1
|
Asadzadeh F, Poursattar Marjani A. Revolutionizing acridine synthesis: novel core-shell magnetic nanoparticles and Co-Zn zeolitic imidazolate framework with 1-aza-18-crown-6-ether-Ni catalysts. Sci Rep 2024; 14:25739. [PMID: 39468209 PMCID: PMC11519366 DOI: 10.1038/s41598-024-75591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
Nanoparticles have emerged as a critical catalyst substrate due to their exceptional features, such as catalytic efficiency, high stability, and easy recovery. In our research, we have developed an innovative and environmentally friendly magnetic mesoporous nanocatalyst. Using the co-precipitation method, we produced magnetic nanoparticles (Fe3O4) and coated them with Zeolitic imidazolate frameworks (ZIFs) to enhance their surface area and chemical stability. The resulting substrate was functionalized with 1-aza-18-crown-6-ether and nickel metal. Our prepared catalyst has been rigorously evaluated using advanced techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmet-Teller (BET), vibrating sample magnetometry (VSM), scanning electron microscopy and energy dispersive X-ray (SEM-EDS), inductively coupled plasma (ICP), elemental mapping analysis (EMA), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). By synthesizing acridine derivatives, we have demonstrated the exceptional efficiency of our catalyst in organic compound synthesis. Through optimization, we have established the ideal parameters for catalytic processes, including catalyst amount, temperature, time, and ultrasonic use. Our catalyst has been proven to exhibit remarkable physical and chemical properties, such as porosity, temperature resistance, and recyclability. Notably, our heterogeneous nanocatalyst has shown outstanding performance and can be recycled six times without any loss in efficiency, affirming its potential in acridine.
Collapse
Affiliation(s)
- Fatemeh Asadzadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | | |
Collapse
|
2
|
Wang Y, Zhong M, Ma F, Wang C, Lu X. Shell-induced enhancement of Fenton-like catalytic performance towards advanced oxidation processes: Concept, mechanism, and properties. WATER RESEARCH 2024; 268:122655. [PMID: 39461218 DOI: 10.1016/j.watres.2024.122655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Fenton-like advanced oxidation processes (AOPs) are commonly used to eliminate recalcitrant organic pollutants as they produce highly reactive oxygen species through the reactions between the catalysts and oxidants. Recently, considerable attention has been directed towards shell-structured Fenton-like catalysts that offer high stability, maximum utilization of active sites, and exceptional catalytic performance. In this review, we have introduced the concept of several typical shell-forming architectures (e.g., hollow structure, core-shell structure, yolk-shell structure, particle-in-tube structure, and multi-shelled structure), elucidating their role in promoting Fenton-like reaction catalysis through the nanoconfinement mechanism. In each aspect, the correlation between the shell-induced effects and the Fenton-like catalytic performance is highlighted. Finally, future challenges and opportunities for the development of shell-structured Fenton-like catalysts towards AOPs are presented, offering bright practical application prospects.
Collapse
Affiliation(s)
- Yuezhu Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
| | - Mengxiao Zhong
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 China.
| | - Fuqiu Ma
- Yantai Research Institute, Harbin Engineering University, Yantai 264006, China.
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Li H, Cai Q, Li P, Jie G. Zero-Background Dual-Mode Closed Bipolar Electrode Electrochemiluminescence Biosensor Based on ZnCoN-C Potential Regulation for Ultrasensitive Detection of Ochratoxin A. Anal Chem 2024. [PMID: 39140171 DOI: 10.1021/acs.analchem.4c02782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this work, the relationship between electrochemiluminescence (ECL) signal and driving voltage was first studied by self-made reduced and oxidized closed bipolar electrodes (CBPEs). It was found that when the driving voltage was large enough, the maximum ECL signals for the two kinds of CBPEs were the same but their required drive voltages were different. Zinc cobalt nitrogen doped carbon material (ZnCoN-C) had an outstanding electric double layer (EDL) property and conductivity. Therefore, it could significantly reduce the driving voltage of two kinds of CBPE systems, reaching the maximum ECL signal of Ru(bpy)32+. Interestingly, when the ZnCoN-C modified electrode reached the maximum ECL signal, the bare electrode signal was zero. As a proof-of-concept application, a zero-background dual-mode CBPE-ECL biosensor was constructed for the ultrasensitive detection of ochratoxin A (OTA) in beer. Considering that beer samples contained a large number of reducing substances, a reduced CBPE system was selected to build the biosensor. Furthermore, a convenient ECL imaging platform using a smartphone was built for the detection of OTA. This work used a unique EDL material ZnCoN-C to regulate the driving voltage of CBPE for the first time; thus, a novel zero-background ECL sensor was constructed. Further, this work provided a deeper understanding of the CBPE-ECL system and opened a new door for zero-background detection.
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qianqian Cai
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Pingping Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guifen Jie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
4
|
Nguyen VH, Pham HAL, Lee T, Nguyen TD. Synthesis of a 3D Flower-Like BiOCl/Bi-MOF Heterostructure for High-Performance Removal of Rhodamine B and Tetracycline Hydrochloride. Inorg Chem 2024; 63:12027-12041. [PMID: 38897627 DOI: 10.1021/acs.inorgchem.4c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Semiconductor materials based on bismuth metal have been extensively explored for their potential in photocatalytic applications owing to their distinctive crystal structure. Herein, we present the development of a hybrid photocatalyst, CAU-17/BiOCl, featuring a flower-like nanosheet morphology tailored for the photocatalytic degradation of organic contaminants such as rhodamine B (RhB) and tetracycline hydrochloride (TCH). The composite material is obtained by growing thin CAU-17 layers directly onto the host flower-like BiOCl nanosheets under solvothermal conditions. The optimized CAU-17/BiOCl composite possesses excellent photocatalytic performance, achieving a notable 96.0% removal rate for RhB and 78.4% for TCH after 60 and 90 min of LED light irradiation, respectively. This boosted activity is attributed to the heightened absorption of visible light caused by BiOCl and the provision of additional reaction sites due to the thin CAU-17 layers. Furthermore, the establishment of an S-scheme heterojunction mechanism enables efficient charge separation between CAU-17 and BiOCl, facilitating the separation of photoinduced electrons (e-) and holes (h+). Analysis of the degradation mechanism of RhB and TCH reveals the predominant role of superoxide radicals (•O2-), e-, and h+ in the photocatalytic degradation process. Moreover, the removal efficiency of TCH can reach approximately 64.5% after four cycles of recycling of CAU-17/BiOCl. Our work provides a facile, effective solution and a theoretically explained approach for the effective degradation of pollutants using heterojunction photocatalysts.
Collapse
Affiliation(s)
- Vinh Huu Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Hoang Ai Le Pham
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, No. 12 Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City 700000, Vietnam
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Trinh Duy Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| |
Collapse
|
5
|
Zhi K, Xu J, Li S, Luo L, Liu D, Li Z, Guo L, Hou J. Progress in the Elimination of Organic Contaminants in Wastewater by Activation Persulfate over Iron-Based Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:473. [PMID: 38470802 DOI: 10.3390/nano14050473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
The release of organic contaminants has grown to be a major environmental concern and a threat to the ecology of water bodies. Persulfate-based Advanced Oxidation Technology (PAOT) is effective at eliminating hazardous pollutants and has an extensive spectrum of applications. Iron-based metal-organic frameworks (Fe-MOFs) and their derivatives have exhibited great advantages in activating persulfate for wastewater treatment. In this article, we provide a comprehensive review of recent research progress on the significant potential of Fe-MOFs for removing antibiotics, organic dyes, phenols, and other contaminants from aqueous environments. Firstly, multiple approaches for preparing Fe-MOFs, including the MIL and ZIF series were introduced. Subsequently, removal performance of pollutants such as antibiotics of sulfonamides and tetracyclines (TC), organic dyes of rhodamine B (RhB) and acid orange 7 (AO7), phenols of phenol and bisphenol A (BPA) by various Fe-MOFs was compared. Finally, different degradation mechanisms, encompassing free radical degradation pathways and non-free radical degradation pathways were elucidated. This review explores the synthesis methods of Fe-MOFs and their application in removing organic pollutants from water bodies, providing insights for further refining the preparation of Fe-MOFs.
Collapse
Affiliation(s)
- Keke Zhi
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
- State Key Laboratory, Heavy Oil Processing-Karamay Branch, Karamay 834000, China
| | - Jiajun Xu
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Shi Li
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Lingjie Luo
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Dong Liu
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Zhe Li
- State Key Laboratory, Heavy Oil Processing-Karamay Branch, Karamay 834000, China
- Department of Petroleum, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Lianghui Guo
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Junwei Hou
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
- State Key Laboratory, Heavy Oil Processing-Karamay Branch, Karamay 834000, China
| |
Collapse
|
6
|
Sakhaei Niroumand J, Peighambardoust SJ, Mohammadi R. Tetracycline decontamination from aqueous media using nanocomposite adsorbent based on starch-containing magnetic montmorillonite modified by ZIF-67. Int J Biol Macromol 2024; 259:129263. [PMID: 38191117 DOI: 10.1016/j.ijbiomac.2024.129263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
In the present study, starch/zeolitic imidazole framework-67 (ZIF-67) modified magnetic montmorillonite nanocomposite adsorbent to remove tetracycline (TC) as an emerging antibiotic-based contaminant from aqueous media. The surface properties of the adsorbents were investigated using FTIR, XRD, SEM, EDX-Map, XPS, TEM, BET, and VSM analysis. The specific surface area of MMT, St/MMT-MnFe2O4, and St/MMT-MnFe2O4-ZIF-67 magnetic nanocomposite samples were found to be 15.63, 20.54, and 588.41 m2/g, respectively. The influence of pH, adsorbent amount, initial TC concentration, temperature, contact time, and coexisting ions on TC elimination was explored in a batch adsorption system. The kinetic and equilibrium data were well matched with the pseudo-second-order and Langmuir isotherm models, respectively. The maximum monolayer adsorption capacities of TC were obtained to be 40.24, 66.1, and 135.2 mg/g by MMT, St/MMT-MnFe2O4, and St/MMT-MnFe2O4-ZIF-67 magnetic nanocomposite adsorbents, respectively. Also, thermodynamic studies illustrated that the TC adsorption process is exothermic and spontaneous. Furthermore, the magnetic nanocomposite adsorbent St/MMT-MnFe2O4-ZIF-67 showed good reusability and could be recycled for up to five cycles. This excellent adsorption performance, coupled with the facile separation of the magnetic nanocomposite, gave St/MMT-MnFe2O4-ZIF-67 a high potential for TC removal from aqueous media.
Collapse
Affiliation(s)
| | | | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
7
|
Zhao Y, Li Y, Chang L, He W, Liu K, Cui M, Wang S, Zhao Y, Tan X. Bimetal doped Cu-Fe-ZIF-8/g-C 3N 4 nanocomposites for the adsorption of tetracycline hydrochloride from water. RSC Adv 2024; 14:4861-4870. [PMID: 38323017 PMCID: PMC10844844 DOI: 10.1039/d3ra08225c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Bimetal doped Cu-Fe-zeolitic imidazole framework-8 (ZIF-8)/graphitic carbon nitride (GCN) (Cu-Fe-ZIF-8/GCN) nanocomposites were prepared via one-pot and ion-exchange methods. The main influencing factors, such as adsorbent concentration, TC concentration, initial pH, and coexisting ions, were evaluated in detail. Due to the suitable pore structures and the presence of multiple interactions on the surface, the nanocomposite showed a high adsorption capacity up to 932 mg g-1 for tetracycline hydrochloride (TC), outperforming ZIF-8 by 4.8 times. The adsorption kinetics and adsorption isotherm were depicted in good detail using pseudo-second-order kinetic and Langmuir models, respectively. Thermodynamic calculation revealed that the adsorption of the nanocomposite under experimental conditions was a spontaneous heat absorption process, and was primarily driven by chemisorption. After four cycles of use, the nanocomposite retained 87.2% of its initial adsorption capacity, confirming its high reusability and broad application prospects in removing tetracycline-type pollutants from wastewater.
Collapse
Affiliation(s)
- Yibo Zhao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Jiangsu 222005 China
- Jiangsu Institute of Marine Resources Development Jiangsu 222005 China
| | - Yueyang Li
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Jiangsu 222005 China
| | - Lu Chang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Wenjing He
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Keling Liu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Minjie Cui
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences Beijing 100190 China
| | - Shengnan Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Yujia Zhao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Xinyu Tan
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| |
Collapse
|
8
|
Liu S, Kang Y. Underwater bubbling plasma assisted with persulfate activation for the synergistic degradation of tetracycline hydrochloride. ENVIRONMENTAL RESEARCH 2024; 240:117539. [PMID: 37907165 DOI: 10.1016/j.envres.2023.117539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
The performance and mechanism of persulfate consisting of peroxymonosulfate (PMS) and peroxydisulfate (PDS) activation by underwater bubbling plasma (UBP) for the synergistic removal of tetracycline hydrochloride (TCH) were comparatively investigated. Both PMS and PDS addition significantly promoted the removal of TCH in UBP system, indicating persulfate exhibited highly synergistic effect with UBP. Furthermore, enhancing the persulfate dosage, peak voltage and pulse frequency, as well as reducing initial TCH concentration were favorable for the elimination of TCH. Compared with neutral condition, acidic and alkaline condition were advantageous to TCH removal. The presence of coexisting substances including Cl-, SO42- and humic acid (HA) had an adverse effect on TCH degradation, while Fe2+ could improve the removal of TCH. The degradation of ciprofloxacin and metronidazole proved the applicability for other antibiotics degradation of the reaction system. SO4-·, ·OH, ·O2-, hydrated electrons, O3 and H2O2 were the active substances responsible for TCH removal. The reduction of aqueous O3 concentration and enhancement of H2O2 concentration were observed after persulfate addition. UV-vis spectra and TOC analysis illustrated the addition of PMS or PDS facilitated the degradation and mineralization of TCH. 3D-EEMF spectra visually displayed the degradation process of TCH. Plausible degradation routes were deduced based on LC-MS and the toxicities of TCH and its intermediates were evaluated by Toxicity Estimation Software Tool.
Collapse
Affiliation(s)
- Shuai Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yong Kang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
9
|
Zhu Z, Ouyang H, Ling C, Ma M, Wang J, Yu X, Li Y. Fabrication of magnetic α-Fe 2O 3/Fe 3O 4heterostructure nanorods via the urea hydrolysis-calcination process and their biocompatibility with LO 2and HepG 2cells. NANOTECHNOLOGY 2023; 34:505711. [PMID: 37703834 DOI: 10.1088/1361-6528/acf939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Abstract
β-FeOOH nanorods were prepared via the urea hydrolysis process with the average length of 289.1 nm and average diameter of 61.2 nm, while magneticα-Fe2O3/Fe3O4heterostructure nanorods were prepared via the urea calcination process withβ-FeOOH nanorods as precursor, and the optimum conditions were the calcination temperature of 400 °C, the calcination time of 2 h, theβ-FeOOH/urea mass ratio of 1:6. The average length, diameter, and the saturation magnetization of the heterostructure nanorods prepared under the optimum conditions were 328.8 nm, 63.4 nm and 42 emu·g-1, respectively. The Prussian blue test demonstrated that the heterostructure nanorods could be taken up by HepG2 cells, and cytotoxicity tests proved that the heterostructure nanorods had no significant effect on the viabilities of LO2 and HepG2 cells within 72 h in the range of 100-1600μg·ml-1. Therefore, magneticα-Fe2O3/Fe3O4heterostructure nanorods had better biocompatibility with LO2 and HepG2 cells.
Collapse
Affiliation(s)
- Ziye Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Hezhong Ouyang
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, People's Republic of China
| | - Chen Ling
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Mingyi Ma
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jie Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xiang Yu
- College of Vanadium and Titanium, Panzhihua University, Panzhihua 617000, People's Republic of China
| | - Yongjin Li
- School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
10
|
Lei Y, Yang H, Xie J, Chen Q, Quan W, Wang A. Synthesis of strong magnetic response ZIF-67 for rapid adsorption of Cu2+. Front Chem 2023; 11:1135193. [PMID: 37007055 PMCID: PMC10060551 DOI: 10.3389/fchem.2023.1135193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
With the acceleration of industrialization and urbanization, global water resources have been polluted. Among the water pollutants, heavy metals have caused great harm to the environment and organisms. When the concentration of Cu2+ in water exceeds the standard, the intake of the human body will mainly damage the nervous system. We use MOF materials with high chemical stability, specific surface area, adsorption, and other unique properties to adsorb Cu2+. MOF-67 was prepared with various solvents, and a stronger magnetic response MOF-67 with the largest surface area and best crystal form were selected. It quickly adsorbs low-concentration Cu2+ in water to purify water quality. At the same time, it can be recovered promptly through an external magnetic field to avoid secondary pollution, which conforms to the concept of green environmental protection. When the initial concentration of Cu2+ is 50 mg/L for 30 min, the adsorption rate reaches 93.4%. The magnetic adsorbent can be reused three times.
Collapse
Affiliation(s)
- Yuanhang Lei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, Guizhou, China
| | - Haibo Yang
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, Guizhou, China
| | - Jiangqin Xie
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, Guizhou, China
| | - Qi Chen
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, Guizhou, China
| | - Wenxuan Quan
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China
- *Correspondence: Anping Wang, ; Wenxuan Quan,
| | - Anping Wang
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, Guizhou, China
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China
- *Correspondence: Anping Wang, ; Wenxuan Quan,
| |
Collapse
|
11
|
Facile one-step synthesis of poly(styrene-glycidyl methacrylate)-Fe3O4 nanocomposite particles and application potency in glucose biosensors. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
12
|
Ashrafi M, Farhadi S. Polyoxometalate supported on a magnetic Fe 3O 4/MIL-88A rod-like nanocomposite as an adsorbent for the removal of ciprofloxacin, tetracycline and cationic organic dyes from aqueous solutions. RSC Adv 2023; 13:6356-6367. [PMID: 36845582 PMCID: PMC9943932 DOI: 10.1039/d2ra07898h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
In this work, a magnetic H3PW12O40/Fe3O4/MIL-88A (Fe) rod-like nanocomposite as a stable and effective ternary adsorbent was fabricated by the hydrothermal method and utilized for the removal of ciprofloxacin (CIP), tetracycline (TC) and organic dyes from aqueous solution. Characterization of the magnetic nanocomposite was accomplished by FT-IR, XRD, Raman spectroscopy, SEM, EDX, TEM, VSM, BET specific surface area and zeta potential analyses. The influencing factors on the adsorption potency of the H3PW12O40/Fe3O4/MIL-88A (Fe) rod-like nanocomposite including initial dye concentration, temperature and adsorbent dose were studied. The maximum adsorption capacities of H3PW12O40/Fe3O4/MIL-88A (Fe) for TC and CIP were 370.37 mg g-1 and 333.33 mg g-1 at 25 °C, respectively. In addition, the H3PW12O40/Fe3O4/MIL-88A (Fe) adsorbent had high regeneration and reusability capacity after four cycles. In addition, the adsorbent was recovered through magnetic decantation and reused for three consecutive cycles without a considerable reduction in its performance. The adsorption mechanism was mainly ascribed to electrostatic and π-π interactions. According to these results, H3PW12O40/Fe3O4/MIL-88A (Fe) can act as a reusable effective adsorbent for the fast elimination of tetracycline (TC), ciprofloxacin (CIP) and cationic dyes from aqueous solutions.
Collapse
Affiliation(s)
- Mona Ashrafi
- Department of Inorganic Chemistry, Lorestan University Khorramabad 68151-44316 Iran
| | - Saeed Farhadi
- Department of Inorganic Chemistry, Lorestan University Khorramabad 68151-44316 Iran
| |
Collapse
|
13
|
Pu J, Tong P, Meng Y, Li J. Development of a molecularly imprinted electrochemiluminescence sensor based on bifunctional bilayer structured ZIF-8-based magnetic particles for dopamine sensing. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Bazgir S, Farhadi S, Mansourpanah Y. Adsorptive removal of tetracycline and ciprofloxacin antibiotics from water using magnetic MIL101-Fe metal–organic framework/NiFe2O4 decorated with Preyssler-Pope-Jeannin [NaP5W30O110]14− polyanion. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|