1
|
Walrath T, Najarro KM, Giesy LE, Khair S, Orlicky DJ, McMahan RH, Kovacs EJ. Reducing the excessive inflammation after burn injury in aged mice by maintaining a healthier intestinal microbiome. FASEB J 2024; 38:e70065. [PMID: 39305117 PMCID: PMC11465428 DOI: 10.1096/fj.202401020r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
One in six people are projected to be 65 years or older by 2050. As the population ages, better treatments for injuries that disproportionately impact the aged population will be needed. Clinical studies show that people aged 65 and older experience higher rates of morbidity and mortality after burn injury, including a greater incidence of pulmonary complications when compared to younger burn injured adults, which we and others believe is mediated, in part, by inflammation originating in the intestines. Herein, we use our clinically relevant model of scald burn injury in young and aged mice to determine whether cohousing aged mice with young mice or giving aged mice oral gavage of fecal material from young mice is sufficient to alter the microbiome of the aged mice and protect them from inflammation in the ileum and the lungs. Aged burn injured mice have less DNA expression of Bacteroidetes in the feces and an unhealthy Firmicutes/Bacteroidetes ratio. Both Bacteroidetes and the ratio of these two phyla are restored in aged burn injured by prior cohousing for a month with younger mice but not fecal transfer from young mice. This shift in the microbiome coincides with heightened expression of danger-associated molecular patterns (DAMP), and pro-inflammatory cytokine interleukin-6 (il6) in the ileum and lung of aged, burn injured mice, and heightened antimicrobial peptide camp in the lung. Cohousing reverses DAMP expression in the ileum and lung, and cathelicidin-related antimicrobial peptide protein (camp) in the lung, while fecal transfer heightened DAMPs while reducing camp in the lung, and also increased IL-6 protein in the lungs. These results highlight the importance of the intestinal microbiome in mediating inflammation within the gut-lung axis, giving insights into potential future treatments in the clinic.
Collapse
Affiliation(s)
- Travis Walrath
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kevin M. Najarro
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lauren E. Giesy
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shanawaj Khair
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David J. Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel H. McMahan
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elizabeth J. Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
| |
Collapse
|
2
|
Pham-Danis C, Chia SB, Scarborough HA, Danis E, Nemkov T, Kleczko EK, Navarro A, Goodspeed A, Bonney EA, Dinarello CA, Marchetti C, Nemenoff RA, Hansen K, DeGregori J. Inflammation promotes aging-associated oncogenesis in the lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.583044. [PMID: 38496448 PMCID: PMC10942386 DOI: 10.1101/2024.03.01.583044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Lung cancer is the leading cause of cancer death in the world. While cigarette smoking is the major preventable factor for cancers in general and lung cancer in particular, old age is also a major risk factor. Aging-related chronic, low-level inflammation, termed inflammaging, has been widely documented; however, it remains unclear how inflammaging contributes to increased lung cancer incidence. Aim: To establish connections between aging-associated changes in the lungs and cancer risk. Methods We analyzed public databases of gene expression for normal and cancerous human lungs and used mouse models to understand which changes were dependent on inflammation, as well as to assess the impact on oncogenesis. Results Analyses of GTEx and TCGA databases comparing gene expression profiles from normal lungs, lung adenocarcinoma, lung squamous cell carcinoma of subjects across age groups revealed upregulated pathways such as inflammatory response, TNFA signaling via NFκB, and interferon-gamma response. Similar pathways were identified comparing the gene expression profiles of young and old mouse lungs. Transgenic expression of alpha 1 antitrypsin (AAT) partially reverses increases in markers of aging-associated inflammation and immune deregulation. Using an orthotopic model of lung cancer using cells derived from EML4-ALK fusion-induced adenomas, we demonstrated an increased tumor outgrowth in lungs of old mice while NLRP3 knockout in old mice decreased tumor volumes, suggesting that inflammation contributes to increased lung cancer development in aging organisms. Conclusions These studies reveal how expression of an anti-inflammatory mediator (AAT) can reduce some but not all aging-associated changes in mRNA and protein expression in the lungs. We further show that aging is associated with increased tumor outgrowth in the lungs, which may relate to an increased inflammatory microenvironment.
Collapse
Affiliation(s)
- Catherine Pham-Danis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shi B Chia
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Hannah A Scarborough
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Etienne Danis
- Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Emily K Kleczko
- Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andre Navarro
- Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew Goodspeed
- Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Elizabeth A. Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Charles A. Dinarello
- Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Carlo Marchetti
- Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Raphael A. Nemenoff
- Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
3
|
Walrath T, Najarro KM, Giesy LE, Khair S, Frank DN, Robertson CE, Orlicky DJ, Quillinan N, Idrovo JP, McMahan RH, Kovacs EJ. REMOTE BURN INJURY IN AGED MICE INDUCES COLONIC LYMPHOID AGGREGATE EXPANSION AND DYSBIOSIS OF THE FECAL MICROBIOME WHICH CORRELATES WITH NEUROINFLAMMATION. Shock 2023; 60:585-593. [PMID: 37548929 PMCID: PMC10581426 DOI: 10.1097/shk.0000000000002202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/02/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
ABSTRACT The Earth's population is aging, and by 2050, one of six people will be 65 years or older. Therefore, proper treatment of injuries that disproportionately impact people of advanced age will be more important. Clinical studies reveal people 65 years or older account for 16.5% of all burn injuries and experience higher morbidity, including neurocognitive decline, and mortality that we and others believe are mediated, in part, by heightened intestinal permeability. Herein, we used our clinically relevant model of scald burn injury in young and aged mice to determine whether age and burn injury cooperate to induce heightened colonic damage, alterations to the fecal microbiome, and whether resultant changes in the microbiome correlate with neuroinflammation. We found that aged, burn-injured mice have an increase in colonic lymphoid aggregates, inflammation, and proinflammatory chemokine expression when compared with young groups and sham-injured aged mice. We then performed fecal microbiota sequencing and found a striking reduction in gut protective bacterial taxa, including Akkermansia , in the aged burn group compared with all other groups. This reduction correlated with an increase in serum fluorescein isothiocyanate-Dextran administered by gavage, indicating heightened intestinal permeability. Furthermore, loss of Akkermansia was highly correlated with increased messenger RNA expression of neuroinflammatory markers in the brain, including chemokine ligand 2, TNF-α, CXC motif ligand 1, and S100 calcium-binding protein A8. Finally, we discovered that postburn alterations in the microbiome correlated with measures of strength in all treatment groups, and those that performed better on the rotarod and hanging wire tests had higher abundance of Akkermansia than those that performed worse. Taken together, these findings indicate that loss of protective bacteria after burn injury in aged mice contributes to alterations in the colon, gut leakiness, neuroinflammation, and strength. Therefore, supplementation of protective bacteria, such as Akkermansia , after burn injury in aged patients may have therapeutic benefit.
Collapse
Affiliation(s)
- Travis Walrath
- Department of Surgery, Burn Research and Alcohol Research Programs, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Kevin M. Najarro
- Department of Surgery, Burn Research and Alcohol Research Programs, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Lauren E. Giesy
- Department of Surgery, Burn Research and Alcohol Research Programs, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Shanawaj Khair
- Department of Surgery, Burn Research and Alcohol Research Programs, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
- Molecular Biology Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
- Medical Scientist Training Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Daniel N. Frank
- Department of Medicine, Division of Infectious Disease, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Charles E. Robertson
- Department of Medicine, Division of Infectious Disease, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - David J. Orlicky
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Nidia Quillinan
- Department of Anesthesiology, Neuronal Injury Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Juan-Pablo Idrovo
- Department of Surgery, Burn Research and Alcohol Research Programs, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Rachel H. McMahan
- Department of Surgery, Burn Research and Alcohol Research Programs, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Elizabeth J. Kovacs
- Department of Surgery, Burn Research and Alcohol Research Programs, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
4
|
Malachowska B, Yang WL, Qualman A, Muro I, Boe DM, Lampe JN, Kovacs EJ, Idrovo JP. Transcriptomics, metabolomics, and in-silico drug predictions for liver damage in young and aged burn victims. Commun Biol 2023; 6:597. [PMID: 37268765 DOI: 10.1038/s42003-023-04964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Burn induces a systemic response affecting multiple organs, including the liver. Since the liver plays a critical role in metabolic, inflammatory, and immune events, a patient with impaired liver often exhibits poor outcomes. The mortality rate after burns in the elderly population is higher than in any other age group, and studies show that the liver of aged animals is more susceptible to injury after burns. Understanding the aged-specific liver response to burns is fundamental to improving health care. Furthermore, no liver-specific therapy exists to treat burn-induced liver damage highlighting a critical gap in burn injury therapeutics. In this study, we analyzed transcriptomics and metabolomics data from the liver of young and aged mice to identify mechanistic pathways and in-silico predict therapeutic targets to prevent or reverse burn-induced liver damage. Our study highlights pathway interactions and master regulators that underlie the differential liver response to burn injury in young and aged animals.
Collapse
Affiliation(s)
- Beata Malachowska
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andrea Qualman
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
| | - Israel Muro
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
| | - Devin M Boe
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
- Graduate Program in Immunology, University of Colorado, Aurora, CO, 80045, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, 80045, USA
| | - Elizabeth J Kovacs
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
- Graduate Program in Immunology, University of Colorado, Aurora, CO, 80045, USA
- Molecular Biology Program, University of Colorado, Aurora, CO, 80045, USA
| | - Juan-Pablo Idrovo
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA.
| |
Collapse
|
5
|
McMahan RH, Hulsebus HJ, Najarro KM, Giesy LE, Frank DN, Orlicky DJ, Kovacs EJ. Age-Related Intestinal Dysbiosis and Enrichment of Gut-specific Bacteria in the Lung Are Associated With Increased Susceptibility to Streptococcus pneumoniae Infection in Mice. FRONTIERS IN AGING 2022; 3:859991. [PMID: 35392033 PMCID: PMC8986162 DOI: 10.3389/fragi.2022.859991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/18/2022] [Indexed: 01/09/2023]
Abstract
The portion of the global population that is over the age of 65 is growing rapidly and this presents a number of clinical complications, as the aged population is at higher risk for various diseases, including infection. For example, advanced age is a risk factor for heightened morbidity and mortality following infection with Streptococcus pneumoniae. This increased vulnerability is due, at least in part, to age-related dysregulation of the immune response, a phenomenon termed immunosenescence. However, our understanding of the mechanisms influencing the immunosenescent state and its effects on the innate immune response to pneumonia remain incomplete. Recently, a role for the gut microbiome in age-specific alterations in immunity has been described. Here, we utilized a murine model of intranasal Streptococcus pneumoniae infection to investigate the effects of age on both the innate immune response and the intestinal microbial populations after infection. In aged mice, compared to their younger counterparts, infection with Streptococcus pneumoniae led to increased mortality, impaired lung function and inadequate bacterial control. This poor response to infection was associated with increased influx of neutrophils into the lungs of aged mice 24 h after infection. The exacerbated pulmonary immune response was not associated with increased pro-inflammatory cytokines in the lung compared to young mice but instead heightened expression of immune cell recruiting chemokines by lung neutrophils. Bacterial 16S-rRNA gene sequencing of the fecal microbiome of aged and young-infected mice revealed expansion of Enterobacteriaceae in the feces of aged, but not young mice, after infection. We also saw elevated levels of gut-derived bacteria in the lung of aged-infected mice, including the potentially pathogenic symbiote Escherichia coli. Taken together, these results reveal that, when compared to young mice, Streptococcus pneumoniae infection in age leads to increased lung neutrophilia along with potentially pathogenic alterations in commensal bacteria and highlight potential mechanistic targets contributing to the increased morbidity and mortality observed in infections in age.
Collapse
Affiliation(s)
- Rachel H. McMahan
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Alcohol Research Program, Burn Research Program, University of Colorado Denver, Aurora, CO, United States
- GI and Liver Innate Immune Program, University of Colorado Denver, Aurora, CO, United States
| | - Holly J. Hulsebus
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Alcohol Research Program, Burn Research Program, University of Colorado Denver, Aurora, CO, United States
- Immunology Graduate Program, University of Colorado Denver, Aurora, CO, United States
| | - Kevin M. Najarro
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Alcohol Research Program, Burn Research Program, University of Colorado Denver, Aurora, CO, United States
| | - Lauren E. Giesy
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Alcohol Research Program, Burn Research Program, University of Colorado Denver, Aurora, CO, United States
| | - Daniel N. Frank
- GI and Liver Innate Immune Program, University of Colorado Denver, Aurora, CO, United States
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO, United States
| | - David J. Orlicky
- GI and Liver Innate Immune Program, University of Colorado Denver, Aurora, CO, United States
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Elizabeth J. Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Alcohol Research Program, Burn Research Program, University of Colorado Denver, Aurora, CO, United States
- GI and Liver Innate Immune Program, University of Colorado Denver, Aurora, CO, United States
- Immunology Graduate Program, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
6
|
Schosserer M, Banks G, Dogan S, Dungel P, Fernandes A, Marolt Presen D, Matheu A, Osuchowski M, Potter P, Sanfeliu C, Tuna BG, Varela-Nieto I, Bellantuono I. Modelling physical resilience in ageing mice. Mech Ageing Dev 2018; 177:91-102. [PMID: 30290161 PMCID: PMC6445352 DOI: 10.1016/j.mad.2018.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/12/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
Geroprotectors, a class of drugs targeting multiple deficits occurring with age, necessitate the development of new animal models to test their efficacy. The COST Action MouseAGE is a European network whose aim is to reach consensus on the translational path required for geroprotectors, interventions targeting the biology of ageing. In our previous work we identified frailty and loss of resilience as a potential target for geroprotectors. Frailty is the result of an accumulation of deficits, which occurs with age and reduces the ability to respond to adverse events (physical resilience). Modelling frailty and physical resilience in mice is challenging for many reasons. There is no consensus on the precise definition of frailty and resilience in patients or on how best to measure it. This makes it difficult to evaluate available mouse models. In addition, the characterization of those models is poor. Here we review potential models of physical resilience, focusing on those where there is some evidence that the administration of acute stressors requires integrative responses involving multiple tissues and where aged mice showed a delayed recovery or a worse outcome then young mice in response to the stressor. These models include sepsis, trauma, drug- and radiation exposure, kidney and brain ischemia, exposure to noise, heat and cold shock.
Collapse
Affiliation(s)
- Markus Schosserer
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Vienna, Austria
| | - Gareth Banks
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, United Kingdom
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Peter Dungel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
| | - Adelaide Fernandes
- Neuron-Glia Biology in Health and Disease, iMed.ULisboa, Research Institute for Medicines, Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
| | - Ander Matheu
- Oncology Department, Biodonostia Research Institute, San Sebastián, Spain
| | - Marcin Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
| | - Paul Potter
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, United Kingdom
| | - Coral Sanfeliu
- Institute of Biomedical Research of Barcelona (IIBB) CSIC, IDIBAPS, CIBERESP, Barcelona, Spain
| | - Bilge Guvenc Tuna
- Department of Medical Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | | | - Ilaria Bellantuono
- MRC/Arthritis Research-UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Oncology and Metabolism, The Medical School, Beech Hill Road, Sheffield, S10 2RX, United Kingdom.
| |
Collapse
|
7
|
Florez-Sampedro L, Song S, Melgert BN. The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung. ACTA ACUST UNITED AC 2018; 5:3-25. [PMID: 29721324 PMCID: PMC5911451 DOI: 10.1002/reg2.97] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/23/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022]
Abstract
In healthy circumstances the immune system coordinates tissue repair responses in a tight balance that entails efficient inflammation for removal of potential threats, proper wound closure, and regeneration to regain tissue function. Pathological conditions, continuous exposure to noxious agents, and even ageing can dysregulate immune responses after injury. This dysregulation can lead to a chronic repair mechanism known as fibrosis. Alterations in wound healing can occur in many organs, but our focus lies with the lung as it requires highly regulated immune and repair responses with its continuous exposure to airborne threats. Dysregulated repair responses can lead to pulmonary fibrosis but the exact reason for its development is often not known. Here, we review the diversity of innate immune cells of myeloid origin that are involved in tissue repair and we illustrate how these cell types can contribute to the development of pulmonary fibrosis. Moreover, we briefly discuss the effect of age on innate immune responses and therefore on wound healing and we conclude with the implications of current knowledge on the avenues for future research.
Collapse
Affiliation(s)
- Laura Florez-Sampedro
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,Department of Chemical and Pharmaceutical Biology Groningen Research Institute for Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Shanshan Song
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,Department of Chemical and Pharmaceutical Biology Groningen Research Institute for Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Barbro N Melgert
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,University Medical Center Groningen, Groningen Research Institute for Asthma and COPD University of Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| |
Collapse
|
8
|
Boule LA, Kovacs EJ. Alcohol, aging, and innate immunity. J Leukoc Biol 2017; 102:41-55. [PMID: 28522597 DOI: 10.1189/jlb.4ru1016-450r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/24/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022] Open
Abstract
The global population is aging: in 2010, 8% of the population was older than 65 y, and that is expected to double to 16% by 2050. With advanced age comes a heightened prevalence of chronic diseases. Moreover, elderly humans fair worse after acute diseases, namely infection, leading to higher rates of infection-mediated mortality. Advanced age alters many aspects of both the innate and adaptive immune systems, leading to impaired responses to primary infection and poor development of immunologic memory. An often overlooked, yet increasingly common, behavior in older individuals is alcohol consumption. In fact, it has been estimated that >40% of older adults consume alcohol, and evidence reveals that >10% of this group is drinking more than the recommended limit by the National Institute on Alcohol Abuse and Alcoholism. Alcohol consumption, at any level, alters host immune responses, including changes in the number, phenotype, and function of innate and adaptive immune cells. Thus, understanding the effect of alcohol ingestion on the immune system of older individuals, who are already less capable of combating infection, merits further study. However, there is currently almost nothing known about how drinking alters innate immunity in older subjects, despite innate immune cells being critical for host defense, resolution of inflammation, and maintenance of immune homeostasis. Here, we review the effects of aging and alcohol consumption on innate immune cells independently and highlight the few studies that have examined the effects of alcohol ingestion in aged individuals.
Collapse
Affiliation(s)
- Lisbeth A Boule
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery (GITES), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; .,The Mucosal Inflammation Program (MIP), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,The Investigations in Metabolism, Aging, Gender and Exercise (IMAGE) Research Group, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; and
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery (GITES), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; .,The Mucosal Inflammation Program (MIP), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,The Investigations in Metabolism, Aging, Gender and Exercise (IMAGE) Research Group, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; and.,The Immunology Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
9
|
Frasca D, Blomberg BB. Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology 2016; 17:7-19. [PMID: 25921609 PMCID: PMC4626429 DOI: 10.1007/s10522-015-9578-8] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/16/2015] [Indexed: 01/30/2023]
Abstract
Both the innate and adaptive immune systems decline with age, causing greater susceptibility to infectious diseases and reduced responses to vaccination. Diseases are more severe in elderly than in young individuals and have a greater impact on health outcomes such as morbidity, disability and mortality. Aging is characterized by increased low-grade chronic inflammation, called "inflammaging", measured by circulating levels of TNF-α, IL-6 and CRP, as well as by latent infections with viruses such as cytomegalovirus. Inflammaging has received considerable attention because it proposes a link between changes in immune cells and a number of diseases and syndromes typical of old age. In this review we aim at summarizing the current knowledge on pathways contributing to inflammaging, on immune responses down-regulated by inflammation and mechanisms proposed. The defects in the immune response of elderly individuals presented in this review should help to discover avenues for effective intervention to promote healthy aging.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, P.O. Box 016960 (R-138), Miami, FL, 33101, USA.
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, P.O. Box 016960 (R-138), Miami, FL, 33101, USA
| |
Collapse
|
10
|
Abstract
There are many age-associated changes in the respiratory and pulmonary immune system. These changes include decreases in the volume of the thoracic cavity, reduced lung volumes, and alterations in the muscles that aid respiration. Muscle function on a cellular level in the aging population is less efficient. The elderly population has less pulmonary reserve, and cough strength is decreased in the elderly population due to anatomic changes and muscle atrophy. Clearance of particles from the lung through the mucociliary elevator is decreased and associated with ciliary dysfunction. Many complex changes in immunity with aging contribute to increased susceptibility to infections including a less robust immune response from both the innate and adaptive immune systems. Considering all of these age-related changes to the lungs, pulmonary disease has significant consequences for the aging population. Chronic lower respiratory tract disease is the third leading cause of death in people aged 65 years and older. With a large and growing aging population, it is critical to understand how the body changes with age and how this impacts the entire respiratory system. Understanding the aging process in the lung is necessary in order to provide optimal care to our aging population. This review focuses on the nonpathologic aging process in the lung, including structural changes, changes in muscle function, and pulmonary immunologic function, with special consideration of obstructive lung disease in the elderly.
Collapse
Affiliation(s)
- Erin M Lowery
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine at Loyola University Medical Center, Maywood, IL, USA
| | | | | | | |
Collapse
|
11
|
Rani M, Schwacha MG. Aging and the pathogenic response to burn. Aging Dis 2012; 3:171-180. [PMID: 22724078 PMCID: PMC3377829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 06/28/2011] [Accepted: 06/28/2011] [Indexed: 06/01/2023] Open
Abstract
Aging is an important and critical factor that contributes to the clinical outcome of burn patients. The very young and the elderly are more likely to succumb after major burn as compared to their adult counterparts. With the aging population, improved understanding of the mechanisms underlying age-associated complications after burns becomes even more demanding. It is widely accepted that elderly burn patients have significantly increased morbidity and mortality. Irrespective of the type of burn injury, the aged population shows slower recoveries and suffers more complications. Age-associated immune dysfunction, immunosenescence, may predispose the elderly burn patients to more infections, slower healing and/or to other complications. Furthermore, pre-existing, age-related medical conditions such as, pulmonary/cardiovascular dysfunctions and diabetes in the elderly are other important factors that contribute to their poorer outcomes after major burn. The present review describes the impact of aging on burn patients outcomes.
Collapse
Affiliation(s)
| | - Martin G. Schwacha
- Correspondence should be addressed to: Martin G. Schwacha, PhD, University of Texas Health Science Center at San Antonio, Department of Surgery Mail Code 7740, San Antonio TX 78229. E-mail:
| |
Collapse
|
12
|
Brubaker AL, Palmer JL, Kovacs EJ. Age-related Dysregulation of Inflammation and Innate Immunity: Lessons Learned from Rodent Models. Aging Dis 2011; 2:346-360. [PMID: 22396887 PMCID: PMC3295081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/22/2011] [Accepted: 10/05/2011] [Indexed: 05/31/2023] Open
Abstract
In the elderly patient population, it has become increasingly evident that immune dysregulation is a contributing factor to age-related pathologies and their associated morbidity and mortality. In particular, elderly subjects are plagued by poor responses to infectious challenge and immunization and are at heightened risk for the development of autoimmune, neuroinflammatory and tumor-associated pathologies. Rodent models of aging and age-related disorders have been utilized to better describe how innate immune cell dysfunction contributes to these clinical scenarios. As the elderly population continues to increase in size, use of these aging rodent models to study immune dysregulation may translate into increased healthy living years for these individuals.
Collapse
Affiliation(s)
- Aleah L. Brubaker
- The Burn and Shock Trauma Institute, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Immunology and Aging Program, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Program of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Stritch School of Medicine, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Jessica L. Palmer
- The Burn and Shock Trauma Institute, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Department of Surgery, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Immunology and Aging Program, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Elizabeth J. Kovacs
- The Burn and Shock Trauma Institute, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Department of Surgery, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Immunology and Aging Program, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Program of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Stritch School of Medicine, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| |
Collapse
|
13
|
Comparison of the effects of aging and IL-6 on the hepatic inflammatory response in two models of systemic injury: scald injury versus i.p. LPS administration. Shock 2009; 31:178-84. [PMID: 18636046 DOI: 10.1097/shk.0b013e318180feb8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Regardless of age, a marked elevation in circulating IL-6 levels correlates with increased mortality after injury or an inflammatory challenge. We previously reported that aged IL-6 knockout mice given LPS have improved survival and reduced inflammatory response than LPS-treated aged wild type (WT) mice. Herein, we analyzed the effects of aging and IL-6 on the hepatic inflammatory response in two models of systemic injury: dorsal scald (burn) injury versus intraperitoneal LPS administration. At 24 h after burn injury, circulating alanine aminotransferase and hepatic neutrophil accumulation were comparable regardless of age or IL-6 deficiency. However, at this same time point, these indicators of liver damage, in addition to hepatic levels of KC, a neutrophil chemoattractant, were increased in aged WT mice given LPS relative to young WT mice given LPS. The hepatic injury was drastically reduced in aged IL-6 knockout mice given LPS as compared with LPS-exposed aged WT mice. Our results suggest that the nature of the insult will determine the degree of remote injury in aged animals. In addition, the role of IL-6 as a contributing factor of tissue injury may be insult specific.
Collapse
|
14
|
Abstract
In the acute-care setting, it is widely accepted that elderly patients have increased morbidity and mortality compared with young healthy patients. The reasons for this, however, are largely unknown. Although animal modeling has helped improve treatment strategies for young patients, there are a scarce number of studies attempting to understand the mechanisms of systemic insults such as trauma, burn, and sepsis in aged individuals. This review aims to highlight the relevance of using animals to study the pathogenesis of these insults in the aged and, despite the deficiency of information, to summarize what is currently known in this field.
Collapse
|
15
|
Gomez CR, Plackett TP, Kovacs EJ. Aging and estrogen: modulation of inflammatory responses after injury. Exp Gerontol 2007; 42:451-6. [PMID: 17204391 PMCID: PMC1892236 DOI: 10.1016/j.exger.2006.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 11/14/2006] [Accepted: 11/21/2006] [Indexed: 11/23/2022]
Abstract
Aged subjects have a poor prognosis after traumatic injury and, regardless of the type of injury, they have slower recoveries and suffer more complications than their younger counterparts. The age-dependent responses may be influenced by the hyper-inflammatory state observed in the aged prior to injury, including elevated levels of interleukin-6 (IL-6). Physiological levels of estrogen are beneficial to the immune system, due, in part, to the hormone's ability to attenuate aberrant production of pro-inflammatory cytokines. Using two independent injury models, we have found increased mortality and elevated serum levels of IL-6 in aged mice, when compared to young animals (p<0.05). In parallel studies, groups of aged mice given estrogen (17beta-estradiol) prior to scald burn, had significantly improved survival (p<0.05) and lowered serum IL-6 (p<0.05). Multiple cellular mechanisms may be involved in mediating the beneficial effects of estrogen on inflammatory and immune responses in aged individuals who sustain an injury. These mechanisms are discussed herein.
Collapse
Affiliation(s)
- Christian R Gomez
- Department of Cell Biology, Neurobiology and Anatomy, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | |
Collapse
|