1
|
Sibiya A, Karthikeyan S, Al-Ghanim KA, Govindarajan M, Malafaia G, Vaseeharan B. Toxicity assessment of Oreochromis mossambicus exposed to carbamazepine and selenium: Physiological and genotoxic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65764-65777. [PMID: 39604712 DOI: 10.1007/s11356-024-35534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
Although the toxicity of selenium (Se) and carbamazepine (CBZ) has already been demonstrated, the possible effects of freshwater fish co-exposure to these pollutants have not been explored. Thus, we aimed to evaluate the potential impact of Se and CBZ (alone and combined) exposure (both 5 µg/L) in Oreochromis mossambicus after 28 days. Exposure to CBZ, alone or combined with Se, significantly increases the "red blood cells" and "mean corpuscular volume." In the gills, malondialdehyde levels in the "CBZ" and "Se + CBZ" groups were lower than in the control group. Furthermore, the exposure to treatments induced a significant increase in protein carbonyl formation in gills and DNA damage in gill and liver cells. Still, acetylcholinesterase activity in the brain was not changed. Thus, our study provides insight into the toxicity of metals and pharmaceutical drugs and warns about the ecotoxicological risk posed by such mixtures.
Collapse
Affiliation(s)
- Ashokkumar Sibiya
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Campus 6th Floor, Karaikudi, Tamil Nadu, 630004, India
| | | | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India
- Department of Zoology, Government College for Women (Autonomous), Kumbakonam, Tamil Nadu, 612 001, India
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil.
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil.
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| | - Baskaralingam Vaseeharan
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Campus 6th Floor, Karaikudi, Tamil Nadu, 630004, India
| |
Collapse
|
2
|
Hamed A, Badran SR. The role of rice husk in Oreochromis niloticus safety enhancement by bio-adsorbing copper oxide nanoparticles following its green synthesis: an endeavor to advance environmental sustainability. Sci Rep 2024; 14:23730. [PMID: 39390125 PMCID: PMC11467324 DOI: 10.1038/s41598-024-74113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Lowering nanoparticles (NPs) toxicity before discharge into aquatic environments and employing agricultural waste materials for environmental sustainability are necessary nowadays. Since this has never been done, this work examines how green CuO NPs treated with rice husk (RH) as a bio-adsorbent may be safer for Nile tilapia (Oreochromis niloticus) than chemically manufactured ones. So, five groups of fish were randomly placed in glass aquaria. One group was a control, and four groups received 50 mg/L green and chemically produced CuO NPs (GS and CS) with and without RH for 24, 48, and 96 h. RH was collected from all groups, and the results showed GS-CuO NPs had a greater adsorptive capacity than CS-CuO NPs after all time intervals. After analyzing fish indicators in all groups compared to the control, higher Cu bioaccumulation was exhibited in the liver and gills. The liver and gills showed elevated levels of glutathione peroxidase (GPx), catalase (CAT), and thiobarbituric acid reactive substances (TBARS), while the levels of glutathione reduced (GSH) were significantly lower. In addition, Cu exposure impaired liver and gill histology. Finally, our results indicated that using RH as an adsorbent for CuO NPs after their green synthesis instead of chemical synthesis before they enter the aquatic environment can enhance the overall health of fish and environmental sustainability.
Collapse
Affiliation(s)
- Aliaa Hamed
- Department of Biology, Basic Science Center, Misr University for Science and Technology (MUST), Giza, Egypt.
| | - Shereen R Badran
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Hamed S, El-Kassas S, Abo-Al-Ela HG, Abdo SE, Al Wakeel RA, Abou-Ismail UA, Mohamed RA. Interactive effects of water temperature and dietary protein on Nile tilapia: growth, immunity, and physiological health. BMC Vet Res 2024; 20:349. [PMID: 39113047 PMCID: PMC11304609 DOI: 10.1186/s12917-024-04198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/17/2024] [Indexed: 08/11/2024] Open
Abstract
Optimizing fish performance depends on several factors, with dietary protein levels and rearing temperature playing important roles. In this study, Nile tilapia fingerlings (Oreochromis niloticus) weighing an average of 20.00 ± 1.26 g were divided into nine groups (in three replicates). Each group was subjected to different water temperatures (26 °C, 28 °C, and 30 °C) and received one of three dietary protein levels (20%, 25%, and 30%) for two months. Our findings indicate that higher temperatures, particularly at 30 °C, increased water electrical conductivity and total dissolved salts, especially noticeable in fish fed 25% or 30% crude protein (CP). Lower total ammonia nitrogen levels were observed at 28 °C with 25% CP, 30 °C with 30% CP, and 26 °C with 30% CP. Hepatic growth hormone receptor 1 and insulin-like growth factor 1 expression gradually rose with higher dietary CP percentages in fish at 26 °C but declined in those at 30 °C, albeit remaining higher than in the 28 °C groups with 25% CP. Fish at 28 °C showed the best final body weights and growth performance when fed 20% or 25% CP, with no significant difference between these groups. Hepatic leptin expression did not differ significantly among groups, but hepatic fatty acid binding protein expression notably increased in fish fed 30% CP at both 26 °C and 30 °C compared to those at 28 °C with 25% CP. Within the same temperature group, fish fed 30% CP exhibited higher globulin levels, particularly thriving at 28 °C or 30 °C. Hepatic mucin-like protein expression significantly increased across all groups, especially in fish at 30 °C with 30% CP compared to those at 28 °C with 25% CP. Hepatic lysozyme expression also increased notably in fish at 30 °C with 30% CP. Notable changes in superoxide dismutase, catalase, and glutathione peroxidase expression were observed, with the highest serum superoxide dismutase and catalase activities recorded in fish at 30 °C with 25% CP. Overall, dietary protein levels of 25% and 30%, combined with temperatures of 28 °C and 30 °C, yielded favorable outcomes, particularly favoring 28 °C with 25% protein.
Collapse
Affiliation(s)
- Sara Hamed
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Seham El-Kassas
- Department of Animal Wealth Development, Animal, Poultry and Fish Breeding and Production, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Haitham G Abo-Al-Ela
- Department of Aquaculture, Genetics and Biotechnology, Faculty of Fish Resources, Suez University, Suez, 43221, Egypt.
- Department of Animal Husbandry and Animal Wealth Development, Genetics and Genetic Engineering, Faculty of Veterinary Medicine, Menoufia University, Shebin El-Kom, Menoufia, 32511, Egypt.
| | - Safaa E Abdo
- Department of Animal Wealth Development, Genetics and Genetic Engineering, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Rasha A Al Wakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Usama A Abou-Ismail
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St, P.O. Box 35516, Mansoura, Egypt
| | - Radi A Mohamed
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
4
|
Libanio Reis Santos E, Silva O, Nascimento Araújo BJ, de Lima Rodrigues M, de Oliveira-Lima J, Camargo-Mathias MI. Effects of sodium dodecylbenzene sulfonate (SDBS) on zebrafish ( Danio rerio) gills and blood. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:357-370. [PMID: 38305282 DOI: 10.1080/15287394.2024.2312253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Sodium dodecylbenzene sulfonate (SDBS) is an important surfactant used as a cleaning agent and industrial additive to remove unwanted chemicals which have been detected in the aquatic environment. The aim of this study was to examine the toxicological potential of SDBS on the gills of adult male zebrafish (Danio rerio) exposed to this chemical. For the 96 hr acute exposure, fish were divided into three groups: control, 0.25 mg/L, and 0.5 mg/L of SDBS. After the experiment, morphophysiological analyses (gill histopathology and histochemistry), oxidative stress (determination of gill activities of superoxide dismutase (SOD) and catalase (CAT)), and hematological analyses (leukocyte differentiation) were conducted. Data demonstrated that SDBS at both tested concentrations altered the histopathological index and initiated circulatory disturbances, as well as adverse, progressive, and immunological changes in the gills. In the 0.5 mg/L group, SOD activity decreased significantly, but CAT activity was not altered. Prominent blood changes observed in this group were neutrophilia and lymphocytosis. The number of mucous and chloride cells increased significantly in both groups. Taken together, our findings demonstrated that exposure of D. rerio to SDBS, even for 96 hr, produced adverse morphological and hematological effects associated with a reduction in SOD activity. Our findings indicate that exposure of aquatic species to the anionic surfactant SDBS may lead to adverse consequences associated with oxidative stress. Therefore, this study highlights the risks that this substance may pose to aquatic ecosystems and emphasizes the need for further investigations and strict regulations on its disposal.
Collapse
Affiliation(s)
- Eduardo Libanio Reis Santos
- Department of General and Applied Biology, Institute of Biosciences of Universidade Estadual Paulista "Júlio de Mesquita Filho" (Unesp), Rio Claro, São Paulo, Brazil
- Faculty of Medicine, Universidade de Gurupi (UnirG), Paraíso do Tocantins, Tocantins, Brazil
| | - Odaiza Silva
- Department of General and Applied Biology, Institute of Biosciences of Universidade Estadual Paulista "Júlio de Mesquita Filho" (Unesp), Rio Claro, São Paulo, Brazil
| | - Bruna Jéssyca Nascimento Araújo
- Department of General and Applied Biology, Institute of Biosciences of Universidade Estadual Paulista "Júlio de Mesquita Filho" (Unesp), Rio Claro, São Paulo, Brazil
| | - Milena de Lima Rodrigues
- Department of General and Applied Biology, Institute of Biosciences of Universidade Estadual Paulista "Júlio de Mesquita Filho" (Unesp), Rio Claro, São Paulo, Brazil
| | | | - Maria Izabel Camargo-Mathias
- Department of General and Applied Biology, Institute of Biosciences of Universidade Estadual Paulista "Júlio de Mesquita Filho" (Unesp), Rio Claro, São Paulo, Brazil
| |
Collapse
|
5
|
Badran SR, Hamed A. Is the trend toward a sustainable green synthesis of copper oxide nanoparticles completely safe for Oreochromis niloticus when compared to chemical ones?: using oxidative stress, bioaccumulation, and histological biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9477-9494. [PMID: 38190069 PMCID: PMC10824803 DOI: 10.1007/s11356-023-31707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
Scientists worldwide have noticed that cutting-edge technologies can be used to produce nanoparticles (NPs) in a sustainable and environmentally friendly way, instead of the old methods. However, the effectiveness of this approach for aquatic environments and species still needs to be determined. Therefore, this study aims to compare between the toxicity of green and chemically synthesized copper oxide nanoparticles (GS and CS) CuO NPs at two different concentrations on Nile tilapia (Oreochromis niloticus) using various biomarkers. CuO NPs' formation was proved, and their different characterizations were recorded. Then, the fish samples were randomly allocated in glass aquaria into five groups: one acted as a control group, and the other groups were exposed to two concentrations (25 and 50 mg/L) of GS-CuO NPs and CS-CuO NPs, separately, for 4 days. After the experimental time, in all groups that were exposed to two concentrations of both synthesized CuO NPs, the results revealed that glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and thiobarbituric acid reactive substances (TBARS) levels were elevated in the liver and gills compared to glutathione reduced (GSH) content, which showed a significant decline. Bioaccumulation of Cu was more prevalent in the liver than in the gills, and the highest bioaccumulation capacity was more evident in the groups exposed to CS-CuO NPs. Moreover, the bioaccumulation of Cu caused severe histological changes in the liver and gills. In conclusion, the results suggested that GS-CuO NPs revealed less toxicity than CS-CuO NPs to the examined fish. However, they are still toxic, and their toxic effect cannot be overlooked.
Collapse
Affiliation(s)
- Shereen R Badran
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Aliaa Hamed
- Department of Biology, Basic Science Center, Misr University for Science and Technology (MUST), Giza, Egypt
| |
Collapse
|