1
|
Shah FM, Wang M, Zhao J, Lee J, Farago PV, Manfron J, Khan IA, Ali A. Insecticidal and Repellent Activity of Piper crassinervium Essential Oil and Its Pure Compounds Against Imported Fire Ants (Hymenoptera: Formicidae). Molecules 2024; 29:5430. [PMID: 39598819 PMCID: PMC11597710 DOI: 10.3390/molecules29225430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Piper crassinervium Kunth (Piperaceae) essential oil (EO) was evaluated for its toxicity and repellency against red imported fire ants (RIFA), Solenopsis invicta Buren, and a hybrid (HIFA) of red (S. invicta) and black (S. richteri Forel) imported fire ants. Through bioactivity-guided fractionation, two major components, elemicin and myristicin, were isolated from the EO. Removal of treated sand in a digging bioassay was used as the criterion for repellency. The EO showed significantly higher repellency at concentrations of 7.8 µg/g against RIFA and HIFA workers, as compared to the DEET (N,N-diethyl-meta-toluamide) or ethanol control. Elemicin exhibited repellency at 3.9 and 7.8 µg/g against RIFA and HIFA workers, respectively, whereas myristicin was active at 7.8 µg/g against both species. DEET failed at 31.25 µg/g against RIFA and 15.6 µg/g against HIFA. The EO showed LC50 values of 97.9 and 73.7 µg/g against RIFA and HIFA workers, respectively. Myristicin was more toxic against RIFA and HIFA with LC50 values of 54.3 and 35.3 µg/g, respectively. Elemicin showed 20-40% mortality at the highest screening dose of 125 µg/g. Fipronil exhibited the highest toxicity against RIFA and HIFA, with LC50 of 0.43 and 0.51 µg/g, respectively. Different formulations of these natural products should be evaluated to explore their use potential under natural field conditions.
Collapse
Affiliation(s)
- Farhan Mahmood Shah
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Mei Wang
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, University, MS 38677, USA
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Joseph Lee
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Paulo Vitor Farago
- Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Jane Manfron
- Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Abbas Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
2
|
El-Amier YA, Abduljabbar BT, El-Zayat MM, Sarker TC, Abd-ElGawad AM. Biosynthesis of metal/metal oxide nanoparticles via Deverra tortuosa: characterization, GC/MS profiles, and biological potential. Sci Rep 2024; 14:23522. [PMID: 39384959 PMCID: PMC11464916 DOI: 10.1038/s41598-024-74471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
Since the beginning of humanity, people have used wild medicinal plants for the treatment of various diseases. Nowadays, researchers and scientists pay attention to exploring new tools to maximize the efficacy of natural products from natural resources, and among these tools formulation of nanoparticles is very promising. The green synthesis of metal/metal oxide nano-solutions using the Deverra tortuosa extract has still not been explored well. This study aims to prepare many metal/metal oxide nanoparticle solutions such as ZnO-NPs, SeO2-MNPs, and Ag-NPs via the methanol extract of D. tortuosa as safe, easy, green, and economic approach as well as characterize the chemical components of D. tortuosa plant by GC-MS spectroscopy analysis. The synthesized M-NPs solutions were characterized by UV-visible (UV-Vis) spectroscopy, Transmission Electron Microscope (TEM), zeta potential, Fourier Transform Infrared (FT-IR) spectroscopy, and phytochemical analyses. The potential antioxidant capacity was estimated for the methanol extract of this plant along with the metal/metal oxide nanoparticles solutions by DPPH assay. In addition, the cytotoxic activity was in vitro assessed for the inspected samples against various tumor and normal cell lines applying MTT assay. The application of the D. tortuosa methanolic extract resulted in NPs with a range of 11.79-85.9 nm which was characterized by UV-Vis spectroscopy, TEM, zeta potential, and FT-IR spectroscopy that revealed various functional groups of the tested samples. The GC-MS analysis of the D. tortuosa methanolic extract showed the presence of 31 chemical compounds with 2-methyl-3-oxocyclopent-1-ene-1-carboxylic acid, methyl oleate, and 6-allyl-4,5-dimethoxybenzo[d][1,3]-dioxole as major constituents. The extract showed considerable antioxidant activity as well as antimicrobial activity that was assessed also against varied bacterial and fungal species. Remarkable potencies for the investigated metal/metal oxide nanoparticle solutions hinder the growth of the tumor cell lines, in addition to the growth of the microbial species. Based on the determined biological activities of the produced NPs, future study is recommended to characterize the pure authentic compounds that are identified within the D. tortuosa as major compounds as well as evaluate their modes of action.
Collapse
Affiliation(s)
- Yasser A El-Amier
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Balsam T Abduljabbar
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mustafa M El-Zayat
- Department of Biology, Faculty of Science, New Mansoura University, New Mansoura City, 35511, Egypt
- Unit of Genetic Engineering and Biotechnology, Mansoura University, Mansoura, 35516, Egypt
| | - Tushar C Sarker
- Texas A & M AgriLife Research Center, Overton, TX, 75684, USA
| | - Ahmed M Abd-ElGawad
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
3
|
Jesser E, Yeguerman CA, Urrutia RI, Murray AP, Domini C, Werdin-González JO. Development and characterization of nanoemulsions loaded with essential oil and β-cypermethrin and their bioefficacy on insect pest of economic and medical importance. PEST MANAGEMENT SCIENCE 2023; 79:4162-4171. [PMID: 37319327 DOI: 10.1002/ps.7613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/22/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The development of novel and ecofriendly tools plays an important role in insect pest management. Nanoemulsions (NEs) based on essential oils (EOs) offer a safer alternative for human health and the environment. This study aimed to elaborate and evaluate the toxicological effects of NEs containing peppermint or palmarosa EOs combined with β-cypermethrin (β-CP) using ultrasound technique. RESULTS The optimized ratio of active ingredients to surfactant was 1:2. The NEs containing peppermint EO combined with β-CP (NEs peppermint/β-CP) were polydisperse with two peaks at 12.77 nm (33.4% intensity) and 299.1 nm (66.6% intensity). However, the NEs containing palmarosa EO combined with β-CP (NEs palmarosa/β-CP) were monodisperse with a size of 104.5 nm. Both NEs were transparent and stable for 2 months. The insecticidal effect of NEs was evaluated against Tribolium castaneum and Sitophilus oryzae adults, as well as Culex pipiens pipiens larvae. On all these insects, NEs peppermint/β-CP enhanced pyrethroid bioactivity from 4.22- to 16-folds while NEs palmarosa/β-CP, from 3.90- to 10.6-folds. Moreover, both NEs maintained high insecticidal activities against all insects for 2 months, although a slight increase of the particle size was detected. CONCLUSION The NEs elaborated in this work can be considered as highly promising formulations for the development of new insecticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Emiliano Jesser
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, Bahía Blanca, Buenos Aires, 8000, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, Bahía Blanca, Buenos Aires, 8000, Argentina
| | - Cristhian Alan Yeguerman
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 671, Bahía Blanca, Buenos Aires, 8000, Argentina
| | - Rodrigo Iñaki Urrutia
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 671, Bahía Blanca, Buenos Aires, 8000, Argentina
| | - Ana Paula Murray
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, Bahía Blanca, Buenos Aires, 8000, Argentina
| | - Claudia Domini
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, Bahía Blanca, Buenos Aires, 8000, Argentina
| | - Jorge Omar Werdin-González
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, Bahía Blanca, Buenos Aires, 8000, Argentina
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 671, Bahía Blanca, Buenos Aires, 8000, Argentina
| |
Collapse
|
4
|
Ayllón-Gutiérrez R, López-Maldonado EA, Macías-Alonso M, González Marrero J, Díaz-Rubio L, Córdova-Guerrero I. Evaluation of the Stability of a 1,8-Cineole Nanoemulsion and Its Fumigant Toxicity Effect against the Pests Tetranychus urticae, Rhopalosiphum maidis and Bemisia tabaci. INSECTS 2023; 14:663. [PMID: 37504669 PMCID: PMC10380510 DOI: 10.3390/insects14070663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Pest control is a main concern in agriculture. Indiscriminate application of synthetic pesticides has caused negative impacts leading to the rapid development of resistance in arthropod pests. Plant secondary metabolites have been proposed as a safer alternative to conventional pesticides. Monoterpenoids have reported bioactivities against important pests; however, due to their high volatility, low water solubility and chemical instability, the application of these compounds has been limited. Nanosystems represent a potential vehicle for the broad application of monoterpenoids. In this study, an 1,8-cineole nanoemulsion was prepared by the low energy method of phase inversion, characterization of droplet size distribution and polydispersity index (PDI) was carried out by dynamic light scattering and stability was evaluated by centrifugation and Turbiscan analysis. Fumigant bioactivity was evaluated against Tetranychus urticae, Rhopalosiphum maidis and Bemisia tabaci. A nanoemulsion with oil:surfactant:water ratio of 0.5:1:8.5 had a droplet size of 14.7 nm and PDI of 0.178. Formulation was stable after centrifugation and the Turbiscan analysis showed no particle migration and a delta backscattering of ±1%. Nanoemulsion exhibited around 50% more bioactivity as a fumigant on arthropods when compared to free monoterpenoid. These results suggest that nanoformulations can provide volatile compounds of protection against volatilization, improving their bioactivity.
Collapse
Affiliation(s)
- Rocío Ayllón-Gutiérrez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | | | - Mariana Macías-Alonso
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Av. Mineral de Valenciana 200 Col. Fracc. Industrial Puerto Interior, Silao 36275, Mexico
| | - Joaquín González Marrero
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Av. Mineral de Valenciana 200 Col. Fracc. Industrial Puerto Interior, Silao 36275, Mexico
| | - Laura Díaz-Rubio
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | - Iván Córdova-Guerrero
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| |
Collapse
|
5
|
Ozyigit II, Dogan I, Hocaoglu-Ozyigit A, Yalcin B, Erdogan A, Yalcin IE, Cabi E, Kaya Y. Production of secondary metabolites using tissue culture-based biotechnological applications. FRONTIERS IN PLANT SCIENCE 2023; 14:1132555. [PMID: 37457343 PMCID: PMC10339834 DOI: 10.3389/fpls.2023.1132555] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/22/2023] [Indexed: 07/18/2023]
Abstract
Plants are the sources of many bioactive secondary metabolites which are present in plant organs including leaves, stems, roots, and flowers. Although they provide advantages to the plants in many cases, they are not necessary for metabolisms related to growth, development, and reproduction. They are specific to plant species and are precursor substances, which can be modified for generations of various compounds in different plant species. Secondary metabolites are used in many industries, including dye, food processing and cosmetic industries, and in agricultural control as well as being used as pharmaceutical raw materials by humans. For this reason, the demand is high; therefore, they are needed to be obtained in large volumes and the large productions can be achieved using biotechnological methods in addition to production, being done with classical methods. For this, plant biotechnology can be put in action through using different methods. The most important of these methods include tissue culture and gene transfer. The genetically modified plants are agriculturally more productive and are commercially more effective and are valuable tools for industrial and medical purposes as well as being the sources of many secondary metabolites of therapeutic importance. With plant tissue culture applications, which are also the first step in obtaining transgenic plants with having desirable characteristics, it is possible to produce specific secondary metabolites in large-scale through using whole plants or using specific tissues of these plants in laboratory conditions. Currently, many studies are going on this subject, and some of them receiving attention are found to be taken place in plant biotechnology and having promising applications. In this work, particularly benefits of secondary metabolites, and their productions through tissue culture-based biotechnological applications are discussed using literature with presence of current studies.
Collapse
Affiliation(s)
| | - Ilhan Dogan
- Department of Medical Services and Techniques, Akyazi Vocational School of Health Services, Sakarya University of Applied Science, Sakarya, Türkiye
| | - Asli Hocaoglu-Ozyigit
- Department of Biology, Faculty of Science, Marmara University, Istanbul, Türkiye
- Biology Program, Institute of Pure and Applied Sciences, Tekirdag Namık Kemal University, Tekirdag, Türkiye
| | - Bestenur Yalcin
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Bahcesehir University, Istanbul, Türkiye
| | - Aysegul Erdogan
- Application and Research Centre for Testing and Analysis, EGE MATAL, Chromatography and Spectroscopy Laboratory, Ege University, Izmir, Türkiye
| | - Ibrahim Ertugrul Yalcin
- Department of Civil Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Türkiye
| | - Evren Cabi
- Department of Biology, Faculty of Arts and Sciences, Tekirdag Namık Kemal University, Tekirdag, Türkiye
| | - Yilmaz Kaya
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Türkiye
| |
Collapse
|
6
|
Guetat A, Abdelwahab AT, Yahia Y, Rhimi W, Alzahrani AK, Boulila A, Cafarchia C, Boussaid M. Deverra triradiata Hochst. ex Boiss. from the Northern Region of Saudi Arabia: Essential Oil Profiling, Plant Extracts and Biological Activities. PLANTS 2022; 11:plants11121543. [PMID: 35736695 PMCID: PMC9231278 DOI: 10.3390/plants11121543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022]
Abstract
Devrra triradiata Hochst. ex Boiss is an occasional plant species in the Northern region of Saudi Arabia. The shrub is favored on sandy desert wadis, gypsaceous substrate, and sandy gravel desert. In folk medicine, the plant is used for many purposes; to relieve stomach pains, against intestinal parasites, and for the regulation of menstruation. The present study describes the chemical composition of the essential oils (EOs) of different plant parts of D. triradiata. In vivo and in vitro biological activities of plant extracts and essential oils were also studied. Phenylpropanoids, elemicin (flowers: 100%), dillapiole (Stems: 82.33%; and seeds: 82.61%), and apiol (roots: 72.16%) were identified as the major compounds. The highest antioxidant activity was recorded for the EOs of roots and stems (IC50 = 0.282 µg/mL and 0.706 µg/mL, respectively). For plant extracts, ethyl acetate showed the highest antioxidant activities (IC50 = 2.47 and 3.18 µg/mL). EOs showed high antifungal activity against yeasts with low azole susceptibilities (i.e., Malassezia spp. and Candida krusei). The MIC values of EOs ranged between 3.4 mg/mL and 56.4 mg/mL. The obtained results also showed phytotoxic potential of plant extracts both on the germination features of Triticum aestivum seeds and the vegetative growth of seedlings.
Collapse
Affiliation(s)
- Arbi Guetat
- Department of Biological Sciences, College of Sciences, Northern Border University, Arar 92341, Saudi Arabia;
- Laboratory of Nanobiotechnology and Valorisation of Medicinal Phytoresources, National Institute of Applied Science and Technology, University of Carthage, Tunis 1080, Tunisia;
- Correspondence:
| | - Abdelrahman T. Abdelwahab
- Department of Biological Sciences, College of Sciences, Northern Border University, Arar 92341, Saudi Arabia;
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 4293073, Egypt
| | - Yassine Yahia
- Laboratoire d’Aridoculture et Cultures Oasiennes, Institut des Régions Arides de Médenine, Médenine 4119, Tunisia;
| | - Wafa Rhimi
- Faculté des Sciences de Bizerte, Zarzouna, Université de Carthage, Carthage 7021, Tunisia;
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, 70010 Valenzano, Italy;
| | - A. Khuzaim Alzahrani
- Faculty of Applied Medical Sciences, Northern Border University, Arar 92341, Saudi Arabia;
| | - Abdennacer Boulila
- Laboratory of Natural Substances LR10INRAP02, National Institute of Research and Physico-Chemical Analyses, Biotechnopole of Sidi Thabet, Ariana 2020, Tunisia;
| | - Claudia Cafarchia
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, 70010 Valenzano, Italy;
| | - Mohamed Boussaid
- Laboratory of Nanobiotechnology and Valorisation of Medicinal Phytoresources, National Institute of Applied Science and Technology, University of Carthage, Tunis 1080, Tunisia;
| |
Collapse
|