1
|
Mukherjee P, Sharma RS, Mishra V. Deciphering the ecological impact of azo dye pollution through microbial community analysis in water-sediment microcosms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34445-w. [PMID: 39088170 DOI: 10.1007/s11356-024-34445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
The uncontrolled release of untreated dyeing wastewater into aquatic ecosystems poses global environmental risks. It alters native microbial communities and associated ecological processes, often going unnoticed. Therefore, the influence of acid orange 7 dye (AO7) contamination on the natural microbial community was investigated using a water-sediment microcosm. Compared to sterile microcosms, complete dye decolourization in natural microcosms showed microbial communities' significance in combating xenobiotic contamination. Proteobacteria dominated the water community, whereas Firmicutes dominated the sediment. AO7 exposure induced notable shifts in the structural composition of the bacterial community in both water and sediment. Niveispirillum exhibited a marked decrease, and Pseudomonas demonstrated a notable increase. The - 9.0 log2FC in Niveispirillum, a nitrogen-fixing bacterium, from 24.4% in the control to 0.1% post-treatment, may disrupt nutrient balance, plant growth, and ecosystem productivity. Conversely, elevated levels of Pseudomonas sp. resulting from azo dye exposure demonstrate its ability to tolerate and bioremediate organic pollutants, highlighting its resilience. Functional profiling via KEGG pathway analysis revealed differential expression patterns under AO7 stress. Specifically, valine, leucine, and isoleucine degradation pathways in water decreased by 52.2%, and cysteine and methionine metabolism ceased expression entirely, indicating reduced protein metabolism and nutrient bioavailability under dye exposure. Furthermore, in sediment, glutathione metabolism ceased, indicating increased oxidative stress following AO7 infusion. However, C5-branched dibasic acid metabolism and limonene and pinene degradation were uniquely expressed in sediment. Decreased methane metabolism exacerbates the effects of global warming on aquatic ecosystems. Further, ceased-butanoate metabolic pathways reflect the textile dye wastewater-induced adverse impact on ecological processes, such as organic matter decomposition, energy flow, nutrient cycling, and community dynamics that help maintain self-purification and ecological balance in river ecosystems. These findings underscore the critical need for more comprehensive environmental monitoring and management strategies to mitigate ecological risks posed by textile dyes in aquatic ecosystems, which remain unnoticed.
Collapse
Affiliation(s)
- Paromita Mukherjee
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007, India
| | - Radhey Shyam Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007, India
- Delhi School of Climate Change and Sustainability, Institute of Eminence, University of Delhi, Delhi, 110007, India
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007, India.
- Centre for Inter-Disciplinary Studies of Mountain and Hill Environment (CISMHE), University of Delhi, Delhi, 110007, India.
- DDA Biodiversity Parks Programme, CEMDE, University of Delhi, Delhi, India.
| |
Collapse
|
2
|
Saravanan P, Saravanan V, Rajeshkannan R, Arnica G, Rajasimman M, Baskar G, Pugazhendhi A. Comprehensive review on toxic heavy metals in the aquatic system: sources, identification, treatment strategies, and health risk assessment. ENVIRONMENTAL RESEARCH 2024; 258:119440. [PMID: 38906448 DOI: 10.1016/j.envres.2024.119440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Heavy metal pollution in water sources has become a major worldwide environmental issue, posing a threat to aquatic ecosystems and human health. The pollution of the aquatic environment is increasing as a result of industrialization, climate change, and urban development. The sources of heavy metal pollution in water include mining waste, leachates from landfills, municipal and industrial wastewater, urban runoff, and natural events such as volcanism, weathering, and rock abrasion. Heavy metal ions are toxic and potentially carcinogenic. They can also buildup in biological systems and cause bioaccumulation even at low levels of exposure, heavy metals can cause harm to organs such as the nervous system, liver and lungs, kidneys and stomach, skin, and reproductive systems. There were various approaches tried to purify water and maintain water quality. The main purpose of this article was to investigate the occurrence and fate of the dangerous contaminants (Heavy metal and metalloids) found in domestic and industrial effluents. This effluent mixes with other water streams and is used for agricultural activities and other domestic activities further complicating the issue. It also discussed conventional and non-conventional treatment methods for heavy metals from aquatic environments. Conclusively, a pollution assessment of heavy metals and a human health risk assessment of heavy metals in water resources have been explained. In addition, there have been efforts to focus on heavy metal sequestration from industrial waste streams and to create a scientific framework for reducing heavy metal discharges into the aquatic environment.
Collapse
Affiliation(s)
- Panchamoorthy Saravanan
- Department of Petrochemical Technology, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620024, India.
| | - V Saravanan
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| | - R Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| | - G Arnica
- Department of Petrochemical Technology, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 600119, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Arivalagan Pugazhendhi
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro 76130, Mexico; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India.
| |
Collapse
|
3
|
Kumar V, Kumar J, Alam A, Thakur VR, Kumar V, Srivastava SK, Kayal T, Jha DN, Das BK. Ecological and human health risk from exposure to metal contaminated sediments in a subtropical river affected by anthropogenic activities: A case study from river Yamuna. MARINE POLLUTION BULLETIN 2024; 203:116498. [PMID: 38761682 DOI: 10.1016/j.marpolbul.2024.116498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Heavy metal enrichment in river sediments poses a significant risk to human and aquatic health. The Yamuna River faces severe challenges due to untreated industrial and domestic wastewater discharge. The study evaluates sediment metal content, ecological and human health risks, and potential sources. Results showed Cd and Pb exhibited moderate to severe contamination and displayed ecological risk based on contamination factor, enrichment factor, and potential ecological risk. According to synergistic indices (pollution load index, PINemerow, toxic risk index, contamination security index, mean probable effects level quotients, and probability of toxicity), the sediment in the Yamuna River doesn't seem to have a risk or enrichment from combined metals. Cd and Pb mainly originate from anthropogenic sources. Hazard index (< 1) and carcinogenic risk (2.2 × 10-7 to 4.7 × 10-5) assessments suggest metal didn't pose any risk to humans exposed to sediment. The present study aids in developing pollution control strategies for the Yamuna River.
Collapse
Affiliation(s)
- Vikas Kumar
- ICAR-Central Inland Fisheries Research Institute, Regional Centre, Prayagraj 211002, India.
| | - Jeetendra Kumar
- ICAR-Central Inland Fisheries Research Institute, Regional Centre, Prayagraj 211002, India
| | - Absar Alam
- ICAR-Central Inland Fisheries Research Institute, Regional Centre, Prayagraj 211002, India
| | | | - Vijay Kumar
- ICAR-Central Inland Fisheries Research Institute, Regional Centre, Prayagraj 211002, India
| | - Saket Kumar Srivastava
- ICAR-Central Inland Fisheries Research Institute, Regional Centre, Prayagraj 211002, India
| | - Tania Kayal
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Dharm Nath Jha
- ICAR-Central Inland Fisheries Research Institute, Regional Centre, Prayagraj 211002, India.
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India.
| |
Collapse
|
4
|
Mukherjee P, Sharma RS, Rawat D, Sharma U, Karmakar S, Yadav A, Mishra V. Microbial communities drive flux of acid orange 7 and crystal violet dyes in water-sediment system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119699. [PMID: 38070426 DOI: 10.1016/j.jenvman.2023.119699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 01/14/2024]
Abstract
Unchecked dye effluent discharge poses escalating environmental and economic concerns, especially in developing nations. While dyes are well-recognized water pollutants, the mechanisms of their environmental spread are least understood. Therefore, the present study examines the partitioning of Acid Orange 7 (AO7) and Crystal Violet (CV) dyes using water-sediment microcosms and reports that native microbes significantly affect AO7 decolorization and transfer. Both dyes transition from infused to pristine matrices, reaching equilibrium in a fortnight. While microbes influence CV partitioning, their role in decolorization is minimal, emphasizing their varied impact on the environmental fate of dyes. Metagenomic analyses reveal contrasting microbial composition between control and AO7-infused samples. Control water samples displayed a dominance of Proteobacteria (62%), Firmicutes (24%), and Bacteroidetes (9%). However, AO7 exposure led to Proteobacteria reducing to 57% and Bacteroidetes to 3%, with Firmicutes increasing to 34%. Sediment samples, primarily comprising Firmicutes (47%) and Proteobacteria (39%), shifted post-AO7 exposure: Proteobacteria increased to 53%, and Firmicutes dropped to 38%. At the genus level, water samples dominated by Niveispirillum (34%) declined after AO7 exposure, while Bacillus and Pseudomonas increased. Notably, Serratia and Sphingomonas, known for azo dye degradation, rose post-exposure, hinting at their role in AO7 decolorization. Conversely, sediment samples showed a decrease in the growth of Bacillus and an increase in that of Pseudomonas and Serratia. These findings emphasize the significant role of microbial communities in determining the environmental fate of dyes, providing insights on its environmental implications and management.
Collapse
Affiliation(s)
- Paromita Mukherjee
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110 007, India
| | - Radhey Shyam Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110 007, India; Delhi School of Climate Change & Sustainability, Institute of Eminence, University of Delhi, Delhi, 110007, India.
| | - Deepak Rawat
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110 007, India; Department of Environmental Studies, Janki Devi Memorial College (University of Delhi), New Delhi, 110060, India
| | - Udita Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110 007, India
| | - Swagata Karmakar
- Department of Environmental Studies, Ram Lal Anand College, Benito Juarez Marg, South Campus, New Delhi-110021, India
| | - Archana Yadav
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110 007, India
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110 007, India; Centre for Interdisciplinary Studies on Mountain & Hill Environment (CISMHE), University of Delhi, Delhi, 110007, India; Biodiversity Parks, University of Delhi- Delhi Development Authority Programme, Delhi, 110007, India.
| |
Collapse
|
5
|
Wei S, Berti E, Ma D, Wu Q, Peng Y, Yuan C, Zhao Z, Jin X, Ni X, Wu F, Yue K. Global patterns and drivers of lead concentration in inland waters. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132455. [PMID: 37677973 DOI: 10.1016/j.jhazmat.2023.132455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Water bodies are important carriers for lead (Pb) biogeochemical cycling, which is a key pathway of Pb transport. Although existing studies on Pb loading in inland waters have developed rapidly, a quantitative assessment of the distribution patterns and drivers of Pb concentration in inland waters at the global scale remains unclear. Here, by analyzing 1790 observations collected from 386 independent publications, we assessed the spatial distribution and drivers of Pb concentration in inland waters worldwide. We found that (1) globally, the median of Pb concentration in inland waters was 5.81 μg L-1; (2) among different inland water types, Pb concentration was higher in rivers, and the highest Pb concentration was in industrial land in terms of land use type; (3) Pb concentration in inland waters were positively driven by potential evapotranspiration, elevation and road density; and (4) Pb concentration showed a negative relationship with absolute latitude, decreasing from tropic to boreal regions. Overall, our global assessment of the patterns and drivers of Pb concentration in inland waters contributed to a better understanding of the natural and anthropogenic attributions of Pb in the inland hydrological cycling.
Collapse
Affiliation(s)
- Shuyuan Wei
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Emilio Berti
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, Germany
| | - Diting Ma
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Qiqian Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an 311300, China
| | - Yan Peng
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming 365002, China
| | - Chaoxiang Yuan
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Zemin Zhao
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Xia Jin
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Xiangyin Ni
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming 365002, China
| | - Fuzhong Wu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming 365002, China
| | - Kai Yue
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming 365002, China.
| |
Collapse
|
6
|
Gupta S, Gupta SK. Application of Monte Carlo simulation for carcinogenic and non-carcinogenic risks assessment through multi-exposure pathways of heavy metals of river water and sediment, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3465-3486. [PMID: 36346487 DOI: 10.1007/s10653-022-01421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/14/2022] [Indexed: 06/01/2023]
Abstract
Heavy metal contamination has severe detrimental impacts on the entire river ecosystem's quality and causes potential risks to human health. An integrated approach comprising deterministic and probabilistic (Monte Carlo simulation) models with sensitivity analysis was adopted to determine heavy metals' chronic daily intake (CDI) and their associated health risks from the riverine ecosystem. Both carcinogenic and non-carcinogenic risks of water and sediment were estimated through multi-exposure pathways. The analytical results indicated that the concentration patterns of heavy metals in sediment (Fe > Mn > Sr > Zn > Cr > Cu > Cd) were slightly different and higher than in water (Fe > Zn > Cr > Sr > Mn > Cu > Cd). The potential carcinogenic risks of Cr and Cd in sediment (5.06E-02, 5.98E-04) were significantly (p < 0.05) higher than in water (9.08E-04, 8.97E-05). Moreover, 95th percentile values of total cancer risk (TCR) for sediment (1.80E-02, 3.37E-02) were about 22 and 143 times higher than those of water (8.10E-04, 2.36E-04) for adults and children, respectively. The analysis of non-carcinogenic risk revealed a significantly higher overall hazard index (OHI) for both sediment (adults: 1.26E+02, children: 1.11E+03) and water (adults: 3.26E+00, children: 9.85E+00) than the USEPA guidelines (OHI ≤ 1). The sensitivity analysis identified that the concentration of heavy metals was the most influencing input factor in health risk assessment. Based on the reasonable maximum exposure estimate (RME), the study will be advantageous for researchers, scientists, policymakers, and regulatory authorities to predict and manage human health risks.
Collapse
Affiliation(s)
- Suyog Gupta
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Sunil Kumar Gupta
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India.
| |
Collapse
|
7
|
Mallya DS, Abdikheibari S, Dumée LF, Muthukumaran S, Lei W, Baskaran K. Removal of natural organic matter from surface water sources by nanofiltration and surface engineering membranes for fouling mitigation - A review. CHEMOSPHERE 2023; 321:138070. [PMID: 36775036 DOI: 10.1016/j.chemosphere.2023.138070] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Given that surface water is the primary supply of drinking water worldwide, the presence of natural organic matter (NOM) in surface water presents difficulties for water treatment facilities. During the disinfection phase of the drinking water treatment process, NOM aids in the creation of toxic disinfection by-products (DBPs). This problem can be effectively solved using the nanofiltration (NF) membrane method, however NOM can significantly foul NF membranes, degrading separation performance and membrane integrity, necessitating the development of fouling-resistant membranes. This review offers a thorough analysis of the removal of NOM by NF along with insights into the operation, mechanisms, fouling, and its controlling variables. In light of engineering materials with distinctive features, the potential of surface-engineered NF membranes is here critically assessed for the impact on the membrane surface, separation, and antifouling qualities. Case studies on surface-engineered NF membranes are critically evaluated, and properties-to-performance connections are established, as well as challenges, trends, and predictions for the field's future. The effect of alteration on surface properties, interactions with solutes and foulants, and applications in water treatment are all examined in detail. Engineered NF membranes containing zwitterionic polymers have the greatest potential to improve membrane permeance, selectivity, stability, and antifouling performance. To support commercial applications, however, difficulties related to material production, modification techniques, and long-term stability must be solved promptly. Fouling resistant NF membrane development would be critical not only for the water treatment industry, but also for a wide range of developing applications in gas and liquid separations.
Collapse
Affiliation(s)
| | | | - Ludovic F Dumée
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Shobha Muthukumaran
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, VIC, 8001, Australia
| | - Weiwei Lei
- Institute of Frontier Materials, Deakin University, Waurn Ponds, Geelong, Victoria. 3220, Australia
| | - Kanagaratnam Baskaran
- School of Engineering, Deakin University, Waurn Ponds, Geelong, Victoria, 3216, Australia
| |
Collapse
|
8
|
Wu CJ, Ho AC, Chen SY, Pan CH, Chuang HC, Lai CH. Exposure to Heavy Metals and Serum Adiponectin Levels among Workers: A 2-Year Follow-Up Study. Metabolites 2023; 13:metabo13020158. [PMID: 36837777 PMCID: PMC9961065 DOI: 10.3390/metabo13020158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The workers exposed to metal fumes had an increased risk of metabolic syndrome, which was correlated with decreased serum adiponectin. Thus, we aimed to explore whether heavy metal exposure affects the adiponectin level. There were 96 male workers recruited from a shipyard at baseline. Apart from 82 participants completed the follow-up assessments, new participants were recruited in next year. Finally, there were 100 welding workers in the exposure group and 31 office workers in the control group. Inferential statistics on repeated measures were performed using generalized estimating equations. A weighted quantile sum (WQS) regression model was conducted to examine the joint effect of the multimetal exposure with serum adiponectin. Significantly negative associations of metals with adiponectin were detected in the welding workers, including Cr (β = -0.088; 95% CI: -0.148, -0.027), Mn (β = -0.174; 95% CI: -0.267, -0.081), Co (β = -0.094; 95% CI: -0.158, -0.029), Ni (β = -0.108; 95% CI: -0.208, -0.008), Cd (β = -0.067; 95% CI: -0.115, -0.018), and Pb (β = -0.089; 95% CI: -0.163, -0.015). The WQS regression suggested that Pb was the greatest contributor. In conclusion, our findings highlighted that welding workers exposed to heavy metals would reduce serum adiponectin.
Collapse
Affiliation(s)
- Chen-Jung Wu
- Division of Family Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - A-Chuan Ho
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Shih-Ya Chen
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Hong Pan
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City 221, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Huang Lai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|