1
|
Abd-Elhamid AI, Abu Elgoud EM, Aly HF. Synthesis of Prussian blue-embedded magnetic micro hydrogel for scavenging of cesium from aqueous solutions; Batch and dynamic investigations. Int J Biol Macromol 2024; 254:126864. [PMID: 37703986 DOI: 10.1016/j.ijbiomac.2023.126864] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
A magnetic micro porous structure composite based on alginate and Prussian blue (M-SA-PB) was simply prepared for cesium removal from the aqueous solutions. The gelation and formation of PB proceeded through the same step, which made the PB homogenously distributed and firmly attached to the alginate matrix. The homogenizer was applied to break down the bulky gel structure into micro-ones, and the lyophilizer will provide the porous structure. Batch cesium sorption experiments showed that the adsorption kinetics and isotherms were attributed to the pseudo-second-order model and Langmuir isotherm. Moreover, the Cs-ion is favorably adsorbed on the M-SA-PB composite surface as a monolayer towards Cs, with a maximum adsorption capacity reach of 191.0 mg/g. Furthermore, the M-SA-PB adsorbent showed excellent adsorption selectivity of Cs from multiple-ion solutions. Our work was extended to use the M-SA-PB composite in dynamic cesium sorption. The column studies showed that the removal efficiency of Cs+ increased with increasing bed depth as well as the initial cesium concentration. Finally, as previously mentioned, the M-SA-PB could be considered an excellent Cs+ scavenger employing both batch and dynamic approaches, which makes it a promising adsorbent for practical investigations.
Collapse
Affiliation(s)
- A I Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab 21934, Alexandria, Egypt
| | - E M Abu Elgoud
- Nuclear Fuel Chemistry Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, 13759, Egypt.
| | - H F Aly
- Nuclear Fuel Chemistry Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, 13759, Egypt
| |
Collapse
|
2
|
Lu Y, Lin H, Zhang Y, Dong Y. Highly efficient preferential adsorption of Pb(II) and Cd(II) from aqueous solution using sodium lignosulfonate modified illite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26191-26207. [PMID: 36355240 DOI: 10.1007/s11356-022-23807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
In this study, sodium lignosulfonate modified illite (LS-ILT), an environmentally friendly adsorbent, was prepared by hydrothermal modification. An extensive study of Pb(II) and Cd(II) adsorption behavior and the mechanisms were conducted by evaluating the effects of initial pH value, sorbents dosage, and initial concentration of Pb(II) and Cd(II). Results showed that the adsorption characteristics of Pb(II) and Cd(II) by LS-ILT were well described by quasi-second-order kinetics and the Freundlich model, and the maximum adsorption capacity of Pb(II) and Cd(II) was 42.3 mg/g and 17.0 mg/g, respectively. The optimal application conditions for adsorption equilibrium were the dosage of 4 g/L and reaction pH = 5.5-5.8. The adsorption stability of Pb(II) by LS-ILT was better than that of Cd(II), and most of the existence of coexisting cations had no obvious inhibitory effect on the removal of Pb(II) and Cd(II). Furthermore, the dynamic adsorption results showed that LS-ILT can meet the ultra-low emission standard, and the adsorption capacity could maintain over 50% after four cycles, further providing certain guiding significance for the treatment of wastewater with ultra-low concentrations of heavy metals Pb(II) and Cd(II).
Collapse
Affiliation(s)
- Yanrong Lu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Ye Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
3
|
Powdered and beaded sawdust materials modified iron (III) oxide-hydroxide for adsorption of lead (II) ion and reactive blue 4 dye. Sci Rep 2023; 13:531. [PMID: 36631520 PMCID: PMC9834253 DOI: 10.1038/s41598-023-27789-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
The problems of lead and reactive blue 4 (RB4) dye contamination in wastewater are concerns because of their toxicities to aquatic life and water quality, so lead and RB4 dye removals are recommended to remove from wastewater before discharging. Sawdust powder (SP), sawdust powder doped iron (III) oxide-hydroxide (SPF), sawdust beads (SPB), and sawdust powder doped iron (III) oxide-hydroxide beads (SPFB) were synthesized and characterized with various techniques, and their lead or RB4 dye removal efficiencies were investigated by batch experiments, adsorption isotherms, kinetics, and desorption experiments. SPFB demonstrated higher specific surface area (11.020 m2 g-1) and smaller pore size (3.937 nm) than other materials. SP and SPF were irregular shapes with heterogeneous structures whereas SPB and SPFB had spherical shapes with coarse surfaces. Calcium (Ca) and oxygen (O) were found in all materials whereas iron (Fe) was only found in SPF and SPFB. O-H, C-H, C=C, and C-O were detected in all materials. Their lead removal efficiencies of all materials were higher than 82%, and RB4 dye removal efficiencies of SPB and SPFB were higher than 87%. Therefore, adding iron (III) oxide-hydroxide and changing material form helped to improve material efficiencies for lead or RB4 dye adsorption. SP and SPB corresponded to Langmuir model related to a physical adsorption process whereas SPF and SPFB corresponded to the Freundlich model correlated to a chemisorption process. All materials corresponded to a pseudo-second-order kinetic model relating to the chemical adsorption process. All materials could be reused more than 5 cycles with high lead removal of 63%, and SPB and SPFB also could be reused more than 5 cycles for high RB4 dye removal of 72%. Therefore, SPFB was a potential material to apply for lead or RB4 dye removal in industrial applications.
Collapse
|
5
|
Nizzy AM, Kannan S. A review on the conversion of cassava wastes into value-added products towards a sustainable environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69223-69240. [PMID: 35962891 DOI: 10.1007/s11356-022-22500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The solid and liquid wastes generated from cassava-based industries are organic and acidic in nature, which leads to various global concerns-primarily global warming and biodiversity loss. But the conversion of these wastes into value-added products associated with environmental pollution control contributes to sustainable development. Generally, the thermochemical process such as pyrolysis and gasification and biochemical processes such as anaerobic digestion have been applied for the conversion of cassava waste into value-added products. This review addresses the valorization of cassava wastes, which fulfill almost all needs of the hour, such as energy (biofuel), wastewater treatment (adsorbents), bioplastics, starch nanoparticles, organic acid production, and antimicrobial agents. The major aim of this paper is to analyze and provide the disclosure of the efficiency of cassava-based industrial waste as a source to minimize the problem associated with conventional fossil fuels and through which mitigate the impact of global warming and climate change. Furthermore, recent research and achievements in the valorization of cassava waste have been highlighted.
Collapse
Affiliation(s)
- Albert Mariathankam Nizzy
- Department of Environmental Studies, School of Energy Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| | - Suruli Kannan
- Department of Environmental Studies, School of Energy Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| |
Collapse
|
6
|
Li M, Zhang S, Cui S, Qin K, Zhang Y, Li P, Cao Q, Xiao H, Zeng Q. Pre-grafting effect on improving adsorption efficiency of cellulose based biosorbent for Hg (II) removal from aqueous solution. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119493] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Xue S, Fan J, Wan K, Wang G, Xiao Y, Bo W, Gao M, Miao Z. Calcium-Modified Fe 3O 4 Nanoparticles Encapsulated in Humic Acid for the Efficient Removal of Heavy Metals from Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10994-11007. [PMID: 34499835 DOI: 10.1021/acs.langmuir.1c01491] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ca-modified Fe3O4 nanoparticles encapsulated in humic acid (HA-Ca/Fe3O4) were produced using a co-precipitation method. Furthermore, the adsorption performance of HA-Ca/Fe3O4 as well as the effect of coexisting ions and mechanisms were evaluated. A good description of the adsorption process was given using pseudo-second-order kinetic and Langmuir models. The adsorption capacities of HA-Ca/Fe3O4 for Pb2+, Cu2+, and Cd2+ were 208.33, 98.33, and 99.01 mg g-1, respectively. The 0.02-0.1 times concentrations in alkali and alkaline-earth metals promoted Pb2+ and Cd2+ adsorption; however, any concentration of alkali and alkaline-earth metals inhibited Cu2+-ion adsorption, probably owing to the differences in ionic radii between the interfering and heavy-metal ions. Pb2+, Cu2+, and Cd2+ removal using HA-Ca/Fe3O4 occurred via ion exchange, complexation of O-containing functional groups, mineral precipitation, and π-electron coordination. A method was proposed to calculate the contribution of these mechanisms to the adsorption process. In practice, HA-Ca/Fe3O4 can remove 99% Pb2+ and 91% Cu2+ and Cd2+ from real wastewater samples. Following five adsorption-desorption cycles, HA-Ca/Fe3O4 adsorption capacity did not change significantly. The aforementioned results indicated that HA-Ca/Fe3O4 presented a good potential in removing heavy metals in wastewater.
Collapse
Affiliation(s)
- Shuwen Xue
- School of Chemical Engineering and Technology, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Jinjin Fan
- School of Chemical Engineering and Technology, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Keji Wan
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Guoqiang Wang
- School of Chemical Engineering and Technology, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Yawen Xiao
- School of Chemical Engineering and Technology, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Wenting Bo
- School of Chemical Engineering and Technology, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Mingqiang Gao
- School of Chemical Engineering and Technology, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Zhenyong Miao
- School of Chemical Engineering and Technology, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| |
Collapse
|