1
|
Chaúque BJM, de Amorim Nascimento FL, Silva KJS, Hoff RB, Goldim JR, Rott MB, Zanette RA, Verruck S. Solar-based technologies for removing potentially toxic metals from water sources: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35897-4. [PMID: 39821874 DOI: 10.1007/s11356-025-35897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025]
Abstract
Technological advances have led to a proportional increase in the deposition of contaminants across various environmental compartments, including water sources. Heavy metals, also known as potentially toxic metals, are of particular concern due to their significant harmful impacts on environmental and human health. Among the available methods for mitigating the threat of these metals in water, solar radiation-based technologies stand out for their cleanliness, cost-effectiveness, and efficiency in removing or reducing the toxicity of heavy metals. The performance and productivity of these methods in removing heavy metals such as arsenic (As), chromium (Cr), mercury (Hg), and uranium (U) from water still need to be comprehensively synthesized. Thus, this work aims to address that gap. The performance, potential, and challenges of real-world applications of conventional solar stills (CSS), membrane-based solar stills, and solar heterogeneous photocatalysis are concisely summarized and critically reviewed. CSS and membrane-based stills are highly effective (efficacy > 98%) in removing and capturing heavy metals from water. However, structural and functional improvements are needed to enhance productivity (especially for CSS) and usability in real-world environmental remediation and drinking water supply scenarios. Solar heterogeneous photocatalysis is highly effective in removing and/or converting As, Cr, Hg, and U into their non-toxic or less toxic forms, which subsequent processes can easily remove. Further research is necessary to evaluate the safety of photocatalytic materials, their integration into scalable solar reactors, and their usability in real-world environmental remediation applications.
Collapse
Affiliation(s)
- Beni Jequicene Mussengue Chaúque
- Mestrado Profissional Em Pesquisa Clínica, Master's Program in Clinical Research (MPPC) at the Hospital de Clínicas de Porto Alegre (HCPA) (CAPES Pilot Program), Porto Alegre, Rio Grande Do Sul, Brazil.
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil.
- Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa, Lichinga, Mozambique.
| | - Francisco Lucas de Amorim Nascimento
- Departamento de Zootecnia E Desenvolvimento Rural, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, Florianópolis, SC, 88034-001, Brazil
| | | | - Rodrigo Barcellos Hoff
- Advanced Laboratory Section of Santa Catarina (SLAV/SC), Ministry of Agriculture and Livestock (MAPA), R. João Grumiche, 117 - Bloco T, São José, Santa Catarina, 88102-600, Brazil
| | - José Roberto Goldim
- Master's Program in Clinical Research (MPPC) at the Hospital de Clínicas de Porto Alegre (HCPA) (CAPES Pilot Program), Porto Alegre, Rio Grande Do Sul, Brazil
| | - Marilise Brittes Rott
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande Do Sul, Ramiro Barcelos Street, N 2600, Porto Alegre, Rio Grande Do Sul, 90035-002, Brazil
| | - Régis Adriel Zanette
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Silvani Verruck
- Departamento de Ciência E Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, Florianópolis, Santa Catarina, 88034-001, Brazil
| |
Collapse
|
2
|
Mahich S, Saini YK, Devra V, Aggarwal K, Kumar A, Kumar D, Singh A, Arya Y. Metal-free adsorption and photodegradation methods for methylene blue dye removal using different reduction grades of graphene oxide. Heliyon 2024; 10:e31702. [PMID: 38867945 PMCID: PMC11167305 DOI: 10.1016/j.heliyon.2024.e31702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
The release of organic pollutants and dyes into the environment by industries has had profound and harmful effects on both humans and ecosystems. Graphene oxide (GO) and its reduced form have been investigated for their effectiveness in removing pollutant dyes. GO nano-powder was synthesized using an improved version of Hummer's method and subsequently thermally reduced at various temperatures, including 125, 150, 175, and 200 °C, under vacuum conditions. In the X-ray diffraction spectra, an intense (001) diffraction peak was initially observed at 9.136° (2θ) for pristine GO. This peak gradually shifted towards higher angles as the reduction process took place and eventually disappeared when the GO was reduced at 200 °C. The intensity ratio of the D and G bands (ID/IG ratio) for GO nano-powder in the Raman spectra decreased from 0.94 to 0.76 due to the reduction process. The FTIR spectra of GO and reduced graphene oxide (rGO) also illustrated the reduction process. The bandgap of pristine GO significantly decreased from 2.31 to 0.73 eV, as determined by ultraviolet-visible (UV-Vis) diffuse reflectance spectrophotometry during the reduction process. The surface area and pore volume of both pristine GO and rGO-150 were determined using the BET (Brunauer-Emmett-Teller) and BJH (Barrett-Joyner-Halenda) methods. The results indicated an increase in the BET surface area from 6.61 to 7.86 m2/g and a corresponding enhancement in pore volume from 0.118 to 0.128 cc/g after reduction. The adsorption and photocatalytic degradation behavior of pristine GO and reduced graphene oxides (rGOs) were examined using methylene blue dye. The pristine GO demonstrated impressive adsorption capability, effectively removing the dye by 85.78 % within just 15 min and achieving nearly 97 % removal after 4 h. In contrast, the highest photocatalytic degradation of methylene blue, about 47.58 %, was attained for the rGO sample reduced at 150 °C under the illumination of visible light.
Collapse
Affiliation(s)
- Sanju Mahich
- Department of Physics, University of Rajasthan, Jaipur, Rajasthan, 302004, India
| | - Yogesh Kumar Saini
- Department of Physics, University of Rajasthan, Jaipur, Rajasthan, 302004, India
| | - Vijay Devra
- Janki Devi Bajaj Government Girls College, Kota, Rajasthan, 324001, India
| | - Kanika Aggarwal
- Department of Physics, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, 148106, India
| | - Anuj Kumar
- Department of Physics, J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, 121006, India
| | - Dinesh Kumar
- Gurugram University, Gurugram, Haryana, 122003, India
| | - Amanpal Singh
- Department of Physics, University of Rajasthan, Jaipur, Rajasthan, 302004, India
| | - Yogendra Arya
- Department of Electrical Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, 121006, India
| |
Collapse
|
3
|
Taufik A, Saleh R, Seong G. Enhanced photocatalytic performance of SnS 2 under visible light irradiation: strategies and future perspectives. NANOSCALE 2024; 16:9680-9709. [PMID: 38712924 DOI: 10.1039/d4nr00706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tin(II) sulfide (SnS2) has emerged as a promising candidate for visible light photocatalytic materials. As a member of the transition metal dichalcogenides (TMDs) family, SnS2 features a band gap of approximately 2.20 eV and a layered structure, rendering it suitable for visible light activation with a high specific surface area. However, the application of SnS2 as a visible light photocatalyst still requires improvement, particularly in addressing the high recombination of electrons and holes, as well as the poor selectivity inherent in its perfect crystal structure. Therefore, ongoing research focuses on strategies to enhance the photocatalytic performance of SnS2. In this comprehensive review, we analyze recent advances and promising strategies for improving the photocatalytic performance of SnS2. Various successful approaches have been reported, including controlling the reactive facets of SnS2, inducing defects in the crystal structure, manipulating morphologies, depositing noble metals, and forming heterostructures. We provide a detailed understanding of these phenomena and the preparation techniques involved, as well as future considerations for exploring new science in SnS2 photocatalysis and optimizing performance.
Collapse
Affiliation(s)
- Ardiansyah Taufik
- WPI - Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Rosari Saleh
- Departement Fisika, FMIPA Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
- Integrated Laboratory of Energy and Environment FMIPA Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Gimyeong Seong
- Department of Environmental and Energy Engineering, The University of Suwon, 17, Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do, 18323, Republic of Korea
| |
Collapse
|
4
|
Leow GY, Lam SM, Sin JC, Zeng H, Li H, Huang L, Lin H. Carbide lime as substrates to boost energy recuperation and dyestuff removal in constructed wetland-microbial fuel cell integrated with copper oxide/carbon cloth cathode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23647-23663. [PMID: 38427169 DOI: 10.1007/s11356-024-32637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Methylene blue (MB) was regarded as a highly toxic and hazardous substance owing to its irreparable hazard and deplorable damage on the ecosystem and the human body. The treatment of this colorant wastewater appeared to be one of the towering challenges in wastewater treatment. In this study, a microbial fuel cell coupled with constructed wetland (CW-MFC) with effective MB elimination and its energy recuperation concurrently based on the incorporation of carbide lime as a substrate in a new copper oxide-loaded on carbon cloth (CuO/CC) cathode system was studied. The crucial influencing parameters were also delved, and the MB degradation and chemical oxygen demand (COD) removal efficiencies were correspondingly incremented by 97.3% and 89.1% with maximum power output up to 74.1 mW m-2 at optimal conditions (0.2 g L-1 carbide lime loading and 500 Ω external resistance). The carbide lime with high calcium ion content was greatly conducive for the enrichment of critical microorganism and metabolic activities. The relative abundances of functional bacteria including Proteobacteria and Actinobacteriota were vividly increased. Moreover, the impressive results obtained in printed ink wastewater treatment with a COD removal efficiency of 81.3% and a maximum power density of 58.2 mW m-2, which showcased the potential application of CW-MFC.
Collapse
Affiliation(s)
- Guo-Yao Leow
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Sze-Mun Lam
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia.
| | - Jin-Chung Sin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
5
|
Ahmad W, Ahmad N, Rasheed S, Nabeel MI, Mohyuddin A, Riaz MT, Hussain D. Silica-Based Superhydrophobic and Superoleophilic Cotton Fabric with Enhanced Self-Cleaning Properties for Oil-Water Separation and Methylene Blue Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5639-5650. [PMID: 38447102 DOI: 10.1021/acs.langmuir.3c02821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Superhydrophobic textiles with multifunctional characteristics are highly desired and have attracted tremendous research attention. This research employs a simple dip-coating method to obtain a fluorine-free silica-based superhydrophobic and superoleophilic cotton fabric. Pristine cotton fabric is coated with SiO2 nanoparticles and octadecylamine. SiO2 nanoparticles are anchored on the cotton fabric to increase surface roughness, and octadecyl amine lowers the surface energy, turning the hydrophilic cotton fabric into superhydrophobic. The designed cotton fabric exhibits a water contact angle of 159° and a sliding angle of 7°. The prepared cotton fabric is characterized by attenuated total reflectance-fourier transform infrared spectroscopy, X-ray diffraction, atomic force microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. In addition, the coated fabric reveals excellent features, including mechanical and chemical stability, superhydrophobicity, superoleophilicity, and the self-cleaning ability. SiO2 nanoparticles and octadecylamine-coated cotton fabric demonstrate exceptional oil-water separation and wastewater remediation performance by degrading the methylene blue solution up to 89% under visible light. The oil-water separation ability is tested against five different oils with more than 90% separation efficiency. This strategy has the advantages of low-cost precursors, a simple and scalable coating method, enhanced superhydrophobicity and superoleophilicity, self-cleaning ability, efficient oil-water separation, and exceptional wastewater remediation performance.
Collapse
Affiliation(s)
- Waqas Ahmad
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Naseer Ahmad
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sufian Rasheed
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Ikram Nabeel
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Abrar Mohyuddin
- Department of Chemistry, The Emerson University, Multan 60000, Pakistan
| | - Muhammad Tariq Riaz
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
6
|
Chandra A, Ghosh S, Sarkar R, Sarkar S, Chattopadhyay KK. TiO 2 nanorods decorated Si nanowire hierarchical structures for UV light activated photocatalytic application. CHEMOSPHERE 2024; 352:141249. [PMID: 38266878 DOI: 10.1016/j.chemosphere.2024.141249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Water remediation techniques like photolysis have recently piqued the interest of many researchers due to water contamination resulting from heavy industrialization and urbanization. In the current work, as-synthesized TiO2 nanorod decorated vertically aligned silicon nanowire (SiNW) leads to a hierarchical morphological structure formation. The photocatalytic nature of the fabricated SiNW/TiO2 nanoheterojunction is examined by the dye degradation of textile pollutants like methylene blue (MB), rhodamine B (RhB), and eosin B (EB). The catalytic dye degradation investigations revealed that 4 h hydrothermal synthesis of TiO2 on the surface of SiNW (ST4) exhibited excellent catalytic behaviour. In the presence of H2O2 and UV irradiation, the ST4 nanoheterostructure can degrade 98.89% of the model pollutant methylene blue (MB) in 15 min, demonstrating remarkable photocatalytic performance. The direct Z-scheme heterojunction exhibited by the SiNW/TiO2 structure facilitates a more efficient charge transfer mechanism with higher reducing and oxidizing ability leading to enhanced photocatalytic behaviour. The degradation pathway examined by LC-MS studies demonstrated the complete breakdown of the organic MB dye molecules ultimately mineralizing into CO2, H2O, and other inorganic substances. The photocatalyst ST4 exhibited excellent reusability and stability after multiple cycles of dye degradation enabling its use in practical water purification purposes.
Collapse
Affiliation(s)
- Ankita Chandra
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata, 700032, India
| | - Shrabani Ghosh
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata, 700032, India
| | - Ratna Sarkar
- Thin film and Nano Science Laboratory, Department of Physics, Jadavpur University, Kolkata, 700032, India
| | - Sourav Sarkar
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata, 700032, India
| | - K K Chattopadhyay
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata, 700032, India; Thin film and Nano Science Laboratory, Department of Physics, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
7
|
Ibarra-Cervantes NF, Vázquez-Núñez E, Gómez-Solis C, Fernández-Luqueño F, Basurto-Islas G, Álvarez-Martínez J, Castro-Beltrán R. Green synthesis of ZnO nanoparticles from ball moss (Tillandsia recurvata) extracts: characterization and evaluation of their photocatalytic activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13046-13062. [PMID: 38240974 DOI: 10.1007/s11356-024-31929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024]
Abstract
Green synthesis (GS), referred to the synthesis using bioactive agents such as plant materials, microorganisms, and various biowastes, prioritizing environmental sustainability, has become increasingly relevant in international scientific practice. The availability of plant resources expands the scope of new exploration opportunities, including the evaluation of new sources of organic extracts, for instance, to the best of our knowledge, no scientific articles have reported the synthesis of zinc oxide nanoparticles (ZnO NPs) from organic extracts of T. recurvata, a parasitic plant very common in semiarid regions of Mexico.This paper presents a greener and more efficient method for synthesizing ZnO NPs using T. recurvata extract as a reducing agent. The nanoparticles were examined by different techniques such as UV-vis spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and BET surface analysis. The photocatalytic and adsorptive effect of ZnO NPs was investigated against methylene blue (MB) dye in aqueous media under sunlight irradiation considering an equilibrium time under dark conditions. ZnO nanoparticles were highly effective in removing MB under sunlight irradiation conditions, showing low toxicity towards human epithelial cells, making them promising candidates for a variety of applications. This attribute fosters the use of green synthesis techniques for addressing environmental issues.This study also includes the estimation of the supported electric field distributions of ZnO NPs in their individual spherical or rounded shapes and their randomly oriented organization, considering different diameters, by simulating their behavior in the visible wavelength range, observing resonant enhancements due to the strong light-matter interaction around the ZnO NPs boundaries.
Collapse
Affiliation(s)
- Nayeli Fabiola Ibarra-Cervantes
- Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias E Ingenierías, Grupo de Investigación Sobre Aplicaciones Nano y Bio Tecnológicas Para La Sostenibilidad (NanoBioTS), Universidad de Guanajuato, Lomas del Bosque 103, Lomas del Campestre, C.P. 37150, León, Guanajuato, Mexico
| | - Edgar Vázquez-Núñez
- Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias E Ingenierías, Grupo de Investigación Sobre Aplicaciones Nano y Bio Tecnológicas Para La Sostenibilidad (NanoBioTS), Universidad de Guanajuato, Lomas del Bosque 103, Lomas del Campestre, C.P. 37150, León, Guanajuato, Mexico.
| | | | - Fabian Fernández-Luqueño
- Sustainability of Natural Resources and Energy Program, C.P. 25900, Cinvestav-Saltillo, Coahuila, Mexico
| | | | | | | |
Collapse
|
8
|
Gadore V, Mishra SR, Ahmaruzzaman M. Metal sulphides and their heterojunctions for photocatalytic degradation of organic dyes-A comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90410-90457. [PMID: 37474851 DOI: 10.1007/s11356-023-28753-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Water pollution caused by organic dyes is one of the greatest threats to the ecosystem. The removal of dyes from water has remained a challenge for scientists. Recently, metal sulphides have emerged as a potential candidate for water remediation applications. The efficient charge transportation, greater surface-active sites, and low bandgap of metal sulphides make them an excellent choice of semiconductor photocatalysts for degradation of dyes. This review summarises the potential application of metal sulphides and their heterojunctions for the photocatalytic degradation of organic dyes from wastewater. A detailed study has been presented on the synthesis, basics of photodegradation and heterojunctions and photocatalytic activity. The effect of the use of templates, doping agents, synthesis route, and various other factors affecting the photocatalytic activity of metal sulphides have been summarised in this review. The synthesis techniques, characterisation techniques, mechanism of degradation of organic dyes by Z-scheme heterojunction photocatalyst, reusability and stability of metal sulphides, and the scope of future research are also discussed. This study indicates that Scopus-based core gathered data could be used to give an objective overview of the global dye degradation research from 2008 to 2023 (15 years). All data (articles, authors, keywords, and publications) is compiled in the Scopus database. For the bibliometric study, 1962 papers relevant to dye photodegradation by sulfide-based photocatalysts were found, and this number rises yearly. A bibliometric analysis provides a 15-year evaluation of the state-of-the-art research on the impact of metal sulfide-based photocatalysts on the photodegradation of dyes.
Collapse
Affiliation(s)
- Vishal Gadore
- Department of Chemistry, National Institute of Technology Silchar, 788010, Silchar, Assam, India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology Silchar, 788010, Silchar, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, 788010, Silchar, Assam, India.
| |
Collapse
|
9
|
Influence of Calcination Temperature on Photocatalyst Performances of Floral Bi2O3/TiO2 Composite. Catalysts 2022. [DOI: 10.3390/catal12121635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heterojunction photocatalytic materials show excellent performance in degrading toxic pollutants. This study investigates the influence of calcination temperature on the performances of floral Bi2O3/TiO2 composite photocatalyst crystal, which was prepared with glycerol, bismuth nitrate, and titanium tetrachloride as the major raw materials via the solvothermal method. XRD, SEM/TEM, BET, Uv-vis, and XPS were employed to analyze the crystal structure, morphology, specific surface area, band gap, and surface chemical structure of the calcined temperature catalysts. The calcination temperature influence on the catalytic performance of composite photocatalysis was tested with rhodamine B (RhB) as the degradation object. The results revealed the high catalytic activity and higher photocatalytic performance of the Bi2O3/TiO2 catalyst. The degradation efficiency of the Bi2O3/TiO2 catalyst to RhB was 97%, 100%, and 91% at 400 °C, 450 °C, and 500 °C calcination temperatures, respectively, in which the peak degradation activity appeared at 450 °C. The characterization results show that the appropriate calcination temperature promoted the crystallization of the Bi2O3/TiO2 catalyst, increased its specific surface area and the active sites of catalytic reaction, and improved the separation efficiency of electrons and holes.
Collapse
|
10
|
Bisht K, Kumar G, Dutta RK. Amine-Functionalized Crystalline Carbon Nanodots Decorated on Bi 2WO 6 Nanoplates as Solar Photocatalysts for Efficient Degradation of Tetracycline and Ciprofloxacin. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Krishanan Bisht
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee247667, India
| | - Gandharve Kumar
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee247667, India
| | - Raj Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee247667, India
| |
Collapse
|
11
|
Goren A, Recepoğlu YK, Edebali̇ Ö, Sahin C, Genisoglu M, Okten HE. Electrochemical Degradation of Methylene Blue by a Flexible Graphite Electrode: Techno-Economic Evaluation. ACS OMEGA 2022; 7:32640-32652. [PMID: 36119975 PMCID: PMC9476165 DOI: 10.1021/acsomega.2c04304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
In this study, electrochemical removal of methylene blue (MB) from water using commercially available and low-cost flexible graphite was investigated. The operating conditions such as initial dye concentration, initial solution pH, electrolyte dose, electrical potential, and operating time were investigated. The Box-Behnken experimental design (BBD) was used to optimize the system's performance with the minimum number of tests possible, as well as to examine the independent variables' impact on the removal efficiency, energy consumption, operating cost, and effluent MB concentration. The electrical potential and electrolyte dosage both improved the MB removal efficiency, since increased electrical potential facilitated production of oxidizing agents and increase in electrolyte dosage translated into an increase in electrical current transfer. As expected, MB removal efficiency increased with longer operational periods. The combined effects of operating time-electrical potential and electrical potential-electrolyte concentration improved the MB removal efficiency. The maximum removal efficiency (99.9%) and lowest operating cost (0.012 $/m3) were obtained for initial pH 4, initial MB concentration 26.5 mg/L, electrolyte concentration 0.6 g/L, electrical potential 3 V, and operating time 30 min. The reaction kinetics was maximum for pH 5, and as the pH increased the reaction rates decreased. Consequent techno-economic assessment showed that electrochemical removal of MB using low-cost and versatile flexible graphite had a competitive advantage.
Collapse
Affiliation(s)
- Aysegul
Yagmur Goren
- Department
of Environmental Engineering, Izmir Institute
of Technology, İzmir 35430, Turkey
| | - Yaşar Kemal Recepoğlu
- Department
of Chemical Engineering, Izmir Institute
of Technology, İ zmir 35430, Turkey
| | - Özge Edebali̇
- Department
of Environmental Engineering, Izmir Institute
of Technology, İzmir 35430, Turkey
| | - Cagri Sahin
- Department
of Environmental Engineering, Izmir Institute
of Technology, İzmir 35430, Turkey
| | - Mesut Genisoglu
- Department
of Environmental Engineering, Izmir Institute
of Technology, İzmir 35430, Turkey
| | - Hatice Eser Okten
- Department
of Environmental Engineering, Izmir Institute
of Technology, İzmir 35430, Turkey
- Environmental
Development Application and Research Centre, İzmir Institute of Technology, İzmir 35430, Turkey
| |
Collapse
|