1
|
Gong Y, Guo Y, Sun Q, Liu P. Novel Mesoporous Cetyltrimethylammonium Bromide-Modified Magnetic Nanomaterials for Trace Extraction and Analysis of Bisphenol Endocrine Disruptors in Diverse Liquid Matrices. Molecules 2025; 30:628. [PMID: 39942732 PMCID: PMC11820609 DOI: 10.3390/molecules30030628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
In this study, Fe3O4 was used as a magnetic core, combined with the characteristics of mesoporous adsorbents, to prepare a novel magnetic mesoporous composite material named MMC. Cetyltrimethylammonium bromide (CTAB) and tetraethyl orthosilicate (TEOS) were used as functional monomers, and a simple etching method was employed. The resulting MMC was used as an effective adsorbent for the magnetic solid-phase extraction of trace residues of six bisphenol endocrine disruptors (bisphenol A, bisphenol B, bisphenol C, bisphenol F, bisphenol AF, and bisphenol AP) from environmental water and food samples. Characterization results indicated that the surface of MMC exhibited a distinct wormhole-like mesoporous structure, with the successful incorporation of CTAB functional groups and Si-OH. The crystal structure of Fe3O4 remained stable throughout the preparation process. Mapping analysis confirmed the uniform distribution of CTAB functional groups without aggregation and demonstrated high magnetic intensity, enabling rapid separation and collection under an external magnetic field. Extraction and elution conditions were optimized, and tests were conducted for interfering substances such as humic acid, glucose, fructose, and sucrose under optimal parameters. The results showed that recovery rates were not significantly affected. The quality evaluation of the method demonstrated good linearity, a broad linear range, low limits of detection and quantification, and satisfactory recovery rates. Blank and spiked analyses were conducted for seven real samples, including environmental water (rivers and lakes) and food samples (dairy, juice, and carbonated beverages), with satisfactory spiked recovery rates achieved. Thus, the developed analytical method enables the analysis and detection of trace residues of various bisphenol pollutants in complex matrices, such as environmental water and food samples, providing a valuable reference for trace analysis of similar contaminants in complex matrices.
Collapse
Affiliation(s)
- Yichao Gong
- College of Chemical Engineering and Biotechnology, Xingtai University, Xingtai 054001, China
| | - Yajing Guo
- School of Clinical Medicine, Xingtai Medical College, Xingtai 054000, China
| | - Qizhi Sun
- School of Eco-Environment, Hebei University, Baoding 071000, China; (Q.S.); (P.L.)
| | - Pengyan Liu
- School of Eco-Environment, Hebei University, Baoding 071000, China; (Q.S.); (P.L.)
| |
Collapse
|
2
|
Xiong Y, Xu S, Wang Z, Wang Z, Li S, Zhang M, Zhang Y. BPA-free? Exploring the reproductive toxicity of BPA substitutes BPS and BPF on endometrial decidualization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117275. [PMID: 39536566 DOI: 10.1016/j.ecoenv.2024.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Bisphenol A (BPA) exposure is linked to multiple adverse health outcomes, prompting the rise of "BPA-free" products. However, substitutes like Bisphenol S (BPS) and Bisphenol F (BPF) are equally prevalent, with detection frequencies and concentrations rivaling BPA. Our research previously identified BPA as an endocrine disruptor affecting reproductive and developmental systems. This study explores the impact of BPA, BPS, and BPF on endometrial decidualization and receptivity. We detected these bisphenols in serum samples from infertile women undergoing assisted reproductive technology (ART) treatment whose average age was 31.58 years. Human endometrial stromal cells were exposed to varying concentrations (0, 1 nM, 10 nM, 100 nM, and 1 µM) of BPA, BPS, and BPF, following hormonal induction of decidualization (10 nM E2 (Estradiol) + 0.5 mM cAMP (Cyclic adenosine monophosphate) + 1 µM MPA (Medroxyprogesterone acetate) for 6 days). Methods including CCK-8, RT-qPCR, untargeted metabolomics, and transcriptome sequencing assessed cell proliferation, molecular markers, gene expression, and metabolites. BPS levels in the serum of infertile patients were significantly higher than BPA (14.52 vs. 2.58 ng/mL) and even more pronounced in the recurrent implantation failure (RIF) group compared to the Control group (23.46 vs. 5.57 ng/mL). Findings revealed that BPA and its substitutes inhibited endometrial stromal cell proliferation and reduced decidualization markers. Differential metabolites (25, 66, 104) and gene expressions (3260, 9686, 10357) were observed with BPA, BPF, and BPS exposure, respectively. Enriched pathways included glutathione metabolism, arginine biosynthesis, ABC transporters, cAMP signaling, and glucagon signaling. Metabolomics and transcriptome analyses unveiled the reproductive toxic effects of BPA and its substitutes, suggesting significant impacts on endometrial decidualization through diverse signaling pathways.
Collapse
Affiliation(s)
- Yao Xiong
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei 430071, China; Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei 430071, China
| | - Shaoyuan Xu
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei 430071, China; Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei 430071, China; Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Ziwei Wang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei 430071, China; Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei 430071, China
| | - Zihan Wang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei 430071, China; Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei 430071, China
| | - Shuwei Li
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei 430071, China; Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei 430071, China
| | - Ming Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei 430071, China; Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei 430071, China.
| | - Yuanzhen Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei 430071, China; Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei 430071, China.
| |
Collapse
|
3
|
Calcaterra V, Cena H, Loperfido F, Rossi V, Grazi R, Quatrale A, De Giuseppe R, Manuelli M, Zuccotti G. Evaluating Phthalates and Bisphenol in Foods: Risks for Precocious Puberty and Early-Onset Obesity. Nutrients 2024; 16:2732. [PMID: 39203868 PMCID: PMC11357315 DOI: 10.3390/nu16162732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Recent scientific results indicate that diet is the primary source of exposure to endocrine-disrupting chemicals (EDCs) due to their use in food processing, pesticides, fertilizers, and migration from packaging to food, particularly in plastic or canned foods. Although EDCs are not listed on nutrition labels, their migration from packaging to food could inadvertently lead to food contamination, affecting individuals by inhalation, ingestion, and direct contact. The aim of our narrative review is to investigate the role of phthalates and bisphenol A (BPA) in foods, assessing their risks for precocious puberty (PP) and early-onset obesity, which are two clinical entities that are often associated and that share common pathogenetic mechanisms. The diverse outcomes observed across different studies highlight the complexity of phthalates and BPA effects on the human body, both in terms of early puberty, particularly in girls, and obesity with its metabolic disruptions. Moreover, obesity, which is independently linked to early puberty, might confound the relationship between exposure to these EDCs and pubertal timing. Given the potential public health implications, it is crucial to adopt a precautionary approach, minimizing exposure to these EDCs, especially in vulnerable populations such as children.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
- Clinical Nutrition and Dietetics Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy;
| | - Federica Loperfido
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
| | - Virginia Rossi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Roberta Grazi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Antonia Quatrale
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
| | - Matteo Manuelli
- Clinical Nutrition and Dietetics Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy;
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milano, Italy;
| |
Collapse
|
4
|
He K, Chen R, Xu S, Ding Y, Wu Z, Bao M, He B, Li S. Environmental endocrine disruptor-induced mitochondrial dysfunction: a potential mechanism underlying diabetes and its complications. Front Endocrinol (Lausanne) 2024; 15:1422752. [PMID: 39211449 PMCID: PMC11357934 DOI: 10.3389/fendo.2024.1422752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Diabetes and its complications significantly affect individuals' quality of life. The etiology of diabetes mellitus and its associated complications is complex and not yet fully understood. There is an increasing emphasis on investigating the effects of endocrine disruptors on diabetes, as these substances can impact cellular processes, energy production, and utilization, ultimately leading to disturbances in energy homeostasis. Mitochondria play a crucial role in cellular energy generation, and any impairment in these organelles can increase susceptibility to diabetes. This review examines the most recent epidemiological and pathogenic evidence concerning the link between endocrine disruptors and diabetes, including its complications. The analysis suggests that endocrine disruptor-induced mitochondrial dysfunction-characterized by disruptions in the mitochondrial electron transport chain, dysregulation of calcium ions (Ca2+), overproduction of reactive oxygen species (ROS), and initiation of signaling pathways related to mitochondrial apoptosis-may be key mechanisms connecting endocrine disruptors to the development of diabetes and its complications.
Collapse
Affiliation(s)
- Kunhui He
- The 1 Affiliate Hospital of Changsha Medical University, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shuling Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yining Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhu Wu
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Meihua Bao
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Binsheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Svensson K, Gennings C, Lindh C, Kiviranta H, Rantakokko P, Wikström S, Bornehag CG. EDC mixtures during pregnancy and body fat at 7 years of age in a Swedish cohort, the SELMA study. ENVIRONMENTAL RESEARCH 2024; 248:118293. [PMID: 38281561 DOI: 10.1016/j.envres.2024.118293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Some endocrine disrupting chemicals (EDC), are "obesogens" and have been associated with overweight and obesity in children. Daily exposure to different classes of EDCs demands for research with mixtures approach. OBJECTIVES This study evaluates the association, considering sex-specific effects, between prenatal exposure to EDC mixture and children's body fat at seven years of age. METHODS A total of 26 EDCs were assessed in prenatal urine and serum samples from first trimester in pregnancy from 737 mother-child pairs participating in the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy (SELMA) study. An indicator for children's "overall body fat" was calculated, using principal component analysis (PCA), based on BMI, percent body fat, waist, and skinfolds measured at seven years of age. Weighted quantile sum (WQS) regression was used to assess associations between EDC mixture and children's body fat. RESULTS Principal component (PC1) represented 83.6 % of the variance, suitable as indicator for children's "overall body fat", with positive loadings of 0.40-0.42 for each body fat measure. A significant interaction term, WQS*sex, confirmed associations in the opposite direction for boys and girls. Higher prenatal exposure to EDC mixture was borderline significant with more "overall body fat" for boys (Mean β = 0.20; 95 % CI: -0.13, 0.53) and less for girls (Mean β = -0.23; 95 % CI: -0.58, 0.13). Also, higher prenatal exposure to EDC mixture was borderline significant with more percent body fat (standardized score) for boys (Mean β = 0.09; 95 % CI: -0.04, 0.21) and less for girls (Mean β = -0.10 (-0.26, 0.05). The chemicals of concern included bisphenols, phthalates, PFAS, PAH, and pesticides with different patterns for boys and girls. DISCUSSION Borderline significant associations were found between prenatal exposure to a mixture of EDCs and children's body fat. The associations in opposite directions suggests that prenatal exposure to EDCs may present sex-specific effects on children's body fat.
Collapse
Affiliation(s)
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Hannu Kiviranta
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Panu Rantakokko
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Sverre Wikström
- Department of Health Sciences, Karlstad University, Karlstad, Sweden; School of Medical Sciences, Örebro University, Örebro, Sweden; Centre for Clinical Research, County Council of Värmland, Sweden
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, Karlstad, Sweden; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Lee HJ, Lee YJ, Lim YH, Kim HY, Kim BN, Kim JI, Cho YM, Hong YC, Shin CH, Lee YA. Relationship of bisphenol A substitutes bisphenol F and bisphenol S with adiponectin/leptin ratio among children from the environment and development of children cohort. ENVIRONMENT INTERNATIONAL 2024; 185:108564. [PMID: 38467088 DOI: 10.1016/j.envint.2024.108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Bisphenol A (BPA) is known as an obesogenic endocrine disruptor. Bisphenol S (BPS) and F (BPF) are substitutes that have recently replaced BPA. OBJECTIVES To investigate the relationships of urinary bisphenols (BPA, BPS and BPF) with adiposity measurements (obesity, BMI z-score, and fat mass), serum adipokine levels (adiponectin and leptin), and adiponectin/leptin ratio (A/L ratio) in 6- and 8-year-old children. METHODS A total of 561 children who participated in the Environment and Development of Children cohort (482 and 516 children visited at age 6 and 8, respectively) at Seoul National University Children's Hospital during 2015-2019 were included. Urinary BPA levels were log-transformed. BPS levels were categorized into three groups (non-detected, lower-half, and higher-half of detected), and BPF levels were classified into two groups (non-detected and detected). RESULTS The urinary BPS higher-half group had a higher BMI z-score (β = 0.160, P= 0.044), higher fat mass (β = 0.104, P< 0.001), lower adiponectin concentration (β =- 0.069, P< 0.001), higher leptin concentration (β = 0.360, P< 0.001), and lower A/L ratio (β =- 0.428, P< 0.001) compared with the non-detected group. The urinary BPF-detected group had a higher fat mass (β = 0.074, P< 0.001), lower adiponectin concentration (β =- 0.069, P< 0.001), higher leptin concentration (β = 0.360, P< 0.001), and lower A/L ratio (β =- 0.428, P< 0.001) compared with the non-detected group. The BPA levels showed no consistent associations with outcomes, except for isolated associations of BPA at age 6 with a higher BMI z-score at age 6 (P= 0.016) and leptin at age 8 (P= 0.021). CONCLUSIONS Increased exposure to BPS and BPF is associated with higher fat mass and leptin concentration, lower serum adiponectin, and lower A/L ratio in children. These findings suggest potential adverse effects of BPA substitutes on adiposity and adipokines. No consistent association of BPA exposure with outcomes could be partly explained by the decreasing BPA levels over time.
Collapse
Affiliation(s)
- Hye Jin Lee
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Yun Jeong Lee
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hwa Young Kim
- Department of Pediatrics, Bundang Seoul National University Hospital, Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yong Min Cho
- Department of Nano Chemical and Biological Engineering, SeoKyeong University, Seoul, Republic of Korea
| | - Yun-Chul Hong
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea.
| |
Collapse
|
7
|
D’Archivio M, Coppola L, Masella R, Tammaro A, La Rocca C. Sex and Gender Differences on the Impact of Metabolism-Disrupting Chemicals on Obesity: A Systematic Review. Nutrients 2024; 16:181. [PMID: 38257074 PMCID: PMC10818535 DOI: 10.3390/nu16020181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Obesity represents an important public health concern, being one of the leading causes of death worldwide. It is a multifactorial disease with many underlying intertwined causes, including genetic, environmental and behavioral factors. Notably, metabolism-disrupting chemicals (MDCs) can alter the set point control of metabolism, affecting the development and function of the adipose tissue. Epidemiological studies have reported associations between human exposure to MDCs and several altered metabolic endpoints. It is also noteworthy that sex and gender represent important risk factors in the development of obesity. Different sex-related biological and physiological characteristics influence individual susceptibility, whereas gender represents a critical component in determining the different exposure scenarios. Although some advancements in the treatment of obesity have been achieved in preclinical and clinical studies, the obesity pandemic continues to increase worldwide. The present study performed a systematic review of recent studies considering the effects of MDCs on obesity, with a specific focus on sex- and gender-related responses. This review highlighted that MDCs could differently affect men and women at different stages of life even though the number of studies evaluating the association between obesity and MDC exposure in relation to sex and gender is still limited. This evidence should urge researchers to carry out studies considering sex and gender differences. This is essential for developing sex-/gender-tailored prevention strategies to improve public health policies and reduce exposure.
Collapse
Affiliation(s)
| | - Lucia Coppola
- Correspondence: (L.C.); (R.M.); Tel.: +39-0649903686 (L.C.); +39-0649902544 (R.M.)
| | - Roberta Masella
- Gender-Specific Prevention and Health Unit, Centre for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.D.); (A.T.); (C.L.R.)
| | | | | |
Collapse
|
8
|
Dalamaga M, Kounatidis D, Tsilingiris D, Vallianou NG, Karampela I, Psallida S, Papavassiliou AG. The Role of Endocrine Disruptors Bisphenols and Phthalates in Obesity: Current Evidence, Perspectives and Controversies. Int J Mol Sci 2024; 25:675. [PMID: 38203845 PMCID: PMC10779569 DOI: 10.3390/ijms25010675] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Excess body weight constitutes one of the major health challenges for societies and healthcare systems worldwide. Besides the type of diet, calorie intake and the lack of physical exercise, recent data have highlighted a possible association between endocrine-disrupting chemicals (EDCs), such as bisphenol A, phthalates and their analogs, and obesity. EDCs represent a heterogeneous group of chemicals that may influence the hormonal regulation of body mass and adipose tissue morphology. Based on the available data from mechanistic, animal and epidemiological studies including meta-analyses, the weight of evidence points towards the contribution of EDCs to the development of obesity, associated disorders and obesity-related adipose tissue dysfunction by (1) impacting adipogenesis; (2) modulating epigenetic pathways during development, enhancing susceptibility to obesity; (3) influencing neuroendocrine signals responsible for appetite and satiety; (4) promoting a proinflammatory milieu in adipose tissue and inducing a state of chronic subclinical inflammation; (5) dysregulating gut microbiome and immune homeostasis; and (6) inducing dysfunction in thermogenic adipose tissue. Critical periods of exposure to obesogenic EDCs are the prenatal, neonatal, pubertal and reproductive periods. Interestingly, EDCs even at low doses may promote epigenetic transgenerational inheritance of adult obesity in subsequent generations. The aim of this review is to summarize the available evidence on the role of obesogenic EDCs, specifically BPA and phthalate plasticizers, in the development of obesity, taking into account in vitro, animal and epidemiologic studies; discuss mechanisms linking EDCs to obesity; analyze the effects of EDCs on obesity in critical chronic periods of exposure; and present interesting perspectives, challenges and preventive measures in this research area.
Collapse
Affiliation(s)
- Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Kounatidis
- Department of Internal Medicine, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (D.K.); (N.G.V.)
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (D.K.); (N.G.V.)
| | - Irene Karampela
- Second Department of Critical Care, ‘Attikon’ General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Sotiria Psallida
- Department of Microbiology, ‘KAT’ General Hospital of Attica, 14561 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|