterial community composition, structure, and assembly processes in vertical soil profiles of an AMD contaminated desert grassland were explored using 16S rRNA high-throughput sequencing. The results showed that the surface layers of the profiles exhibited lower pH and higher heavy metals (HMs) content due to AMD influence. The AMD contamination led to reduced bacterial diversity in the surface soil layer of the profiles and significantly changed the bacterial community composition and structure. Gradients in pH, TK, TN, and HMs were the main factors driving bacterial community variability. In contrast to the uncontaminated profile, deterministic processes were important in shaping soil bacterial community in the AMD contaminated profiles. These findings will enhance understanding about the responses of soil bacteria in desert grassland soil to the environmental changes caused by AMD contamination and will improve the remediation of AMD contaminated soil.
Collapse
Affiliation(s)
- Jianfei Shi
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science/National Desert-Oasis Ecology Construction Engineering Technology Research Center, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Wenting Qian
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Public Technology Service Center, Urumqi, 830011, China
| | - Zhibin Zhou
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science/National Desert-Oasis Ecology Construction Engineering Technology Research Center, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhengzhong Jin
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science/National Desert-Oasis Ecology Construction Engineering Technology Research Center, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China; Taklimakan Desert Ecosystem Field Observation and Research Station of Xinjiang, Urumqi, 830011, China.
| |
Collapse
|
2
|
Gao SM, Wang P, Li Q, Shu WS, Tang LY, Lin ZL, Li JT, Huang LN. Deciphering microbial metabolic interactions and their implications for community dynamics in acid mine drainage sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135478. [PMID: 39137550 DOI: 10.1016/j.jhazmat.2024.135478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/28/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The microbially-mediated reduction processes have potential for the bioremediation of acid mine drainage (AMD), which represents a worldwide environment problem. However, we know little about the microbial interactions in anaerobic AMD sediments. Here we utilized genome-resolved metagenomics to uncover the nature of cooperative and competitive metabolic interactions in 90 AMD sediments across Southern China. Our analyses recovered well-represented prokaryotic communities through the reconstruction of 2625 population genomes. Functional analyses of these genomes revealed extensive metabolic handoffs which occurred more frequently in nitrogen metabolism than in sulfur metabolism, as well as stable functional redundancy across sediments resulting from populations with low genomic relatedness. Genome-scale metabolic modeling showed that metabolic competition promoted microbial co-occurrence relationships, suggesting that community assembly was dominated by habitat filtering in sediments. Notably, communities colonizing more extreme conditions tended to be highly competitive, which was typically accompanied with increased network complexity but decreased stability of the microbiome. Finally, our results demonstrated that heterotrophic Thermoplasmatota associated with ferric iron and sulfate reduction contributed most to the elevated levels of competition. Our study shed light on the cooperative and competitive metabolisms of microbiome in the hazardous AMD sediments, which may provide preliminary clues for the AMD bioremediation in the future.
Collapse
Affiliation(s)
- Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Pandeng Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ling-Yun Tang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Zhi-Liang Lin
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jin-Tian Li
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
3
|
Shi J, Qian W, Zhou Z, Jin Z, Gao X, Fan J, Wang X. Effects of acid mine drainage and sediment contamination on soil bacterial communities, interaction patterns, and functions in alkaline desert grassland. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134832. [PMID: 38852245 DOI: 10.1016/j.jhazmat.2024.134832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Acid mine drainage and sediments (AMD-Sed) contamination pose serious ecological and environmental problems. This study investigated the geochemical parameters and bacterial communities in the sediment layer (A) and buried soil layer (B) of desert grassland contaminated with AMD-Sed and compared them to an uncontaminated control soil layer (CK). The results showed that soil pH was significantly lower and iron, sulfur, and electroconductivity levels were significantly higher in the B layer compared to CK. A and B were dominated by Proteobacteria and Actinobacteriota, while CK was dominated by Firmicutes and Bacteroidota. The pH, Fe, S, and potentially toxic elements (PTEs) gradients were key influences on bacterial community variability, with AMD contamination characterization factors (pH, Fe, and S) explaining 48.6 % of bacterial community variation. A bacterial co-occurrence network analysis showed that AMD-Sed contamination significantly affected topological properties, reduced network complexity and stability, and increased the vulnerability of desert grassland soil ecosystems. In addition, AMD-Sed contamination reduced C/N-cycle functioning in B, but increased S-cycle functioning. The results highlight the effects of AMD-Sed contamination on soil bacterial communities and ecological functions in desert grassland and provide a reference basis for the management and restoration of desert grassland ecosystems in their later stages.
Collapse
Affiliation(s)
- Jianfei Shi
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China
| | - Wenting Qian
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; Public Technology Service Center, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
| | - Zhibin Zhou
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhengzhong Jin
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Xin Gao
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jinglong Fan
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xin Wang
- Shaanxi Forestry Survey and Planning Institute, Xi'an, Shaanxi 710082, China
| |
Collapse
|
4
|
Li M, Yao J, Wang Y, Sunahara G, Duran R, Liu J, Liu B, Liu H, Ma B, Li H, Pang W, Cao Y. Contrasting response strategies of sulfate-reducing bacteria in a microbial consortium to As 3+ stress under anaerobic and aerobic environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133052. [PMID: 38056257 DOI: 10.1016/j.jhazmat.2023.133052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/05/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
The sulfate-reducing efficiency of sulfate-reducing bacteria (SRB) is strongly influenced by the presence of oxygen, but little is known about the oxygen tolerance mechanism of SRB and the effect of oxygen on the metalliferous immobilization by SRB. The performance evaluation, identification of bioprecipitates, and microbial and metabolic process analyses were used here to investigate the As3+ immobilization mechanisms and survival strategies of the SRB1 consortium under different oxygen-containing environments. Results indicated that the sulfate reduction efficiency was significantly decreased under aerobic (47.37%) compared with anaerobic conditions (66.72%). SEM analysis showed that under anaerobic and aerobic conditions, the morphologies of mineral particles were different, whereas XRD and XPS analyses showed that the most of As3+ bioprecipitates under both conditions were arsenic minerals such as AsS and As4S4. The abundances of Clostridium_sensu_stricto_1, Desulfovibrio, and Thiomonas anaerobic bacteria were significantly higher under anaerobic than aerobic conditions, whereas the aerobic Pseudomonas showed an opposite trend. Network analysis revealed that Desulfovibrio was positively correlated with Pseudomonas. Metabolic process analysis confirmed that under aerobic conditions the SRB1 consortium generated additional extracellular polymeric substances (rich in functionalities such as Fe-O, SO, CO, and -OH) and the anti-oxidative enzyme superoxide dismutase to resist As3+ stress and oxygen toxicity. New insights are provided here into the oxygen tolerance and detoxification mechanism of SRB and provide a basis for the future remediation of heavy metal(loid)-contaminated environments.
Collapse
Affiliation(s)
- Miaomiao Li
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jun Yao
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Yating Wang
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Geoffrey Sunahara
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Robert Duran
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS, 5254 Pau, France
| | - Jianli Liu
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Bang Liu
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China; Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS, 5254 Pau, France
| | - Houquan Liu
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Bo Ma
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Hao Li
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Wancheng Pang
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ying Cao
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
5
|
Hussain F, Kim LH, Kim H, Kim Y, Oh SE, Kim S. Enhanced bioremediation of acid mine-influenced groundwater with micro-sized emulsified corn oil droplets (MOD) and sulfate-reducing bacteria (Desulfovibrio vulgaris) in a microcosm assay. CHEMOSPHERE 2024; 352:141403. [PMID: 38368967 DOI: 10.1016/j.chemosphere.2024.141403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
High concentrations of metals and sulfates in acid mine drainage (AMD) are the cause of the severe environmental hazard that mining operations pose to the surrounding ecosystem. Little study has been conducted on the cost-effective biological process for treating high AMD. The current research investigated the potential of the proposed carbon source and sulfate reduction bacteria (SRB) culture in achieving the bioremediation of sulfate and heavy metals. This work uses individual and combinatorial bioaugmentation and bio-stimulation methods to bioremediate acid-mine-influenced groundwater in batch microcosm experiments. Bioaugmentation and bio-stimulation methods included pure culture SRB (Desulfovibrio vulgaris) and microsized oil droplet (MOD) by emulsifying corn oil. The research tested natural attenuation (T 1), bioaugmentation (T2), biostimulation (T3), and bioaugmentation plus biostimulation (T4) for AM-contaminated groundwater remediation. Bioaugmentation and bio-stimulation showed the greatest sulfate reduction (75.3%) and metal removal (95-99%). Due to carbon supply scarcity, T1 and T2 demonstrated 15.7% and 27.8% sulfate reduction activities. Acetate concentrations in T3 and T4 increased bacterial activity by providing carbon sources. Metal bio-precipitation was substantially linked with sulfate reduction and cell growth. SEM-EDS study of precipitates in T3 and T4 microcosm spectra indicated peaks for S, Cd, Mn, Cu, Zn, and Fe, indicating metal-sulfide association for metal removal precipitates. The MOD provided a constant carbon source for indigenous bacteria, while Desulfovibrio vulgaris increased biogenic sulfide synthesis for heavy metal removal.
Collapse
Affiliation(s)
- Fida Hussain
- Research Institute for Advanced Industrial Technology, Korea University, 2511 Sejong-ro, Sejong city, 30019, Republic of Korea; Department of Environmental Science, University of Lahore, Lahore, 545590, Pakistan; Department of biological Environment, Kangwon National University, Chuncheon-si, 24341, Republic of Korea
| | - Lan Hee Kim
- Research Institute for Advanced Industrial Technology, Korea University, 2511 Sejong-ro, Sejong city, 30019, Republic of Korea
| | - Huiyun Kim
- Department of Environmental Engineering, Korea University, 2511 Sejong-ro, Sejong city, 30019, Republic of Korea
| | - Young Kim
- Department of Environmental Engineering, Korea University, 2511 Sejong-ro, Sejong city, 30019, Republic of Korea
| | - Sang-Eun Oh
- Department of biological Environment, Kangwon National University, Chuncheon-si, 24341, Republic of Korea
| | - Sungpyo Kim
- Research Institute for Advanced Industrial Technology, Korea University, 2511 Sejong-ro, Sejong city, 30019, Republic of Korea; Department of Environmental Engineering, Korea University, 2511 Sejong-ro, Sejong city, 30019, Republic of Korea.
| |
Collapse
|
6
|
Sajjad W, Ilahi N, Kang S, Bahadur A, Banerjee A, Zada S, Ali B, Rafiq M, Zheng G. Microbial diversity and community structure dynamics in acid mine drainage: Acidic fire with dissolved heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168635. [PMID: 37981161 DOI: 10.1016/j.scitotenv.2023.168635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Acid mine drainage (AMD) is one of the leading causes of environmental pollution and is linked to public health and ecological consequences. Microbes-mineral interaction generates AMD, but microorganisms can also remedy AMD pollution. Exploring the microbial response to AMD effluents may reveal survival strategies in extreme ecosystems. Three distinct sites across a mine (inside the mine, the entrance of the mine, and outside) were selected to study their heavy metal concentrations due to significant variations in pH and physicochemical characteristics, and high-throughput sequencing was carried out to investigate the microbial diversity. The metal and ion concentrations followed the order SO42-, Fe, Cu, Zn, Mg, Pb, Co, Cr, and Ni from highest to lowest, respectively. Maximum sequences were allocated to Proteobacteria and Firmicutes. Among archaea, the abundance of Thaumarchaeota and Euryarchaeota was higher outside of mine. Most of the genera (23.12 %) were unclassified and unknown. The average OTUs (operational taxonomic units) were significantly higher outside the mine; however, diversity indices were not significantly different across the mine sites. Hierarchical clustering of selective genera and nMDS ordination of OTUs displayed greater segregation resolution inside and outside of mine, whereas the entrance samples clustered with greater similarity. Heterogeneous selection might be the main driver of community composition outside the mine, whereas stochastic processes became prominent inside the mine. However, the ANOSIM test shows a relatively even distribution of community composition within and between the groups. Microbial phyla showed both positive and negative correlations with physicochemical factors. A greater number of biomarkers were reported outside of the mine. Predictive functional investigation revealed the existence of putative degradative, metabolic, and biosynthetic pathways. This study presents a rare dataset in our understanding of microbial diversity and distribution as shaped by the ecological gradient and potential novelty in phylogenetic/taxonomic diversity in AMD, with potential biotechnological applications.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Nikhat Ilahi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Abhishek Banerjee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Sahib Zada
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan.
| | - Guodong Zheng
- School of Environmental Studies, China University Geosciences, Wuhan 430074, China.
| |
Collapse
|
7
|
Nancucheo I, Segura A, Hernández P, Canales C, Benito N, Arranz A, Romero-Sáez M, Recio-Sánchez G. Bio-recovery of CuS nanoparticles from the treatment of acid mine drainage with potential photocatalytic and antibacterial applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166194. [PMID: 37567303 DOI: 10.1016/j.scitotenv.2023.166194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
In the present work, CuS nanoparticles were biorecovered from a real acid mine drainage (AMD) and its photocatalytic and antibacterial activities were studied. CuS were formed by delivering biogenic H2S produced by a continuous sulfidogenic bioreactor to an off-line vessel containing the AMD. The main physico-chemical properties of CuS nanoparticles were analyzed by UV-vis spectroscopy, TEM, FE-SEM, XRD and XPS. Moreover, its photocatalytic activity on the photodegradation of organic dyes in water and its antibacterial activity against several bacterial strains were studied and compared with CuS nanoparticles synthetized from a CuSO4 aqueous solution based on the same synthesis method. CuS nanoparticles from the real AMD showed similar physico-chemical properties and photocatalytic and antibacterial activities in comparison to CuS nanoparticles formed with the copper solutions. These results open the way to recover valorous CuS nanoparticles from AMD with potential industrial applications using a metal bioremediation process based on sulfidogenic bioreactors.
Collapse
Affiliation(s)
- Iván Nancucheo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1547, Concepción, Chile
| | - Aileen Segura
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1547, Concepción, Chile
| | - Pedro Hernández
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1547, Concepción, Chile
| | - Christian Canales
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1547, Concepción, Chile
| | - Noelia Benito
- Departamento de Física, Universidad de Concepción, Concepción, Chile
| | - Antonio Arranz
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Manuel Romero-Sáez
- Grupo Química Básica, Aplicada y Ambiente-ALQUIMIA, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín, Colombia
| | - Gonzalo Recio-Sánchez
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1547, Concepción, Chile.
| |
Collapse
|
8
|
Wu ZH, Yang XD, Huang LY, Li SL, Xia FY, Qiu YZ, Yi XZ, Jia P, Liao B, Liang JL, Shu WS, Li JT. In situ enrichment of sulphate-reducing microbial communities with different carbon sources stimulating the acid mine drainage sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165584. [PMID: 37467988 DOI: 10.1016/j.scitotenv.2023.165584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
The applications of sulphate-reducing microorganisms (SRMs) in acid mine drainage (AMD) treatment systems have received extensive attention due to their ability to reduce sulphate and stabilize metal(loid)s. Despite great phylogenetic diversity of SRMs, only a few have been used in AMD treatment bioreactors. In situ enrichment could be an efficient approach to select new effective SRMs for AMD treatment. Here, we performed in situ enrichment of SRMs in highly stratified AMD sediment cores using different kinds of carbon source mixture. The dsrAB (dissimilatory sulfite reductase) genes affiliated with nine phyla (two archaeal and seven bacterial phyla) and 26 genera were enriched. Remarkably, those genes affiliated with Aciduliprofundum and Vulcanisaeta were enriched in situ in AMD-related environments for the first time, and their relative abundances were negatively correlated with pH. Furthermore, 107 dsrAB-containing metagenome-assembled genomes (MAGs) were recovered from metagenomic datasets, with 14 phyla (two archaeal and 12 bacterial phyla) and 15 genera. The relative abundances of MAGs were positively correlated with total carbon and sulphate contents. Our findings expanded the diversity of SRMs that can be enriched in AMD sediment, and revealed the physiochemical properties that might affect the growth of SRMs, which provided guidance for AMD treatment bioreators.
Collapse
Affiliation(s)
- Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Xiao-Dan Yang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Li-Ying Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shi-Lin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Fei-Yun Xia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Yong-Zhi Qiu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Xin-Zhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| |
Collapse
|
9
|
Elizabeth George S, Wan Y. Microbial functionalities and immobilization of environmental lead: Biogeochemical and molecular mechanisms and implications for bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131738. [PMID: 37285788 PMCID: PMC11249206 DOI: 10.1016/j.jhazmat.2023.131738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
The increasing environmental and human health concerns about lead in the environment have stimulated scientists to search for microbial processes as innovative bioremediation strategies for a suite of different contaminated media. In this paper, we provide a compressive synthesis of existing research on microbial mediated biogeochemical processes that transform lead into recalcitrant precipitates of phosphate, sulfide, and carbonate, in a genetic, metabolic, and systematics context as they relate to application in both laboratory and field immobilization of environmental lead. Specifically, we focus on microbial functionalities of phosphate solubilization, sulfate reduction, and carbonate synthesis related to their respective mechanisms that immobilize lead through biomineralization and biosorption. The contributions of specific microbes, both single isolates or consortia, to actual or potential applications in environmental remediation are discussed. While many of the approaches are successful under carefully controlled laboratory conditions, field application requires optimization for a host of variables, including microbial competitiveness, soil physical and chemical parameters, metal concentrations, and co-contaminants. This review challenges the reader to consider bioremediation approaches that maximize microbial competitiveness, metabolism, and the associated molecular mechanisms for future engineering applications. Ultimately, we outline important research directions to bridge future scientific research activities with practical applications for bioremediation of lead and other toxic metals in environmental systems.
Collapse
Affiliation(s)
- S Elizabeth George
- US EPA Office of Research and Development, Center for Environmental Measurement and Modeling, Gulf Ecosystem Measurement and Modeling Division, One Sabine Island Drive, Gulf Breeze, FL 32561, USA
| | - Yongshan Wan
- US EPA Office of Research and Development, Center for Environmental Measurement and Modeling, Gulf Ecosystem Measurement and Modeling Division, One Sabine Island Drive, Gulf Breeze, FL 32561, USA.
| |
Collapse
|
10
|
Wang M, Wang X, Zhou S, Chen Z, Chen M, Feng S, Li J, Shu W, Cao B. Strong succession in prokaryotic association networks and community assembly mechanisms in an acid mine drainage-impacted riverine ecosystem. WATER RESEARCH 2023; 243:120343. [PMID: 37482007 DOI: 10.1016/j.watres.2023.120343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Acid mine drainage (AMD) serves as an ideal model system for investigating microbial ecology, interaction, and assembly mechanism in natural environments. While previous studies have explored the structure and function of microbial communities in AMD, the succession patterns of microbial association networks and underlying assembly mechanisms during natural attenuation processes remain elusive. Here, we investigated prokaryotic microbial diversity and community assembly along an AMD-impacted river, from the extremely acidic, heavily polluted headwaters to the nearly neutral downstream sites. Microbial diversity was increased along the river, and microbial community composition shifted from acidophile-dominated to freshwater taxa-dominated communities. The complexity and relative modularity of the microbial networks were also increased, indicating greater network stability during succession. Deterministic processes, including abiotic selection of pH and high contents of sulfur and iron, governed community assembly in the headwaters. Although the stochasticity ratio was increased downstream, manganese content, microbial negative cohesion, and relative modularity played important roles in shaping microbial community structure. Overall, this study provides valuable insights into the ecological processes that govern microbial community succession in AMD-impacted riverine ecosystems. These findings have important implications for in-situ remediation of AMD contamination.
Collapse
Affiliation(s)
- Mengmeng Wang
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaonan Wang
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sining Zhou
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zifeng Chen
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Mengyun Chen
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shiwei Feng
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jintian Li
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wensheng Shu
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Baichuan Cao
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
11
|
Zhang P, Yang F, Dai W, Wei C. Variation of sulfate reducing bacteria communities in ionic rare earth tailings and the potential of a single cadmium resistant strain in bioremediation. CHEMOSPHERE 2023; 328:138615. [PMID: 37023895 DOI: 10.1016/j.chemosphere.2023.138615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Heap leaching ionic rare earth tailings might be prone to nourish sulfate reducing bacteria (SRB), but the SRB community in terrestrial ecosystems, such as tailings, has never been studied. This work was conducted to investigate the SRB communities in revegetated and bare tailings in Dingnan county, Jiangxi province, China, incorporating with indoor experiments to isolate SRB strain in bioremediation of Cd contamination. Significant increases in richness, accompanied by reductions in evenness and diversity, were found in the SRB community in revegetated tailings compared to bare tailings. At genus taxonomic level, two distinct dominant SRB were observed in samples from bare and revegetated tailings, with Desulfovibrio dominating in the former and Streptomyces dominating in the latter, respectively. A single SRB strain was screened out from the bare tailings (REO-01). The cell of REO-01 was rod-shaped and belonged to family Desulfuricans and genus Desulfovibrio. The Cd resistance of the strain was further examined, no changes in cell morphology were observed at 0.05 mM Cd, additionally, the atomic ratios of S, Cd, and Fe changed with the increase in Cd dosages, indicating FeS and CdS were produced simultaneously, XRD results further confirmed the production changed gradually from FeS to CdS with increasing Cd dosages from 0.05 to 0.2 mM. FT-IR analysis showed that functional groups containing amide, polysaccharide glycosidic linkage, hydroxyl, carboxy, methyl, phosphodiesters and sulfhydryl groups in extracellular polymeric substances (EPS) of REO-01 might have affinity with Cd. This study demonstrated the potential of a single SRB strain isolated from ionic rare earth tailings in bioremediation of Cd contamination.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fen Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weijie Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoyang Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
12
|
Yang Z, Ji N, Huang J, Wang J, Drewniak L, Yin H, Hu C, Zhan Y, Yang Z, Zeng L, Liu Z. Decreasing lactate input for cost-effective sulfidogenic metal removal in sulfate-rich effluents: Mechanistic insights from (bio)chemical kinetics to microbiome response. CHEMOSPHERE 2023; 330:138662. [PMID: 37044147 DOI: 10.1016/j.chemosphere.2023.138662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/14/2023]
Abstract
High material cost is the biggest barrier for the industrial use of low-molecular-weight organics (i.e. lactate) as external carbon and electron source for sulfidogenic metal removal in sulfate-rich effluents. This study aims to provide mechanistic evidence from kinetics to microbiome analysis by batch modeling to support the possibility of decreasing the lactate input to achieve cost-effective application. The results showed that gradient COD/SO42- ratios at a low level had promising treatment performance, reaching neutralized pH with nearly total elimination of COD (91%-99%), SO42- (85%-99%), metals (80%-99%) including Cu, Zn, and Mn. First-order kinetics exhibited the best fit (R2 = 0.81-0.98) to (bio)chemical reactions, and the simulation results revealed that higher COD/SO42- accelerated the reaction rate of SO42- and COD but not suitable to that of metals. On the other hand, we found that the decreasing COD/SO42- ratio increased average path distance but decreased clustering coefficient and heterogeneity in microbial interaction network. Genetic prediction found that the sulfate-reduction-related functions were significantly correlated with the reaction kinetics changed with COD/SO42- ratios. Our study, combining reaction kinetics with microbiome analysis, demonstrates that the use of lactate as a carbon source under low COD/SO42- ratios entails significant efficiency of metal removal in sulfate-rich effluent using SRB-based technology. However, further studies should be carried out, including parameter-driven optimization and life cycle assessments are necessary, for its practical application.
Collapse
Affiliation(s)
- Zhendong Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Buliding Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Ne Ji
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Jin Huang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Buliding Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Jing Wang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Buliding Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Lukasz Drewniak
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Cheng Hu
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Yazhi Zhan
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Zhaoyue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Li Zeng
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Buliding Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
13
|
Jiao Y, An L, Wang W, Ma J, Wu C, Wu X. Microbial communities and their roles in the Cenozoic sulfurous oil reservoirs in the Southwestern Qaidam Basin, Western China. Sci Rep 2023; 13:7988. [PMID: 37198206 PMCID: PMC10192311 DOI: 10.1038/s41598-023-33978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023] Open
Abstract
The latest discovery of sulfurous natural gas marked a breakthrough in the Cenozoic natural gas exploration in the southwestern margin of Qaidam Basin. The 16S rRNA analyses were performed on the crude oil samples from H2S-rich reservoirs in the Yuejin, Shizigou and Huatugou profiles, to understand the sulfurous gas origin, which was also integrated with carbon and hydrogen isotopes of alkane and sulfur isotopes of H2S collected from the Yingxiongling Area. Results show that the microorganisms in samples can survive in the hypersaline reservoirs, and can be classified into multiple phyla, including Proteobacteria, Planctomycetes, Firmicutes, Bacteroidetes, and Haloanaerobiaeota. Methanogens are abundant in all of the three profiles, while sulfate-reducing bacteria are abundant in Yuejin and Huatugou profiles, contributing to the methane and H2S components in the natural gas. The carbon, hydrogen and sulfur isotopes of sulfurous natural gas in the Yingxiongling Area show that the natural gas is a mixture of coal-type gas and oil-type gas, which was primarily derived from thermal degradation, and natural gas from the Yuejin and Huatugou profiles also originated from biodegradation. The isotopic analysis agrees well with the 16S rRNA results, i.e., H2S-rich natural gas from the Cenozoic reservoirs in the southwest margin of the Qaidam Basin was primarily of thermal genesis, with microbial genesis of secondary importance.
Collapse
Affiliation(s)
- Yue Jiao
- The Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Science, Peking University, Beijing, 100871, China
| | - Liyun An
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Wei Wang
- The No. 1 Oil Extraction Plant, Qinghai Oilfield Company, PetroChina, Haixi, 817000, Qinghai, China
| | - Jian Ma
- The Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Science, Peking University, Beijing, 100871, China
| | - Chaodong Wu
- The Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Science, Peking University, Beijing, 100871, China.
| | - Xiaolei Wu
- College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
14
|
Gao H, Wang C, Chen J, Wang P, Zhang J, Zhang B, Wang R, Wu C. Enhancement effects of decabromodiphenyl ether on microbial sulfate reduction in eutrophic lake sediments: A study on sulfate-reducing bacteria using dsrA and dsrB amplicon sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157073. [PMID: 35780888 DOI: 10.1016/j.scitotenv.2022.157073] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Although sulfate (SO42-) reduction by sulfate-reducing bacteria (SRB) is an important sulfur cycling processes, little is known about how the persistent organic pollutants affect the SO42- reduction process in the eutrophic lake sediments. Here, we carried out a 120-day microcosm experiment to explore the effects of decabromodiphenyl ether (BDE-209) on SO42- reduction mediated by SRB in sediment collected from Taihu Lake, a typical eutrophic lake in China. The results showed that BDE-209 contamination significantly enhanced the activity of dissimilatory sulfite reductase (DSR) (r = 0.83), which led to an increased concentration of sulfide produced by SO42- reduction. This stimulatory effect of BDE-209 on DSR activity was closely related to variations in the dsrA- and dsrB-type SRB communities. The abundances and diversities of the dsrA- and dsrB-containing SRB increased and their community composition varied in response to BDE-209 contamination. The gene copies (r = 0.72), Chao 1 (r = 0.50), Shannon (r = 0.55), and Simpson (r = 0.70) indices of dsrB-containing SRB was positively correlated with BDE-209 contamination. Co-occurrence network analysis revealed that network complexity, connectivity, and the interspecific cooperative relationship in SRB were strengthened by BDE-209 contamination. The keystone species identified in the SRB community mainly belonged to the genera Candidatus Sulfopaludibacter for the dsrA-containing SRB and Desulfatiglans for the dsrB-containing SRB, and their relative abundances were positively correlated with DSR activity in the sediment. The relative abundance of the keystone species and SRB diversity were important microbial factors directly contributing to the variations in DSR activity based on structural equation modeling analysis. Notably, the results of abundance, community structure, and interspecific relationships showed that the dsrB-containing SRB may be more sensitive to the BDE-209 contamination than the dsrA-containing SRB. These results will help us understand the effects of BDE-209 on microbial sulfate reduction in eutrophic lakes.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Bo Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Cheng Wu
- Kunming Engineering Corporation Limited, Power China, 115 People's East Road, Kunming 650051, PR China
| |
Collapse
|
15
|
Zhu X, Chen L, Pan H, Wang L, Zhang X, Wang D. Diversity and biogenesis contribution of sulfate-reducing bacteria in arsenic-contaminated soils from realgar deposits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31110-31120. [PMID: 35001286 DOI: 10.1007/s11356-022-18595-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Microbial sulfate reduction, a vital mechanism for microorganisms living in anaerobic, sulfate-rich environments, is an essential aspect of the sulfur biogeochemical cycle. However, there has been no detailed investigation of the diversity and biogenesis contribution of sulfate-reducing bacteria in arsenic-contaminated soils from realgar deposits. To elucidate this issue, soil samples from representative abandoned realgar deposits were collected. Microcosm assays illustrated that all three samples (2-1, 2-2, and 2-3) displayed efficient sulfate and As(V)-respiring activities. Furthermore, a total of 28 novel sequence variants of dissimilatory sulfite reductase genes and 2 new families of dsrAB genes were successfully identified. A novel dissimilatory sulfate-reducing bacterium, Desulfotomaculum sp. JL1, was also isolated from soils, and can efficiently respiratory reduce As(V) and sulfate in 4 and 5 days, respectively. JL1 can promote the generation of yellow precipitates in the presence of multiple electron acceptors (both contain sulfate and As(V) in the cultures), which indicated the biogenesis contribution of sulfate-reducing bacteria to the realgar mine. Moreover, this area had unique microbial communities; the most abundant populations belonged to the phyla Proteobacteria, Chloroflexi, and Acidobacteriota, which were attributed to the unique geochemistry characteristics, such as total organic carbon, total As, NO3-, and SO42-. The results of this study provide new insight into the diversity and biogenesis contributions of sulfate-reducing bacteria in arsenic-contaminated soils from realgar deposits.
Collapse
Affiliation(s)
- Xianbin Zhu
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, 430100, Wuhan, Hubei, People's Republic of China
- College of Resources and Environment, Yangtze University, 430100, Wuhan, Hubei, People's Republic of China
| | - Liyuan Chen
- College of Resources and Environment, Yangtze University, 430100, Wuhan, Hubei, People's Republic of China
| | - Hongzhong Pan
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, 430100, Wuhan, Hubei, People's Republic of China.
- College of Resources and Environment, Yangtze University, 430100, Wuhan, Hubei, People's Republic of China.
| | - Lei Wang
- College of Resources and Environment, Yangtze University, 430100, Wuhan, Hubei, People's Republic of China
| | - Xun Zhang
- College of Resources and Environment, Yangtze University, 430100, Wuhan, Hubei, People's Republic of China
| | - Dan Wang
- College of Resources and Environment, Yangtze University, 430100, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
16
|
Dynamics of Microbial Communities during the Removal of Copper and Zinc in a Sulfate-Reducing Bioreactor with a Limestone Pre-Column System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031484. [PMID: 35162506 PMCID: PMC8835105 DOI: 10.3390/ijerph19031484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022]
Abstract
Biological treatment using sulfate-reducing bacteria (SRB) is a promising approach to remediate acid rock drainage (ARD). Our purpose was to assess the performance of a sequential system consisting of a limestone bed filter followed by a sulfate-reducing bioreactor treating synthetic ARD for 375 days and to evaluate changes in microbial composition. The treatment system was effective in increasing the pH of the ARD from 2.7 to 7.5 and removed total Cu(II) and Zn(II) concentrations by up to 99.8% and 99.9%, respectively. The presence of sulfate in ARD promoted sulfidogenesis and changed the diversity and structure of the microbial communities. Methansarcina spp. was the most abundant amplicon sequence variant (ASV); however, methane production was not detected. Biodiversity indexes decreased over time with the bioreactor operation, whereas SRB abundance remained stable. Desulfobacteraceae, Desulfocurvus, Desulfobulbaceae and Desulfovibrio became more abundant, while Desulfuromonadales, Desulfotomaculum and Desulfobacca decreased. Geobacter and Syntrophobacter were enriched with bioreactor operation time. At the beginning, ASVs with relative abundance <2% represented 65% of the microbial community and 21% at the end of the study period. Thus, the results show that the microbial community gradually lost diversity while the treatment system was highly efficient in remediating ARD.
Collapse
|
17
|
Fischer S, Jarsjö J, Rosqvist G, Mörth CM. Catchment-scale microbial sulfate reduction (MSR) of acid mine drainage (AMD) revealed by sulfur isotopes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118478. [PMID: 34752789 DOI: 10.1016/j.envpol.2021.118478] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Laboratory experiments and point observations, for instance in wetlands, have shown evidence that microbial sulfate reduction (MSR) can lower sulfate and toxic metal concentrations in acid mine drainage (AMD). We here hypothesize that MSR can impact the fate of AMD in entire catchments. To test this, we developed a sulfur isotope fractionation and mass-balance method, and applied it at multiple locations in the catchment of an abandoned copper mine (Nautanen, northern Sweden). Results showed that MSR caused considerable, catchment-scale immobilization of sulfur corresponding to a retention of 27 ± 15% under unfrozen conditions in the summer season, with local values ranging between 13 ± 10% and 53 ± 18%. Present evidence of extensive MSR in Nautanen, together with previous evidence of local MSR occurring under many different conditions, suggest that field-scale MSR is most likely important also at other AMD sites, where retention of AMD may be enhanced through nature-based solutions. More generally, the developed isotope fractionation analysis scheme provides a relatively simple tool for quantification of spatio-temporal trends in MSR, answering to the emerging need of pollution control from cumulative anthropogenic pressures in the landscape, where strategies taking advantage of MSR can provide viable options.
Collapse
Affiliation(s)
- Sandra Fischer
- Department of Physical Geography and the Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Jerker Jarsjö
- Department of Physical Geography and the Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Gunhild Rosqvist
- Department of Physical Geography and the Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Carl-Magnus Mörth
- Department of Geological Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
18
|
She Z, Pan X, Wang J, Shao R, Wang G, Wang S, Yue Z. Vertical environmental gradient drives prokaryotic microbial community assembly and species coexistence in a stratified acid mine drainage lake. WATER RESEARCH 2021; 206:117739. [PMID: 34653798 DOI: 10.1016/j.watres.2021.117739] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Acid mine drainage (AMD) lakes are typical hydrologic features caused by open pit mining and represent extreme ecosystems and environmental challenges. Little is known about microbial distribution and community assembly in AMD lakes, especially in deep layers. Here, we investigated prokaryotic microbial diversity and community assembly along a depth profile in a stratified AMD lake using 16S rRNA gene sequencing combined with multivariate ecological and statistical methods. The water column in the AMD lake exhibited tight geochemical gradients, with more acidic surface water. Coupled with vertical hydrochemical variations, prokaryotic microbial community structure changed significantly, and was accompanied by increased diversity with depth. In the surface water, heterogeneous selection was the most important assembly process, whereas stochastic processes gained importance with depth. Meanwhile, microbial co-occurrences, especially positive interactions, were more frequent in the stressful surface water with reduced network modularity and keystone taxa. The pH was identified as the key driver of microbial diversity and community assembly along the vertical profile based on random forest analysis. Taken together, environmental effects dominated by acid stress drove the community assembly and species coexistence that underpinned the spatial scaling patterns of AMD microbiota in the lake. These findings demonstrate the distinct heterogeneity of local prokaryotic microbial community in AMD lake, and provide new insights into the mechanism to maintain microbial diversity in extreme acidic environments.
Collapse
Affiliation(s)
- Zhixiang She
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xin Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Rui Shao
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Guangcheng Wang
- Nanshan Mining Company Ltd, Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan, Anhui, 243000, China
| | - Shaoping Wang
- Nanshan Mining Company Ltd, Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan, Anhui, 243000, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
19
|
Munyai R, Ogola HJO, Modise DM. Microbial Community Diversity Dynamics in Acid Mine Drainage and Acid Mine Drainage-Polluted Soils: Implication on Mining Water Irrigation Agricultural Sustainability. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.701870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental degradation related to mining-generated acid mine drainage (AMD) is a major global concern, contaminating surface and groundwater sources, including agricultural land. In the last two decades, many developing countries are expanding agricultural productivity in mine-impacted soils to meet food demand for their rapidly growing population. Further, the practice of AMD water (treated or untreated) irrigated agriculture is on the increase, particularly in water-stressed nations around the world. For sustainable agricultural production systems, optimal microbial diversity, and functioning is critical for soil health and plant productivity. Thus, this review presents up-to-date knowledge on the microbial structure and functional dynamics of AMD habitats and AMD-impacted agricultural soils. The long-term effects of AMD water such as soil acidification, heavy metals (HM), iron and sulfate pollution, greatly reduces microbial biomass, richness, and diversity, impairing soil health plant growth and productivity, and impacts food safety negatively. Despite these drawbacks, AMD-impacted habitats are unique ecological niches for novel acidophilic, HM, and sulfate-adapted microbial phylotypes that might be beneficial to optimal plant growth and productivity and bioremediation of polluted agricultural soils. This review has also highlighted the impact active and passive treatment technologies on AMD microbial diversity, further extending the discussion on the interrelated microbial diversity, and beneficial functions such as metal bioremediation, acidity neutralization, symbiotic rhizomicrobiome assembly, and plant growth promotion, sulfates/iron reduction, and biogeochemical N and C recycling under AMD-impacted environment. The significance of sulfur-reducing bacteria (SRB), iron-oxidizing bacteria (FeOB), and plant growth promoting rhizobacteria (PGPRs) as key players in many passive and active systems dedicated to bioremediation and microbe-assisted phytoremediation is also elucidated and discussed. Finally, new perspectives on the need for future studies, integrating meta-omics and process engineering on AMD-impacted microbiomes, key to designing and optimizing of robust active and passive bioremediation of AMD-water before application to agricultural production is proposed.
Collapse
|