1
|
Shi S, Feng Q, Zhang J, Wang X, Zhao L, Fan Y, Hu P, Wei P, Bu Q, Cao Z. Global patterns of human exposure to flame retardants indoors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169393. [PMID: 38104845 DOI: 10.1016/j.scitotenv.2023.169393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
To fill the knowledge gaps regarding the global patterns of human exposure to flame retardants (FRs) (i.e., brominated flame retardants (BFRs) and organophosphorus flame retardants (OPFRs)), data on the levels and distributions of FRs in external and internal exposure mediums, including indoor dust, indoor air, skin wipe, serum and urine, were summarized and analysed. Comparatively, FR levels were relatively higher in developed regions in all mediums, and significant positive correlations between FR contamination and economic development level were observed in indoor dust and air. Over time, the concentration of BFRs showed a slightly decreasing trend in all mediums worldwide, whereas OPFRs represented an upward tendency in some regions (e.g., the USA and China). The occurrence levels of FRs and their metabolites in all external and internal media were generally correlated, implying a mutual indicative role among them. Dermal absorption generally contributed >60% of the total exposure of most FR monomers, and dust ingestion was dominant for several low volatile compounds, while inhalation was found to be negligible. The high-risk FR monomers (BDE-47, BDE-99 and TCIPP) identified by external exposure assessment showed similarity to the major FRs or metabolites observed in internal exposure mediums, suggesting the feasibility of using these methods to characterize human exposure and the contribution of indoor exposure to the human burden of FRs. This review highlights the significant importance of exposure assessment based on multiple mediums for future studies.
Collapse
Affiliation(s)
- Shiyu Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qian Feng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jiayi Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaoyu Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yujuan Fan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengtuan Hu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengkun Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
2
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
3
|
Tachachartvanich P, Rusit X, Tong J, Mann C, La Merrill MA. Perinatal triphenyl phosphate exposure induces metabolic dysfunctions through the EGFR/ERK/AKT signaling pathway: Mechanistic in vitro and in vivo studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115756. [PMID: 38056125 DOI: 10.1016/j.ecoenv.2023.115756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
Triphenyl phosphate (TPhP), a widely used organophosphate-flame retardant, is ubiquitously found in household environments and may adversely affect human health. Evidence indicates that TPhP exposure causes metabolic dysfunctions in vivo; however, the underlying mechanism of such adverse effects has not been comprehensively investigated. Herein, we utilized two in vitro models including mouse and human preadipocytes to delineate adipogenic mechanisms of TPhP. The results revealed that both mouse and human preadipocytes exposed to TPhP concentration-dependently accumulated more fat through a significant upregulation of epidermal growth factor receptor (EGFR). We demonstrated that TPhP significantly promoted adipogenesis through the activation of EGFR/ERK/AKT signaling pathway as evident by a drastic reduction in adipogenesis of preadipocytes cotreated with inhibitors of EGFR and its major effectors. Furthermore, we confirmed the mechanism of TPhP-induced metabolic dysfunctions in vivo. We observed that male mice perinatally exposed to TPhP had a significant increase in adiposity, hepatic triglycerides, insulin resistance, plasma insulin levels, hypotension, and phosphorylated EGFR in gonadal fat. Interestingly, an administration of a potent and selective EGFR inhibitor significantly ameliorated the adverse metabolic effects caused by TPhP. Our findings uncovered a potential mechanism of TPhP-induced metabolic dysfunctions and provided implications on toxic metabolic effects posed by environmental chemicals.
Collapse
Affiliation(s)
- Phum Tachachartvanich
- Department of Environmental Toxicology, University of California, Davis 95616, CA, USA; Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Xylina Rusit
- Department of Environmental Toxicology, University of California, Davis 95616, CA, USA
| | - Jason Tong
- Department of Environmental Toxicology, University of California, Davis 95616, CA, USA
| | - Chanapa Mann
- Department of Environmental Toxicology, University of California, Davis 95616, CA, USA
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis 95616, CA, USA.
| |
Collapse
|
4
|
Zhang M, Meng X, Li N, Zou W, Wei H, Liu R, Sun Y, Chen W, Cui J, Wang C. Integration of solid-phase microextraction and surface-enhanced Raman spectroscopy for in-vivo screening of polybrominated diphenyl ether. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122476. [PMID: 36787678 DOI: 10.1016/j.saa.2023.122476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/21/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The monitoring of polybrominated diphenyl ethers (PBDEs) is of great significance owing to their high persistence, bioaccumulation, and toxicity to humans and animals. In this study, a sensitive and reproducible probe that integrates solid-phase microextraction and surface-enhanced Raman spectroscopy (SPME-SERS) was developed for screening PBDEs in multiphase specimens, including live fish, water, and electrical products. A roughed Cu fiber with an Ag layer was fabricated with dual functions. BDE-15 was readily extracted and detected on the SPME-SERS probe consisting of propanethiol-modified Ag nanoplates on a Cu wire. A clear linear relationship (R2 = 0.988) was established between the SERS intensity at 782 cm-1 and the logarithmic concentrations (from 100 ppb to 100 ppm), with a detection limit of 15 ppb. This proposed method enables continuous in vivo monitoring in fish without complicated pretreatments. The results obtained by this SPME-SERS approach were validated by high-performance liquid chromatography and showed good agreement. This "extracting and detecting" SPME-SERS method provides a potential tool to monitor the occurrence, formation, and migration of PBDEs.
Collapse
Affiliation(s)
- Mengping Zhang
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Xiao Meng
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Nianlu Li
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Wei Zou
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Haiyan Wei
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Ranran Liu
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Yaxin Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Wenwen Chen
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Jingcheng Cui
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China.
| | - Cuijuan Wang
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China.
| |
Collapse
|
5
|
Tetrabromobisphenol A and hexabromocyclododecanes from interior and surface dust of personal computers: implications for sources and human exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44316-44324. [PMID: 36692723 DOI: 10.1007/s11356-023-25497-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and hexabromocyclododecane isomers (HBCDs) are widely detected in indoor environments, but the research on the accumulation, contamination, and human exposure of TBBPA and HBCDs in electronic products dust is still limited. It is unclear whether electronic products might pose human health risk via dust ingestion and dermal absorption. In this study, the levels and distributions of TBBPA and HBCDs were investigated in the personal computer (PC) interior dust and PC surface (upper and bottom) wipes. The median concentrations of TBBPA in PC interior dust, upper, and bottom surface wipes were 168.1 ng/g, 13.2 ng/m2, and 15.2 ng/m2, respectively. These levels were generally higher than those of HBCDs, which were 95.2 ng/g, 11.7 ng/m2, and 12.3 ng/m2, respectively. No significant correlations were found among the PC upper and bottom surface wipes, and interior dust, indicating different sources of TBBPA and HBCDs in PC interior and surface dust. The TBBPA and HBCDs in the PC interior dust were mainly released from inner PC materials, while the sources of target compounds on the surface wipes were likely from external environments. The exposure values of two occupational populations (including PC owners and PC repair workers) to TBBPA and HBCDs were measured by PC interior dust and upper surface wipes. The results imply dust ingestion (including hand-to-mouth uptake) is the main contributor of the exposure route to TBBPA and HBCDs for both PC owners and repair workers. Compared to PC owners, PC repair workers showed the greater risk in exposure assessment, which should be paid more attention.
Collapse
|
6
|
Shi F, Xu Y, Zhang S, Fu Z, Yu Q, Zhang S, Sun M, Zhao X, Feng X. Decabromodiphenyl ethane affects embryonic development by interfering with nuclear F-actin in zygotes and leads to cognitive and social disorders in offspring mice. FASEB J 2022; 36:e22445. [PMID: 35816173 DOI: 10.1096/fj.202200586r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022]
Abstract
Decabromodiphenyl ethane (DBDPE) is a novel retardant. DBDPE is used in various flammable consumer products such as electronics, building materials, textiles, and children's toys. The presence of DBDPE in humans makes it extremely urgent to assess the health effects of DBDPE exposure. Here, we used female mice as an animal model to investigate the effects of DBDPE on embryonic development and offspring health. The results showed that 50 μg/kg bw/day of DBDPE exposure did not affect spindle rotation in oocytes after fertilization, but led to a decrease of pronuclei (PN) in zygotes. Further investigation found that DBDPE interferes with the self-assembly of F-actin in PN, resulting in PN reduction, DNA damage, and reduced expression of zygotic genome activating genes, and finally leading to abnormal embryonic development. More importantly, we found that maternal DBDPE exposure did not affect the growth and development of the first generation of offspring (F1) mice, but resulted in behavioral defects in F1 mice. Female F1 mice from DBDPE-exposed mothers exhibited increased motor activity and deficits in social behavior. Both female and male F1 mice from DBDPE-exposed mothers exhibited cognitive memory impairment. These results suggest that DBDPE has developmental toxicity on embryos and has a cross-generational interference effect. It is suggested that people should pay attention to the reproductive toxicity of DBDPE. In addition, it also provides a reference for studying the origin of neurological diseases and indicates that adult diseases caused by environmental pollutants may have begun in the embryonic stage.
Collapse
Affiliation(s)
- Feifei Shi
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| | - Yixin Xu
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| | - Zhenhua Fu
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, China
| | - Qian Yu
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| | - Shaozhi Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| | - Mingzhu Sun
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, China
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
7
|
Sonego E, Simonetti G, Di Filippo P, Riccardi C, Buiarelli F, Fresta A, Olivastri M, Pomata D. Characterization of organophosphate esters (OPEs) and polyfluoralkyl substances (PFASs) in settled dust in specific workplaces. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52302-52316. [PMID: 35258734 DOI: 10.1007/s11356-022-19486-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
An analytical method for detecting flame retardants was slightly modified and optimized for the simultaneous determination of 11 organophosphate esters (OPEs) and 26 polyfluoralkyl substances (PFASs) contained in dust. All the analytes were determined in HPLC/MS-MS, and OPEs were also analyzed in GC/MS, and the results were compared. The study was conducted through the investigation of the Standard Reference Material SRM 2585 of the National Institute of Standard and Technology (NIST). The results were compared with the available reference mass fraction reported in the NIST certificate. The mass fraction obtained for the other OPEs and PFASs was compared to available data in the literature. After verifying the reliability of the results, the method was applied to environmental samples of settled dust, collected in four workplaces, where OPE and PFAS content is expected to be higher than in house dust: a mechanical workshop, an electronic repair center, a disassembly site, and a shredding site of two electronic waste recycling plants. By analyzing both PFASs and OPEs in the same samples, the present work demonstrated that the selected working places were more polluted in OPEs than houses; on the contrary, PFAS content in house dust proved to be more than ten times higher than that in workplaces. Additional research is necessary to confirm these data. Nevertheless, because this preliminary study showed not negligible concentrations of OPEs in some workplaces and of PFASs in houses, their monitoring should be extended to other domestic and selected working sites.
Collapse
Affiliation(s)
- Elisa Sonego
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Giulia Simonetti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | | | | | - Francesca Buiarelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Alice Fresta
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Matteo Olivastri
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | | |
Collapse
|
8
|
Fan Y, Chen Q, Wang Z, Zhang X, Zhao J, Huang X, Wei P, Hu P, Cao Z. Identifying dermal exposure as the dominant pathway of children's exposure to flame retardants in kindergartens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152004. [PMID: 34856272 DOI: 10.1016/j.scitotenv.2021.152004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Exploration of multiple sources of brominated (BFRs) and organophosphate flame retardants (OPFRs) for children promotes the understanding of exposure pathways and health risk. 10 BFRs and 9 OPFRs were measured in skin wipes from hands, forehead, and arms of 30 children, and surface wipe samples from sills, toys, desks and floors, and indoor air samples of kindergartens from Xinxiang, China. Higher ∑9OPFRs concentrations were observed in the forehead (1840 ng/m2), followed by hand (1420 ng/m2) and arm wipes (1130 ng/m2), and the ∑8BFRs concentrations in forehead, hand and arm wipes were 116, 315 and 165 ng/m2, respectively. The total concentration of OPFRs and BFRs in floor wipes (66.1 and 24.5 ng/m2) were lower than those in toy (205 and 535 ng/m2), sill (227 and 30.1 ng/m2) and desk (84.4 and 139 ng/m2) wipes. Concentrations of FRs in forehead wipes were significantly correlated with those in gaseous air (p < 0.05), moderate correlations were found between the hand wipes and surface wipes (p = 0.054). We estimated the daily average dosages (DADs) of children exposure to FRs via multiple pathways. Compared to DADs via inhalation and hand-to-mouth transfer, dermal exposure was determined to be the predominant exposure pathway to ∑9OPFRs and ∑8BFRs.
Collapse
Affiliation(s)
- Yujuan Fan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qiaoying Chen
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhen Wang
- Kindergarden of Henan Normal University, Xinxiang 453007, China
| | - Xiaoxiao Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jiaxin Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xinyu Huang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengkun Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengtuan Hu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
9
|
Patisaul HB, Behl M, Birnbaum LS, Blum A, Diamond ML, Rojello Fernández S, Hogberg HT, Kwiatkowski CF, Page JD, Soehl A, Stapleton HM. Beyond Cholinesterase Inhibition: Developmental Neurotoxicity of Organophosphate Ester Flame Retardants and Plasticizers. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:105001. [PMID: 34612677 PMCID: PMC8493874 DOI: 10.1289/ehp9285] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/02/2021] [Accepted: 08/11/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND To date, the toxicity of organophosphate esters has primarily been studied regarding their use as pesticides and their effects on the neurotransmitter acetylcholinesterase (AChE). Currently, flame retardants and plasticizers are the two largest market segments for organophosphate esters and they are found in a wide variety of products, including electronics, building materials, vehicles, furniture, car seats, plastics, and textiles. As a result, organophosphate esters and their metabolites are routinely found in human urine, blood, placental tissue, and breast milk across the globe. It has been asserted that their neurological effects are minimal given that they do not act on AChE in precisely the same way as organophosphate ester pesticides. OBJECTIVES This commentary describes research on the non-AChE neurodevelopmental toxicity of organophosphate esters used as flame retardants and plasticizers (OPEs). Studies in humans, mammalian, nonmammalian, and in vitro models are presented, and relevant neurodevelopmental pathways, including adverse outcome pathways, are described. By highlighting this scientific evidence, we hope to elevate the level of concern for widespread human exposure to these OPEs and to provide recommendations for how to better protect public health. DISCUSSION Collectively, the findings presented demonstrate that OPEs can alter neurodevelopmental processes by interfering with noncholinergic pathways at environmentally relevant doses. Application of a pathways framework indicates several specific mechanisms of action, including perturbation of glutamate and gamma-aminobutyric acid and disruption of the endocrine system. The effects may have implications for the development of cognitive and social skills in children. Our conclusion is that concern is warranted for the developmental neurotoxicity of OPE exposure. We thus describe important considerations for reducing harm and to provide recommendations for government and industry decision makers. https://doi.org/10.1289/EHP9285.
Collapse
Affiliation(s)
- Heather B. Patisaul
- College of Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Mamta Behl
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Linda S. Birnbaum
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Arlene Blum
- Green Science Policy Institute, Berkeley, California, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | | | | | - Helena T. Hogberg
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Carol F. Kwiatkowski
- Green Science Policy Institute, Berkeley, California, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Jamie D. Page
- Cancer Prevention & Education Society, Meads House, Leighterton, Tetbury, Gloucestershire, UK
| | - Anna Soehl
- Green Science Policy Institute, Berkeley, California, USA
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
10
|
Silva EZM, Dorta DJ, de Oliveira DP, Leme DM. A review of the success and challenges in characterizing human dermal exposure to flame retardants. Arch Toxicol 2021; 95:3459-3473. [PMID: 34436642 DOI: 10.1007/s00204-021-03130-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/03/2021] [Indexed: 12/01/2022]
Abstract
Since organic flame retardants (FRs) have several industrial applications, they have been largely detected in environmental and biological samples, and humans have been highly exposed to them. Although the effects of oral and inhaled FRs have been well studied, dermal exposure to them has only recently been pointed out as a potential route of human exposure. Consequently, the effects of FRs on the skin and secondary target organs have been poorly investigated. This review article summarizes the main findings regarding dermal exposure to FRs, points the limitation of the published studies, and suggests future perspectives for better understanding of how dermal exposure to FRs impacts the human health. This review lists some gaps that must be filled in future studies, including characterization of the bioavailable fraction and assessment of exposure for new FRs, to establish their physiological significance and to improve the development of 3D dermal tissue for more reliable results to be obtained.
Collapse
Affiliation(s)
- Enzo Zini Moreira Silva
- Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Rua Cel. Francisco H. dos Santos, s/n. Jardim das Américas, Curitiba, PR, 81531-990, Brazil
| | - Daniel Junqueira Dorta
- Departament of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | - Daniela Morais Leme
- Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Rua Cel. Francisco H. dos Santos, s/n. Jardim das Américas, Curitiba, PR, 81531-990, Brazil. .,National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil.
| |
Collapse
|