1
|
Ariyani M, Jansen LJM, Balzer-Rutgers P, Hofstra N, van Oel P, van de Schans MGM. Antibiotic residues in the cirata reservoir, Indonesia and their effect on ecology and the selection for antibiotic-resistant bacteria. ENVIRONMENTAL RESEARCH 2024; 262:119992. [PMID: 39276829 DOI: 10.1016/j.envres.2024.119992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Antibiotic residues, their mixture toxicity, and the potential selection for antibiotic-resistant bacteria could pose a problem for water use and the ecosystem of reservoirs. This study aims to provide a comprehensive understanding of the occurrence, concentration, distribution, and ecological risks associated with various antibiotics in the Cirata reservoir, Indonesia. In our water and sediment samples, we detected 24 out of the 65 antibiotic residues analyzed, revealing a diverse range of antibiotic classes present. Notably, sulphonamides, diaminopyrimidine, and lincosamides were frequently found in the water, while the sediment predominantly contained tetracyclines and fluoroquinolones. Most antibiotic classes reached their highest concentrations in the water during the dry season. However, fluoroquinolones and tetracyclines showed their highest concentrations in the water during the wet season. Ecotoxicological risk assessments indicated that the impact of most antibiotic residues on aquatic organisms was negligible, except for fluoroquinolones. Looking at the impact on cyanobacteria, however, varying risks were indicated, ranging from medium to critical, with antibiotics like sulfamethoxazole, ciprofloxacin, norfloxacin, and lincomycin posing substantial threats. Among these, ciprofloxacin emerged as the antibiotic with the strongest risk. Furthermore, fluoroquinolones may have the potential to contribute to the selection of antibiotic-resistant bacteria. The presence of mixtures of antibiotic residues during the wet season significantly impacted species loss, with Potentially Affected Fraction of Species (msPAF) values exceeding 0.75 in almost 90% of locations. However, the impact of mixtures of antibiotic residues in sediment remained consistently low across all locations and seasons. Based on their occurrences and associated risks, 12 priority antibiotic residues were identified for monitoring in the reservoir and its tributaries. Moreover, the study suggests that river inflow serves as the most significant source of antibiotic residues in the reservoir. Further investigations into the relative share attribution of antibiotic sources in the reservoir is recommended to help identify effective interventions.
Collapse
Affiliation(s)
- Miranti Ariyani
- Earth Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708, PB, Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, Wageningen, 6708, WB, Netherlands; National Research and Innovation Agency of Indonesia, Research Centre for Environment & Clean Technology, KST Samaun Samadikun, Jl. Sangkuriang, Bandung, 40135, Indonesia.
| | - Larissa J M Jansen
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, Wageningen, 6708, WB, Netherlands
| | - Paula Balzer-Rutgers
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, Wageningen, 6708, WB, Netherlands
| | - Nynke Hofstra
- Earth Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708, PB, Netherlands
| | - Pieter van Oel
- Water Resources Management Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708, PB, Netherlands
| | - Milou G M van de Schans
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, Wageningen, 6708, WB, Netherlands
| |
Collapse
|
2
|
Karki BK. Amended biochar in constructed wetlands: Roles, challenges, and future directions removing pharmaceuticals and personal care products. Heliyon 2024; 10:e39848. [PMID: 39524858 PMCID: PMC11550652 DOI: 10.1016/j.heliyon.2024.e39848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Pharmaceuticals and personal care products (PPCPs) in wastewater pose significant threats to both human health and aquatic ecosystems. Wastewater discharge from various sources is the primary cause of these contaminants, and proper treatment is essential for protecting the environment. Traditional treatment technologies are often too expensive and ineffective in removing PPCPs. Constructed wetlands (CWs) offer a sustainable, cost-efficient alternative for wastewater treatment, though their capability to eliminate PPCPs can vary based on multiple aspects. Recent studies highlight biochar-a carbon-rich material resultant from biomass pyrolysis-as a promising amendment to improve CW performance. However, there is a deficiency of proper literature reviews on using biochar in CWs specifically for PPCP removal. This review focuses on biochar's role in CWs and its effectiveness in removing PPCPs and enhancing microbial activity and nutrient cycling. A bibliometric analysis using Vosviewer software was used to assess the current research trends in the biochar-amended CWs to attenuate PPCPs. While biochar shows potential in eliminating PPCPs, challenges, such as optimizing its application and addressing long-term operational concerns for treating emerging pollutants like PPCPs. Future research should enhance biochar production and low-cost techniques for diverse groups of PPCPs and perform field trials to validate laboratory results under actual conditions exploring microbial-biochar and plant-biochar interactions. Addressing these challenges is crucial to advancing biochar-amended CWs and enhancing wastewater treatment on a global scale.
Collapse
Affiliation(s)
- Bhesh Kumar Karki
- Tribhuvan University, Institute of Engineering, Thapathali Campus, Department of Civil Engineering Kathmandu, 44600, Nepal
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
3
|
Alam R, Naznin M, Ardiati FC, Solihat NN, Anita SH, Purnomo D, Yanto DHY, Kim S. Targeted and non-targeted identification of dye and chemical contaminants in Loji River, Indonesia using FT-ICR-MS. CHEMOSPHERE 2024; 365:143324. [PMID: 39278327 DOI: 10.1016/j.chemosphere.2024.143324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
This study utilized liquid chromatography (LC) alongside Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to explore the dyes and chemical contaminants in Loji River, Indonesia. We tentatively identified a total of 655 contaminants at various confidence level, subsequently classifying them into 22 distinct categories. Of the 54 dyes we detected, 12 corresponded with entries in our specialized in-house database. These 12 dyes were further confirmed by reference standards, matching both retention time (RT) and MS/MS spectra. LC-FT-ICR MS data showed that dyes from printing batik and textile industries are key contributors to river pollution. Particularly noteworthy were two sample locations that displayed substantial contamination, predominantly from azoic and reactive dyes. Additionally, pharmaceuticals were identified as one of the most frequently occurring contaminants, underscoring the inadequacies in the area's sewage management. To corroborate these findings, we conducted physicochemical, phytotoxicity, and acute toxicity tests, all of which verified the harmful effects of the Loji River's water on both the local flora and human populations. Notably, water samples that tested positive for dye contamination exhibited elevated toxicity levels. To the best of our knowledge, this study is pioneering in its molecular-level investigation of dye contamination in Southeast Asian rivers. Our results accentuate the pressing need for both targeted and non-targeted screening methods to identify contaminants in the surface waters of developing nations.
Collapse
Affiliation(s)
- Rafiqul Alam
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Fenny Clara Ardiati
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Nissa Nurfajrin Solihat
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Sita Heris Anita
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Deni Purnomo
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Dede Heri Yuli Yanto
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia; Research Collaboration Center for Marine Biomaterials, Jatinangor, 45360, Indonesia.
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea; Mass Spectrometry Converging Research Center and Green-Nano Materials Research Center, Daegu, 41566, Republic of Korea.
| |
Collapse
|
4
|
Chen Z, Sun X, Liu Y, Zhao X, Guo Y, Wang H. The characterization of developmental toxicity in fetal offspring induced by acetaminophen exposure during pregnancy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116980. [PMID: 39226632 DOI: 10.1016/j.ecoenv.2024.116980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVE Acetaminophen (APAP), an antipyretic and analgesic commonly used during pregnancy, has been recognized as a novel environmental contaminant. Preliminary evidence suggests that prenatal acetaminophen exposure (PAcE) could adversely affect offspring's gonadal and neurologic development, but there is no systematic investigation on the characteristics of APAP's fetal developmental toxicity. METHODS Pregnant mice were treated with 100 or 400 mg/kg∙d APAP in the second-trimester, or 400 mg/kg∙d APAP in the second- or third-trimester, or different courses (single or multiple) of APAP, based on clinical regimen. The effects of PAcE on pregnancy outcomes, maternal/fetal blood phenotypes, and multi-organ morphological and functional development of fetal mice were analyzed. RESULTS PAcE increased the incidence of adverse pregnancy outcomes and altered blood phenotypes including aminotransferases, lipids, and sex hormones in dams and fetuses. The expression of key functional genes in fetal organs indicated that PAcE inhibited hippocampal synaptic development, sex hormone synthesis, and osteogenic and chondrogenic development, but enhanced hepatic lipid synthesis and uptake, renal inflammatory hyperplasia, and adrenal steroid hormone synthesis. PAcE also induced marked pathological alterations in the fetal hippocampus, bone, kidney, and cartilage. The sensitivity rankings of fetal organs to PAcE might be hippocampus/bone > kidney > cartilage > liver > gonad > adrenal gland. Notably, PAcE-induced multi-organ developmental toxicity was more considerable under high-dose, second-trimester, and multi-course exposure and in male fetuses. CONCLUSION This study confirmed PAcE-induced alterations in multi-organ development and function in fetal mice and elucidated its characteristics, which deepens the comprehensive understanding of APAP's developmental toxicity.
Collapse
Affiliation(s)
- Ze Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Xiaoxiang Sun
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Yi Liu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Xiaoqi Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
5
|
Lykos C, Bairamis F, Efthymiou C, Konstantinou I. Synthesis and Characterization of Composite WO 3 Fibers/g-C 3N 4 Photocatalysts for the Removal of the Insecticide Clothianidin in Aquatic Media. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1045. [PMID: 38921921 PMCID: PMC11206630 DOI: 10.3390/nano14121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Photocatalysis is a prominent alternative wastewater treatment technique that has the potential to completely degrade pesticides as well as other persistent organic pollutants, leading to detoxification of wastewater and thus paving the way for its efficient reuse. In addition to the more conventional photocatalysts (e.g., TiO2, ZnO, etc.) that utilize only UV light for activation, the interest of the scientific community has recently focused on the development and application of visible light-activated photocatalysts like g-C3N4. However, some disadvantages of g-C3N4, such as the high recombination rate of photogenerated charges, limit its utility. In this light, the present study focuses on the synthesis of WO3 fibers/g-C3N4 Z-scheme heterojunctions to improve the efficiency of g-C3N4 towards the photocatalytic removal of the widely used insecticide clothianidin. The effect of two different g-C3N4 precursors (urea and thiourea) and of WO3 fiber content on the properties of the synthesized composite materials was also investigated. All aforementioned materials were characterized by a number of techniques (XRD, SEM-EDS, ATR-FTIR, Raman spectroscopy, DRS, etc.). According to the results, mixing 6.5% W/W WO3 fibers with either urea or thiourea derived g-C3N4 significantly increased the photocatalytic activity of the resulting composites compared to the precursor materials. In order to further elucidate the effect of the most efficient composite photocatalyst in the degradation of clothianidin, the generated transformation products were tentatively identified through UHPLC tandem high-resolution mass spectroscopy. Finally, the detoxification effect of the most efficient process was also assessed by combining the results of an in-vitro methodology and the predictions of two in-silico tools.
Collapse
Affiliation(s)
- Christos Lykos
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.L.); (F.B.); (C.E.)
| | - Feidias Bairamis
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.L.); (F.B.); (C.E.)
| | - Christina Efthymiou
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.L.); (F.B.); (C.E.)
| | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.L.); (F.B.); (C.E.)
- Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
6
|
Yao L, Liu YH, Zhou X, Yang JH, Zhao JL, Chen ZY. Uptake, tissue distribution, and biotransformation pattern of triclosan in tilapia exposed to environmentally-relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171270. [PMID: 38428603 DOI: 10.1016/j.scitotenv.2024.171270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Although triclosan has been ubiquitously detected in aquatic environment and is known to have various adverse effects to fish, details on its uptake, bioconcentration, and elimination in fish tissues are still limited. This study investigated the uptake and elimination toxicokinetics, bioconcentration, and biotransformation potential of triclosan in Nile tilapia (Oreochromis niloticus) exposed to environmentally-relevant concentrations under semi-static regimes for 7 days. For toxicokinetics, triclosan reached a plateau concentration within 5-days of exposure, and decreased to stable concentration within 5 days of elimination. Approximately 50 % of triclosan was excreted by fish through feces, and up to 29 % of triclosan was excreted through the biliary excretion. For fish exposed to 200 ng·L-1, 2000 ng·L-1, and 20,000 ng·L-1, the bioconcentration factors (log BCFs) of triclosan in fish tissues obeyed similar order: bile ≈ intestine > gonad ≈ stomach > liver > kidney ≈ gill > skin ≈ plasma > brain > muscle. The log BCFs of triclosan in fish tissues are approximately maintained constants, no matter what triclosan concentrations in exposure water. Seven biotransformation products of triclosan, involved in both phase I and phase II metabolism, were identified in this study, which were produced through hydroxylation, bond cleavages, dichlorination, and sulfation pathways. Metabolite of triclosan-O-sulfate was detected in all tissues of tilapia, and more toxic product of 2,4-dichlorophenol was also found in intestine, gonad, and bile of tilapia. Meanwhile, two metabolites of 2,4-dichlorophenol-O-sulfate and monohydroxy-triclosan-O-sulfate were firstly discovered in the skin, liver, gill, intestine, gonad, and bile of tilapia in this study. These findings highlight the importance of considering triclosan biotransformation products in ecological assessment. They also provide a scientific basis for health risk evaluation of triclosan to humans, who are associated with dietary exposure through ingesting fish.
Collapse
Affiliation(s)
- Li Yao
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Yue-Hong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Xi Zhou
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Jia-Hui Yang
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Zhi-Yong Chen
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| |
Collapse
|
7
|
Lykos C, Tsalpatouros K, Fragkos G, Konstantinou I. Synthesis, characterization, and application of Cu-substituted LaNiO 3 perovskites as photocatalysts and/or catalysts for persulfate activation towards pollutant removal. CHEMOSPHERE 2024; 352:141477. [PMID: 38387662 DOI: 10.1016/j.chemosphere.2024.141477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
The presence of emerging contaminants in environmental aqueous matrices is an ever-growing problem, since conventional wastewater treatment methods fail to adequately remove them. Therefore, the application of non-conventional methodologies such as advanced oxidation processes is of great importance to tackle this modern problem. Photocatalysis as well as catalytic activation of persulfates are promising techniques in this field as they are capable of eliminating various emerging contaminants, and current research aims to develop new materials that can be utilized for both processes. In this light, the present study focused on the use of a simple sol-gel-combustion methodology to synthesize Cu-substituted LaNiO3 perovskite materials in an attempt to improve the photocatalytic and catalytic performance of pure LaNiO3, using molar ratios of Cu:Ni that have not been previously reported in the literature. The morphological, structural, and optical features of the synthesized materials were characterized by a series of analytical techniques (e.g., X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, diffuse reflectance spectroscopy, etc.). Also, their performance as photocatalysts, persulfate anion activators and simultaneously as photocatalysts/persulfate anion activators (hybrid) was evaluated by conducting laboratory-scale experiments using phenol (phenolics) as a model emerging contaminant. Interestingly, the results revealed that LaCu0.25Ni0.75O3 exhibited the best efficiency in all the applied processes, which was mainly attributed to the introduction of oxygen vacancies in the structure of the substituted material. The contribution of selected reactive species in the hybrid photocatalytic/catalytic experiments utilizing LaCu0.25Ni0.75O3 as a (photo)catalyst was investigated using appropriate scavengers, and the results suggested that singlet oxygen is the most dominant. Additionally, the stability of all synthesized perovskites was assessed by monitoring the concentration of the leached Cu and/or Ni cations at the end of every applied process. Finally, the reusability of LaCu0.25Ni0.75O3 was evaluated in three consecutive catalytic cycles using the hybrid experiment methodology, as this process demonstrated the best efficiency in terms of phenolics removal, and the results were rather promising.
Collapse
Affiliation(s)
- Christos Lykos
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| | | | - Georgios Fragkos
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece; Institute of Environment and Sustainable Development, University Research and Innovation Center, Ioannina 45110, Greece.
| |
Collapse
|
8
|
Bhagat J, Singh N, Shimada Y. Southeast Asia's environmental challenges: emergence of new contaminants and advancements in testing methods. FRONTIERS IN TOXICOLOGY 2024; 6:1322386. [PMID: 38469037 PMCID: PMC10925796 DOI: 10.3389/ftox.2024.1322386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/14/2024] [Indexed: 03/13/2024] Open
Abstract
Emerging contaminants, including pharmaceuticals, personal care products, microplastics, and per- and poly-fluoroalkyl substances, pose a major threat to both ecosystems and human health in Southeast Asia. As this region undergoes rapid industrialization and urbanization, the increasing presence of unconventional pollutants in water bodies, soil, and various organisms has become an alarming concern. This review comprehensively examines the environmental challenges posed by emerging contaminants in Southeast Asia and recent progress in toxicity testing methods. We discuss the diverse range of emerging contaminants found in Southeast Asia, shedding light on their causes and effects on ecosystems, and emphasize the need for robust toxicological testing methods. This review is a valuable resource for researchers, policymakers, and environmental practitioners working to mitigate the impacts of emerging contaminants and secure a sustainable future for Southeast Asia.
Collapse
Affiliation(s)
- Jacky Bhagat
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
- Mie University Zebrafish Research Center, Tsu, Mie, Japan
| | - Nisha Singh
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yasuhito Shimada
- Mie University Zebrafish Research Center, Tsu, Mie, Japan
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie, Japan
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
9
|
Rani R, Kumar D. Recent advances in degradation of N,N-diethyl-3-toluamide (DEET)-an emerging environmental contaminant: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:238. [PMID: 38319467 DOI: 10.1007/s10661-024-12414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
N,N-Diethyl-3-toluamide (DEET) is a commonly used insect repellent, which acts as an organic chemical contaminant in water and considered as an emerging contaminant which has been observed worldwide. It gets discharged into the environment through sewage waste. The various methods have been used to degrade DEET, such as UV based, ozonation, photocatalytic degradation, and biodegradation (based on the metabolic activity of fungi and bacteria). However, less research has been done on the degradation of DEET by deploying nanoparticles. Therefore, biodegradation and nanotechnology-based methods can be the potential solution to remediate DEET from the environment. This review is an attempt to analyze the routes of entry of DEET into the atmosphere and its environmental health consequences and to explore physical, chemical, and biological methods of degradation. Furthermore, it focuses on the various methods used for the biodegradation of the DEET, including their environmental consequences. Future research is needed with the application of biological methods for the degradation of DEET. Metabolic pathway for biodegradation was explored for the new potent microbial strains by the application of physical, chemical, and microbial genomics; molecular biology; genetic engineering; and genome sequencing methods.
Collapse
Affiliation(s)
- Ritu Rani
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonipat, Haryana, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonipat, Haryana, India.
| |
Collapse
|
10
|
Motteau S, Deborde M, Gombert B, Karpel Vel Leitner N. Non-target analysis for water characterization: wastewater treatment impact and selection of relevant features. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4154-4173. [PMID: 38097837 DOI: 10.1007/s11356-023-30972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/05/2023] [Indexed: 01/19/2024]
Abstract
Non-target analyses were conducted to characterize and compare the molecular profiles (UHPLC-HRMS fingerprint) of water samples from a wastewater treatment plant (WWTP). Inlet and outlet samples were collected from three campaigns spaced 6 months apart in order to highlight common trends. A significant impact of the treatment on the sample fingerprints was shown, with a 65-70% abatement of the number of features detected in the effluent, and more polar, smaller and less intense molecules found overall compared to those in WWTP influent waters. Multivariate analysis (PCA) associated with variations of the features between inlets and outlets showed that features appearing or increasing were correlated with effluents while those disappearing or decreasing were correlated with influents. Finally, effluent features considered as relevant to a potentially adverse effect on aqueous media (i.e. those which appeared or increased or slightly varied from the influent) were highlighted. Three hundred seventy-five features common with the 3 campaigns were thus selected and further characterized. For most of them, elementary composition was found to be C, H, N, O (42%) and C, H, N, O, P (18%). Considering the MS2 spectra and several reference MS2 databases, annotations were proposed for 35 of these relevant features. They include synthetic products, pharmaceuticals and metabolites.
Collapse
Affiliation(s)
- Solène Motteau
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France
| | - Marie Deborde
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France.
- University of Poitiers, UFR Médecine Et de Pharmacie, 6 Rue de La Milétrie, Bâtiment D1, TSA 51115, 86073, Cedex 9, Poitiers, France.
| | - Bertrand Gombert
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France
| | - Nathalie Karpel Vel Leitner
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France
| |
Collapse
|
11
|
Youssef YA, Abuarab ME, Mahrous A, Mahmoud M. Enhanced degradation of ibuprofen in an integrated constructed wetland-microbial fuel cell: treatment efficiency, electrochemical characterization, and microbial community dynamics. RSC Adv 2023; 13:29809-29818. [PMID: 37829716 PMCID: PMC10566547 DOI: 10.1039/d3ra05729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
Over the past few decades, there has been a growing concern regarding the fate and transport of pharmaceuticals, particularly antibiotics, as emerging contaminants in the environment. It has been proposed that the presence of antibiotics at concentrations typically found in wastewater can impact the dynamics of bacterial populations and facilitate the spread of antibiotic resistance. The efficiency of currently-used wastewater treatment technologies in eliminating pharmaceuticals is often insufficient, resulting in the release of low concentrations of these compounds into the environment. In this study, we addressed these challenges by evaluating how different influent ibuprofen (IBU) concentrations influenced the efficiency of a laboratory-scale, integrated constructed wetland-microbial fuel cell (CW-MFC) system seeded with Eichhornia crassipes, in terms of organic matter removal, electricity generation, and change of bacterial community structure compared to unplanted, sediment MFC (S-MFC) and abiotic S-MFC (AS-MFC). We observed that the addition of IBU (5 mg L-1) resulted in a notable decrease in chemical oxygen demand (COD) and electricity generation, suggesting that high influent IBU concentrations caused partial inhibition for the electroactive microbial community due to its complexity and aromaticity. However, CW-MFC could recover from IBU inhibition after an acclimation period compared to unplanted S-MFC, even though the influent IBU level was increased up to 20 mg L-1, suggesting that plants in CW-MFCs have a beneficial role in relieving the inhibition of anode respiration due to the presence of high levels of IBU; thus, promoting the metabolic activity of the electroactive microbial community. Similarly, IBU removal efficiency for CW-MFC (i.e., 49-62%) was much higher compared to SMFC (i.e., 29-42%), and AS-MFC (i.e., 20-22%) during all experimental phases. In addition, our high throughput sequencing revealed that the high performance of CW-MFCs compared to S-MFC was associated with increasing the relative abundances of several microbial groups that are closely affiliated with anode respiration and organic matter fermentation. In summary, our results show that the CW-MFC system demonstrates suitability for high removal efficiency of IBU and effective electricity generation.
Collapse
Affiliation(s)
- Youssef A Youssef
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University Giza 12613 Egypt
| | - Mohamed E Abuarab
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University Giza 12613 Egypt
| | - Ahmed Mahrous
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University Giza 12613 Egypt
| | - Mohamed Mahmoud
- Water Pollution Research Department, National Research Centre 33 El-Buhouth St., Dokki Cairo 12311 Egypt
| |
Collapse
|