1
|
Li P, Hou S, Zhang Y, Zhang K, Deng X, Song H, Qin G, Zheng Y, Liu W, Ji S. Three-birds-with-one-stone: An eco-friendly and renewable humic acid-derived material application strategy for macrolide antibiotic detection and multifunctional composite film preparation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135100. [PMID: 38972200 DOI: 10.1016/j.jhazmat.2024.135100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
This research proposes a simple and novel strategy for the green detection of antibiotics along with the reduction of microplastic and humic acid (HA) hazards. The entire process is based on a single-step solvent-sieving method to separate HA into insoluble (IHA) and soluble (SHA) components, subsequently recombining and designing the application according to the original characteristics of selected fractions in accordance with the zero-waste principle. IHA was applied as a dispersive solid phase extraction (DSPE) sorbent without chemical modification for the enrichment of trace MACs in complex biological matrices. The recovery of MACs was 74.06-100.84 % in the range of 2.5-1000 μg∙kg-1. Furthermore, SHA could be combined with biodegradable polyvinyl alcohol (PVA) to prepare multifunctional composite films. SHA endows the PVA film with favorable mechanical properties, excellent UV shielding as well as oxidation resistance performance. Compared with pure PVA, the tensile strength, toughness, antioxidant and UV-protection properties were increased to 157.3 Mpa, 258.6 MJ·m-3, 78.6 % and 60 % respectively. This study achieved a green and economically valuable utilization of all components of waste HA, introduced a novel approach for monitoring and controlling harmful substances and reducing white pollution. This has significant implications for promoting sustainable development and recovering valuable resources.
Collapse
Affiliation(s)
- Peiqi Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Siyu Hou
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Yuqi Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Kaidi Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Xiqian Deng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Huilin Song
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Guowen Qin
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Yang Zheng
- Nanjing Caremo Biomedical Co., Ltd. Building C6, No. 9, Weidi Road, Qixia District, Nanjing, China.
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China.
| | - Shunli Ji
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
2
|
Zhang R, Song C, Zhao Y, Zhang G, Xie L, Wei Z, Li H. A new strategy for treating Pb 2+ and Zn 2+ pollution with industrial waste derivatives Humin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121236. [PMID: 36758929 DOI: 10.1016/j.envpol.2023.121236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Metal pollution caused by industrial waste accumulation is a long-term and far-reaching problem. Humin (HM), as a highly condensed organic component insoluble in alkaline or water solution, is often discarded as humic acid industrial waste. However, the abundant active functional groups in HM reported by some researches make it possible for HM to remove metals. In this study, a waste reuse strategy was proposed to reduce the pressure of industrial metal pollution on the environment. HM was obtained from lignite waste residue. Scanning electron microscopy, energy spectrum and Fourier infrared spectroscopy, combined with the adsorption models were employed to reveal the mechanism of HM adsorption. The results showed that HM had multiple adsorption mechanism and high biological stability. The adsorption capacity of HM to Zn2+ and Pb2+ were 194.88 mg/g and 289.59 mg/g respectively. HM adsorbed Zn2+ mainly by physical multilayer adsorption. And the adsorption of Pb2+ by HM was mainly a monolayer chemical reaction, which depended on its active functional groups and the exchange of valence electrons. Notably, HM could simultaneously remove Pb2+ and Zn2+ and almost did not affect its original adsorption capacity to single ions. These results will provide a new strategy for the treatment of metal pollution in the future and alleviate the pressure of multiple metal pollution of the environment.
Collapse
Affiliation(s)
- Ruju Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Huiying Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
3
|
Wyszkowska J, Borowik A, Zaborowska M, Kucharski J. Sensitivity of Zea mays and Soil Microorganisms to the Toxic Effect of Chromium (VI). Int J Mol Sci 2022; 24:178. [PMID: 36613625 PMCID: PMC9820705 DOI: 10.3390/ijms24010178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Chromium is used in many settings, and hence, it can easily enter the natural environment. It exists in several oxidation states. In soil, depending on its oxidation-reduction potential, it can occur in bivalent, trivalent or hexavalent forms. Hexavalent chromium compounds are cancerogenic to humans. The aim of this study was to determine the effect of Cr(VI) on the structure of bacteria and fungi in soil, to find out how this effect is modified by humic acids and to determine the response of Zea mays to this form of chromium. A pot experiment was conducted to answer the above questions. Zea mays was sown in natural soil and soil polluted with Cr(VI) in an amount of 60 mg kg-1 d.m. Both soils were treated with humic acids in the form of HumiAgra preparation. The ecophysiological and genetic diversity of bacteria and fungi was assayed in soil under maize (not sown with Zea mays). In addition, the following were determined: yield of maize, greenness index, index of tolerance to chromium, translocation index and accumulation of chromium in the plant. It has been determined that Cr(VI) significantly distorts the growth and development of Zea mays, while humic acids completely neutralize its toxic effect on the plant. This element had an adverse effect on the development of bacteria of the genera Cellulosimicrobium, Kaistobacter, Rhodanobacter, Rhodoplanes and Nocardioides and fungi of the genera Chaetomium and Humicola. Soil contamination with Cr(VI) significantly diminished the genetic diversity and richness of bacteria and the ecophysiological diversity of fungi. The negative impact of Cr(VI) on the diversity of bacteria and fungi was mollified by Zea mays and the application of humic acids.
Collapse
Affiliation(s)
- Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland
| | | | | | | |
Collapse
|
4
|
Liu B, Lv L, An M, Wang T, Li M, Yu Y. Heavy metals in marine food web from Laizhou Bay, China: Levels, trophic magnification, and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156818. [PMID: 35728646 DOI: 10.1016/j.scitotenv.2022.156818] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals in ocean may accumulate in seafood through food web and pose risks to human health. This study investigated the occurrence, trophic magnification, and health risks of 7 heavy metals in 20 marine organisms (n = 222) in Laizhou Bay (LZB), China. Results showed that Zn was the most abundant metal, followed by Cu, As, Cd, Cr, Ni and Pb. The total concentrations of 7 heavy metals in the organisms ranked in the order of crab ˃ shellfish ˃ algae ˃ fish ˃ starfish. Interspecific differences were found in the concentrations of Cr, Ni, Cu and Cd in marine organisms from LZB. Crab and shellfish showed much higher enrichment ability of heavy metals than that of algae, starfish and fish. Cd is the most biological accumulated element with the mean biota-sediment accumulation factor (BSAF) of 12.9. Stable isotope analysis showed a significant difference of δ15N among these five species (p < 0.01), and a food web was constructed accordingly. A biodilution pattern was found for Pb, As and Ni and no trophic interference in metal uptake was observed for Zn, Cu, Ni and Cr in the food web of LZB. The estimated daily intake (EDI) and target hazard quotients (THQs) of As and Cd indicated an adverse health effect on consumption of the seafood. The mean lifetime cancer risks (LCRs) for Cd and As suggested a potential carcinogenic effect on consumption of these seafood. This study provides a basis for health risk assessment of heavy metals in marine foods.
Collapse
Affiliation(s)
- Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Linyang Lv
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Miao An
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Tingting Wang
- Jilin Province Huijin Analysis Test CO., LTD, Changchun 130015, China
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Civil and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
5
|
Peng XX, Gai S, Cheng K, Yang F. Roles of humic substances redox activity on environmental remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129070. [PMID: 35650747 DOI: 10.1016/j.jhazmat.2022.129070] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Humic substances (HS) as representative natural organic matters and the most common organic compounds existing in the environment, has been applied to the treatment and remediation of environmental pollution. This review systematically introduces and summarizes the redox activity of HS for the remediation of environmental pollutants. For inorganic pollutants (such as silver, chromium, mercury, and arsenic), the redox reaction of HS can reduce their toxicity and mobilization, thereby reducing the harm of these pollutants to the environment. The concentration and chemical composition of HS, environmental pH, ionic strength, and competing components affect the degree and rate of redox reactions between inorganic pollutants and HS significantly. With regards to organic pollutants, HS has photocatalytic activity and produces a large number of reactive oxygen species (ROS) under the light which reacts with organic pollutants to accelerate the degradation of organic pollutants. Under the affection of HS, the redox of Fe(III) and Fe(II) can enhance the efficiency of Fenton-like reaction to degrade organic pollutants. Finally, the research direction of HS redox remediation of environmental pollution is prospected.
Collapse
Affiliation(s)
- Xiong-Xin Peng
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Shuang Gai
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Kui Cheng
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China.
| |
Collapse
|
6
|
Removal of Cr(VI) by biochar derived via co-pyrolysis of oily sludge and corn stalks. Sci Rep 2022; 12:9821. [PMID: 35701474 PMCID: PMC9198065 DOI: 10.1038/s41598-022-14142-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022] Open
Abstract
The co-pyrolysis of oily sludge with biomass to prepare carbon materials is not only an effective way to mitigate oily sludge pollution, but it is also a method of obtaining carbon materials. In this study, a carbon material (OS-CS AC) was obtained by the direct co-pyrolysis of oily sludge (OS) and corn stalks (CS) and then applied to Cr(VI) removal. According to the hydroxy and carboxy masking experiments and the characterization of OS-CS AC by FT-IR, SEM, XPS, XRD, and N2 physical adsorption–desorption, Cr(VI) can be adsorbed efficiently through pore filling, the surface oxygen-containing functional groups can promote the reduction of Cr(VI) to Cr(III) through electron donors, and the greater the electrostatic attraction between the electron-donating functional groups of OS-CS AC and the Cr(VI) is, the stronger the ability to remove Cr(VI). In addition, the removal process was discussed, and the results indicated that the McKay kinetic model, Langmuir isotherm model and Van't Hoff thermodynamic model were the most suitable models for removal. The main factors affecting the removal of Cr(VI) were discussed, and the removal of Cr(VI) reached 99.14%, which gives a comprehensive utilization way of oily sludge and corn stalks.
Collapse
|
7
|
Duan L, Dai Y, Shi L, Wei Y, Xiu Q, Sun S, Zhang X, Zhao S. Humic acid addition sequence and concentration affect sulfur incorporation, electron transfer, and reactivity of sulfidated nanoscale zero-valent iron. CHEMOSPHERE 2022; 294:133826. [PMID: 35114258 DOI: 10.1016/j.chemosphere.2022.133826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Nanoscale zero-valent iron (nZVI) is extensively used in field remediation and can be sulfidated in situ with sulfide or sulfate-reducing bacteria to enhance its performance. Humic acid (HA) widely exists in nature, but its influence on both the sulfidation process of nZVI and the reactivity of sulfidated nZVI (S-nZVI) has been rarely reported. Herein, we first synthesized S-nZVI by one-pot (S1-nZVI) and two-step (S2-nZVI) approaches with adding HA before (pre-added) or after (post-added) FexSy generation, respectively. Then, we evaluated their reactivity on Cr(VI) removal and analyzed the effects of HA on sulfidation regarding electron transfer resistance, sulfur incorporation, and structure characterization. Pre-added HA inhibited the Cr(VI) removal by S1-nZVI more seriously than by S2-nZVI and nZVI, and stronger inhibition was observed at higher HA concentrations. The inhibitory effect can be attributed mainly to the adsorbed HA increasing the impedance of the material and the free HA impeding the generation and deposition of FexSy. Different from the inhibition of pre-added HA at all studied HA concentrations, the Cr(VI) removal by both S1-nZVI and S2-nZVI with post-added HA was enhanced at specific HA concentrations. The reason for this phenomenon was that the dispersion and specific surface area of S-nZVI were improved, thereby offsetting the inhibition from both impedance increase and sulfur loss. This work suggests that the presence of HA can affect the sulfidation process and the property of S-nZVI, which is conducive to evaluating the performance of S-nZVI produced both by injection and in situ in the subsurface contaminant remediation.
Collapse
Affiliation(s)
- Liangfeng Duan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Yinshun Dai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Lijiao Shi
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Yuwei Wei
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Qi Xiu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Shiwen Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiaodong Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
8
|
Zhang L, Fu F, Yu G, Sun G, Tang B. Fate of Cr(VI) during aging of ferrihydrite-humic acid co-precipitates: Comparative studies of structurally incorporated Al(III) and Mn(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151073. [PMID: 34678368 DOI: 10.1016/j.scitotenv.2021.151073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Ferrihydrite-humic acid co-precipitates have impacts on the adsorption and reduction of Cr(VI) in the natural environment. Besides, ferrihydrite-humic acid co-precipitates usually coexist with foreign metal cations like Al(III) and Mn(II), which may change the properties of ferrihydrite and affect the fate of Cr(VI). In this work, structurally incorporated Al(III) or Mn(II) in ferrihydrite-humic acid co-precipitates with Cr(VI) (Fh-HA-Cr-Al or Fh-HA-Cr-Mn) were prepared, and the behavior and phase transformation of co-precipitates were explored via the characterization analyses of samples during aging for 10 days. This study showed that partial adsorbed Cr(VI) was reduced to Cr(III) in the presence of humic acid, thereby reducing the toxicity of Cr(VI). Interestingly, two different results occurred because of the incorporation of Al(III) and Mn(II). Al(III) hindered the transformation of ferrihydrite and changed the aging products by inhibiting the dissolution of ferrihydrite, which decreased Cr to incorporate iron minerals. By contrast, doping of Mn(II) accelerated the phase transformation of co-precipitates, and was more conducive to the encapsulation and fixation of Cr. The results of this study can facilitate the understanding of the effects of Al(III) and Mn(II) on Cr(VI) fixation during the aging of Fh-HA-Cr.
Collapse
Affiliation(s)
- Lin Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guangda Yu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangzhao Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|