1
|
Vantaggiato L, Landi C, Shaba E, Rossi D, Sorrentino V, Bini L. Protein Extraction Methods Suitable for Muscle Tissue Proteomic Analysis. Proteomes 2024; 12:27. [PMID: 39449499 PMCID: PMC11503273 DOI: 10.3390/proteomes12040027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Muscle tissue is one of the most dynamic and plastic tissues of the mammalian body and covers different roles, such as force generation and metabolic control. Muscular proteomics provides an important opportunity to reveal the molecular mechanisms behind muscle pathophysiology. To ensure successful proteomic analysis, it is necessary to have an efficient and reproducible protein extraction method. This study aimed to evaluate the efficacy of two different extraction protocols of muscle samples for two-dimensional gel electrophoresis. In particular, mouse muscle proteins were extracted by an SDS-based buffer (Method A) and by a UREA/CHAPS/DTE/TRIS solution (Method B). The efficacies of the methods were assessed by performing an image analysis of the 2DE gels and by statistical and multivariate analyses. The 2DE gels in both preparations showed good resolution and good spot overlapping. Methods A and B produced 2DE gels with different means of total spots, higher for B. Image analysis showed different patterns of protein abundance between the protocols. The results showed that the two methods extract and solubilize proteins with different chemical-physical characteristics and different cellular localizations. These results attest the efficacy and reproducibility of both protein extraction methods, which can be parallelly applied for comprehensive proteomic profiling of muscle tissue.
Collapse
Affiliation(s)
- Lorenza Vantaggiato
- Functional Proteomics Lab., Department Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.V.); (E.S.); (L.B.)
| | - Claudia Landi
- Functional Proteomics Lab., Department Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.V.); (E.S.); (L.B.)
| | - Enxhi Shaba
- Functional Proteomics Lab., Department Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.V.); (E.S.); (L.B.)
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (D.R.); (V.S.)
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (D.R.); (V.S.)
| | - Luca Bini
- Functional Proteomics Lab., Department Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.V.); (E.S.); (L.B.)
| |
Collapse
|
2
|
Lu Q, Pan B, Bai H, Zhao W, Liu L, Li G, Liu R, Lv T, Huang X, Li X, Tian J. Intranuclear cardiac troponin I plays a functional role in regulating Atp2a2 expression in cardiomyocytes. Genes Dis 2022; 9:1689-1700. [PMID: 36157491 PMCID: PMC9485201 DOI: 10.1016/j.gendis.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/11/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
In the past studies, it is shown that cardiac troponin I (cTnI, encoded by TNNI3), as a cytoplasmic protein, is an inhibitory subunit in troponin complex, and involves in cardiomyocyte diastolic regulation. Here, we assessed a novel role of cTnI as a nucleoprotein. Firstly, the nuclear translocation of cTnI was found in mouse, human fetuses and rat heart tissues. In addition, there were differences in percentage of intranuclear cTnI in different conditions. Based on weighted gene co-expression network analyses (WGCNA) and verification in cell experiments, a strong expression correlation was found between TNNI3 and Atp2a2, which encodes sarco-endoplasmic reticulum Ca2+ ATPase isoform 2a (SERCA2a), and involves in ATP hydrolysis and Ca2+ transient. TNNI3 gain and loss caused Atpa2a2 increase/decrease in a dose-dependent manner both in mRNA and protein levels, in vivo and in vitro. By using ChIP-sequence we demonstrated specific binding DNA sequences of cTnI were enriched in ATP2a2 promoter −239∼–889 region and the specific binding sequence motif of cTnI was analyzed by software as "CCAT", which has been reported to be required for YY1 binding to the promoter region of YY1-related genes. Moreover, it was further verified that pcDNA3.1 (−)-TNNI3 could express cTnI proteins and increase the promoter activity of Atp2a2 through luciferase report assay. In the end, we evaluated beat frequencies, total ATP contents, Ca2+ transients in TNNI3-siRNA myocardial cells. These findings indicated, for the first time, cTnI may regulate Atp2a2 in cardiomyocytes as a co-regulatory factor and participate in the regulation of intracellular Ca ions.
Collapse
Affiliation(s)
- Qian Lu
- Department of Pediatric Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China.,Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Bo Pan
- Department of Pediatric Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Haobo Bai
- Department of Orthopedic, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Weian Zhao
- Department of Pediatric Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Lingjuan Liu
- Department of Pediatric Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Gu Li
- Department of Pediatric Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Ruimin Liu
- Department of Pediatric Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Tiewei Lv
- Department of Pediatric Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Xupei Huang
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Xi Li
- Biology Science Institutes of Chongqing Medical University, Chongqing 400016, PR China
| | - Jie Tian
- Department of Pediatric Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| |
Collapse
|
3
|
Lu J, Li H, Zhang H, Lin Z, Xu C, Xu X, Hu L, Luan Z, Lou Y, Tang S. The distal arthrogryposis-linked p.R63C variant promotes the stability and nuclear accumulation of TNNT3. J Clin Lab Anal 2021; 35:e24089. [PMID: 34766372 PMCID: PMC8649346 DOI: 10.1002/jcla.24089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/13/2021] [Accepted: 10/09/2021] [Indexed: 11/11/2022] Open
Abstract
Background Distal arthrogryposis (DA) is comprised of a group of rare developmental disorders in muscle, characterized by multiple congenital contractures of the distal limbs. Fast skeletal muscle troponin‐T (TNNT3) protein is abundantly expressed in skeletal muscle and plays an important role in DA. Missense variants in TNNT3 are associated with DA, but few studies have fully clarified its pathogenic role. Methods Sanger sequencing was performed in three generation of a Chinese family with DA. To determine how the p.R63C variant contributed to DA, we identified a variant in TNNT3 (NM_006757.4): c.187C>T (p.R63C). And then we investigated the effects of the arginine to cysteine substitution on the distribution pattern and the half‐life of TNNT3 protein. Results The protein levels of TNNT3 in affected family members were 0.8‐fold higher than that without the disorder. TNNT3 protein could be degraded by the ubiquitin‐proteasome complex, and the p.R63C variant did not change TNNT3 nuclear localization, but significantly prolonged its half‐life from 2.5 to 7 h, to promote its accumulation in the nucleus. Conclusion The p.R63C variant increased the stability of TNNT3 and promoted nuclear accumulation, which suggested its role in DA.
Collapse
Affiliation(s)
- Jinfang Lu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huanzheng Li
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, China
| | - He Zhang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Zhengxiu Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of WMU, School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chenyang Xu
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, China
| | - Xueqin Xu
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, China
| | - Lin Hu
- Key Laboratory of Medical Genetic, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Zhaotang Luan
- Key Laboratory of Medical Genetic, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shaohua Tang
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, China.,Key Laboratory of Medical Genetic, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Kharitonov AV, Shubina MY, Nosov GA, Mamontova AV, Arifulin EA, Lisitsyna OM, Nalobin DS, Musinova YR, Sheval EV. Switching of cardiac troponin I between nuclear and cytoplasmic localization during muscle differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118601. [PMID: 31733262 DOI: 10.1016/j.bbamcr.2019.118601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/02/2019] [Accepted: 11/11/2019] [Indexed: 11/18/2022]
Abstract
The nuclear accumulation of proteins may depend on the presence of short targeting sequences, which are known as nuclear localization signals (NLSs). Here, we found that NLSs are predicted in some cytosolic proteins and examined the hypothesis that these NLSs may be functional under certain conditions. As a model, human cardiac troponin I (hcTnI) was used. After expression in cultured non-muscle or undifferentiated muscle cells, hcTnI accumulated inside nuclei. Several NLSs were predicted and confirmed by site-directed mutagenesis in hcTnI. Nuclear import occurred via the classical karyopherin-α/β nuclear import pathway. However, hcTnI expressed in cultured myoblasts redistributed from the nucleus to the cytoplasm, where it was integrated into forming myofibrils after the induction of muscle differentiation. It appears that the dynamic retention of proteins inside cytoplasmic structures can lead to switching between nuclear and cytoplasmic localization.
Collapse
Affiliation(s)
- Alexey V Kharitonov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maria Y Shubina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Georgii A Nosov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Institute of Medical Physics and Biophysics, 48149 Muenster, Germany
| | - Anastasia V Mamontova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Eugene A Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga M Lisitsyna
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Denis S Nalobin
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yana R Musinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; Skobelkin State Scientific Center of Laser Medicine FMBA, 121165 Moscow, Russia
| | - Eugene V Sheval
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France.
| |
Collapse
|
5
|
Liu W, Kuang H, Xia Y, Pope ZC, Wang Z, Tang C, Yin D. Regular aerobic exercise-ameliorated troponin I carbonylation to mitigate aged rat soleus muscle functional recession. Exp Physiol 2019; 104:715-728. [PMID: 30820991 DOI: 10.1113/ep087564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/27/2019] [Indexed: 12/23/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the biological role of carbonylation in muscle age-related functional decline and how might exercise affect the carbonylation process differently compared to habitual sedentary behaviour? What is the main finding and its importance? The carbonylation of troponin I (TNNI1), tropomyosin α-1 chain and α-actinin-1 demonstrated a relationship with muscle age-related functional decline. Exercise attenuated the decline by slowing the rate of carbonylation and promoting antioxidant reactions within the muscle. As exercise demonstrated the greatest effect on TNNI1, quantification of protein carbonyls in TNNI1 may be used as a potential biomarker of muscle age-related functional decline. ABSTRACT This study investigated the biological role of carbonylation in muscle age-related functional decline and how regular aerobic exercise may affect the carbonylation process differently from habitual sedentary behaviour. Twenty-four healthy male Sprague-Dawley (SD) rats (mean age: 23 months) were randomly divided into an old-aged sedentary control group (O-SED) and an old-aged aerobic exercise group (O-EX). The O-EX group participated in regular aerobic exercise - treadmill running - with exercise intensity increased gradually from 50-55% to 65-70% of maximum oxygen consumption ( V ̇ O 2 max ) over 10 weeks. Rats' body weight, exercise behaviour index, morphology and oxidative stress were monitored. Avidin magnetic beads and electrospray ionization quadrupole time-of-flight mass spectrometry were used for gathering and separating carbonylated proteins while western blot tested for molecular targets. O-SED and O-EX rats both had 19 oxidative modification sites for protein carbonylation. In the O-SED group, 16 specific carbonylated proteins were identified, while 16 additional specific species were also found in the O-EX group, with all 28 species demonstrating oxidative modifications. The carbonylated proteins included troponin I (TNNI1; slow skeletal muscle), tropomyosin α1 and α-actinin 1. In particular, TNNI1 carbonylation modifications were found only in sedentary rats. Aerobic exercise increased TNNI1 and Ca2+ /calmodulin-dependent protein kinase IIα expression significantly. Observations suggested that quantification of TNNI1 carbonylation may be a potential biomarker of muscle age-related functional decline. Importantly, regular aerobic exercise appeared to have antioxidant effects in the muscle that reduced TNNI1 slow carbonylation and promoted Ca2+ /calmodulin-dependent protein kinase IIα (CAMK2) and TNNI1 expression for skeletal muscle contraction regulation, thus attenuating possible age-related skeletal muscle functional decline.
Collapse
Affiliation(s)
- Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, 410012, China.,Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Heyu Kuang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, 410012, China
| | - Yan Xia
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, 410012, China
| | - Zachary C Pope
- School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Zhiyuan Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, 410012, China
| | - Changfa Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, 410012, China
| | - Dazhong Yin
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, 410012, China.,Qingyuan People's Hospital, the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511500, China
| |
Collapse
|
6
|
Tikunova S, Belevych N, Doan K, Reiser PJ. Desensitizing mouse cardiac troponin C to calcium converts slow muscle towards a fast muscle phenotype. J Physiol 2018; 596:4651-4663. [PMID: 29992562 PMCID: PMC6166084 DOI: 10.1113/jp276296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS The Ca2+ -desensitizing D73N mutation in slow skeletal/cardiac troponin C caused dilatated cardiomyopathy in mice, but the consequences of this mutation in skeletal muscle were not known. The D73N mutation led to a rightward shift in the force versus pCa (-log [Ca]) relationship in slow-twitch mouse fibres. The D73N mutation led to a rightward shift in the force-stimulation frequency relationship and reduced fatigue resistance of mouse soleus muscle. The D73N mutation led to reduced cross-sectional area of slow-twitch fibres in mouse soleus muscle without affecting fibre type composition of the muscle. The D73N mutation resulted in significantly shorter times to peak force and to relaxation during isometric twitches and tetani in mouse soleus muscle. The D73N mutation led to major changes in physiological properties of mouse soleus muscle, converting slow muscle toward a fast muscle phenotype. ABSTRACT The missense mutation, D73N, in mouse cardiac troponin C has a profound impact on cardiac function, mediated by a decreased myofilament Ca2+ sensitivity. Mammalian cardiac muscle and slow skeletal muscle normally share expression of the same troponin C isoform. Therefore, the objective of this study was to determine the consequences of the D73N mutation in skeletal muscle, as a potential mechanism that contributes to the morbidity associated with heart failure or other conditions in which Ca2+ sensitivity might be altered. Effects of the D73N mutation on physiological properties of mouse soleus muscle, in which slow-twitch fibres are prevalent, were examined. The mutation resulted in a rightward shift of the force-stimulation frequency relationship, and significantly faster kinetics of isometric twitches and tetani in isolated soleus muscle. Furthermore, soleus muscles from D73N mice underwent a significantly greater reduction in force during a fatigue test. The mutation significantly reduced slow fibre mean cross-sectional area without affecting soleus fibre type composition. The effects of the mutation on Ca2+ sensitivity of force development in soleus skinned slow and fast fibres were also examined. As expected, the D73N mutation did not affect the Ca2+ sensitivity of force development in fast fibres but resulted in substantially decreased Ca2+ sensitivity in slow fibres. The results demonstrate that a point mutation in a single constituent of myofilaments (slow/cardiac troponin C) led to major changes in physiological properties of skeletal muscle and converted slow muscle toward a fast muscle phenotype with reduced fatigue resistance and Ca2+ sensitivity of force generation.
Collapse
Affiliation(s)
- Svetlana Tikunova
- Department of Physiology and Cell BiologyCollege of MedicineColumbusOH 43210USA
| | - Natalya Belevych
- Division of Biosciences, College of DentistryOhio State UniversityColumbusOH 43210USA
| | - Kelly Doan
- Division of Biosciences, College of DentistryOhio State UniversityColumbusOH 43210USA
| | - Peter J. Reiser
- Division of Biosciences, College of DentistryOhio State UniversityColumbusOH 43210USA
| |
Collapse
|
7
|
McDonald KS. Jack-of-many-trades: discovering new roles for troponin C. J Physiol 2018; 596:4553-4554. [PMID: 30084227 DOI: 10.1113/jp276790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Kerry S McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| |
Collapse
|
8
|
Nunez Lopez YO, Messi ML, Pratley RE, Zhang T, Delbono O. Troponin T3 associates with DNA consensus sequence that overlaps with p53 binding motifs. Exp Gerontol 2018; 108:35-40. [PMID: 29596868 DOI: 10.1016/j.exger.2018.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/25/2018] [Accepted: 03/09/2018] [Indexed: 12/25/2022]
Abstract
We recently reported that in addition to its classical cytoplasmic location, the fast skeletal muscle Troponin T3 (TnT3) shuttles to the nucleus, where it appears to perform nonclassical transcription regulatory functions. Importantly, changes in the composition of the nucleus-localized pool of TnT3 and its fragments contribute to age-dependent muscle damage and wasting. Here, using ChIP-Seq, we demonstrate that TnT3 associates with DNA consensus sequences including the TGCCT motif, which is required for p53 binding to the promoter area of p53-related genes. Gene set enrichment analysis further demonstrated that the p53 pathway was the most significantly enriched pathway among genes annotated to the TnT3 ChIP-Seq peaks. We further demonstrated a strong correlation (r = 0.78, P = 1 × 10-4) between the expression levels of TNNT3 and TP53-inducible ribonucleotide reductase regulatory subunit M2B (RRM2B) in skeletal muscle tissue of 21 lean non-diabetic human subjects and a significant (P < 0.05) reduction in the levels of both gene transcripts in the third age-tertile group [42.3-70 years of age (yoa)] as compared to the second age-tertile (31.3-42.3 yoa). Of note, both TNNT3 and RRM2B expression levels negatively associated with total body fat mass (each with r = 0.49, P < 0.05), whereas RRM2B positively correlated with pancreatic β cell function (rRRM2B~HOMA-B = 0.47, P = 0.047). This work suggests that reduced TNNT3 gene expression is another mechanism leading to reduced TnT3 and excitation-contraction coupling with aging. Consequently, TnT3 appears to contribute to age-related sarcopenia and possibly other age-related deficiencies such as muscle insulin resistance and β cell dysfunction by interacting with TnT3-binding sequences in the promoter area of p53-related genes, among others, and consequently modulating the transcriptional regulation of these target genes.
Collapse
Affiliation(s)
- Yury O Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL 32804, United States.
| | - Maria Laura Messi
- Departments of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Richard E Pratley
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL 32804, United States
| | - Tan Zhang
- Departments of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Osvaldo Delbono
- Departments of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
9
|
Tieland M, Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle 2018; 9:3-19. [PMID: 29151281 PMCID: PMC5803609 DOI: 10.1002/jcsm.12238] [Citation(s) in RCA: 467] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/20/2017] [Accepted: 08/05/2017] [Indexed: 02/06/2023] Open
Abstract
The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing.
Collapse
Affiliation(s)
- Michael Tieland
- Faculty of Sports and NutritionAmsterdam University of Applied SciencesDr. Meurerlaan 81067 SMAmsterdamthe Netherlands
| | - Inez Trouwborst
- Faculty of Sports and NutritionAmsterdam University of Applied SciencesDr. Meurerlaan 81067 SMAmsterdamthe Netherlands
| | - Brian C. Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI)Ohio University250 Irvine HallAthensOH 45701USA
- Department of Biomedical SciencesOhio UniversityAthensOH 45701USA
- Department of Geriatric MedicineOhio UniversityAthensOH 45701USA
| |
Collapse
|
10
|
Kankeu C, Clarke K, Van Haver D, Gevaert K, Impens F, Dittrich A, Roderick HL, Passante E, Huber HJ. Quantitative proteomics and systems analysis of cultured H9C2 cardiomyoblasts during differentiation over time supports a 'function follows form' model of differentiation. Mol Omics 2018; 14:181-196. [PMID: 29770421 DOI: 10.1039/c8mo00036k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rat cardiomyoblast cell line H9C2 has emerged as a valuable tool for studying cardiac development, mechanisms of disease and toxicology. We present here a rigorous proteomic analysis that monitored the changes in protein expression during differentiation of H9C2 cells into cardiomyocyte-like cells over time. Quantitative mass spectrometry followed by gene ontology (GO) enrichment analysis revealed that early changes in H9C2 differentiation are related to protein pathways of cardiac muscle morphogenesis and sphingolipid synthesis. These changes in the proteome were followed later in the differentiation time-course by alterations in the expression of proteins involved in cation transport and beta-oxidation. Studying the temporal profile of the H9C2 proteome during differentiation in further detail revealed eight clusters of co-regulated proteins that can be associated with early, late, continuous and transient up- and downregulation. Subsequent reactome pathway analysis based on these eight clusters further corroborated and detailed the results of the GO analysis. Specifically, this analysis confirmed that proteins related to pathways in muscle contraction are upregulated early and transiently, and proteins relevant to extracellular matrix organization are downregulated early. In contrast, upregulation of proteins related to cardiac metabolism occurs at later time points. Finally, independent validation of the proteomics results by immunoblotting confirmed hereto unknown regulators of cardiac structure and ionic metabolism. Our results are consistent with a 'function follows form' model of differentiation, whereby early and transient alterations of structural proteins enable subsequent changes that are relevant to the characteristic physiology of cardiomyocytes.
Collapse
Affiliation(s)
- Cynthia Kankeu
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Johnston JR, Chase PB, Pinto JR. Troponin through the looking-glass: emerging roles beyond regulation of striated muscle contraction. Oncotarget 2017; 9:1461-1482. [PMID: 29416706 PMCID: PMC5787451 DOI: 10.18632/oncotarget.22879] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/20/2017] [Indexed: 01/03/2023] Open
Abstract
Troponin is a heterotrimeric Ca2+-binding protein that has a well-established role in regulating striated muscle contraction. However, mounting evidence points to novel cellular functions of troponin, with profound implications in cancer, cardiomyopathy pathogenesis and skeletal muscle aging. Here, we highlight the non-canonical roles and aberrant expression patterns of troponin beyond the sarcomeric milieu. Utilizing bioinformatics tools and online databases, we also provide pathway, subcellular localization, and protein-protein/DNA interaction analyses that support a role for troponin in multiple subcellular compartments. This emerging knowledge challenges the conventional view of troponin as a sarcomere-specific protein exclusively involved in muscle contraction and may transform the way we think about sarcomeric proteins, particularly in the context of human disease and aging.
Collapse
Affiliation(s)
- Jamie R Johnston
- Department of Biomedical Sciences, The Florida State University College of Medicine, Tallahassee, FL, 32306-4300, USA
| | - P Bryant Chase
- Department of Biological Science, The Florida State University, Tallahassee, FL, 32306-4370, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, The Florida State University College of Medicine, Tallahassee, FL, 32306-4300, USA
| |
Collapse
|
12
|
Pereyra AS, Wang ZM, Messi ML, Zhang T, Wu H, Register TC, Forbes E, Devarie-Baez NO, Files DC, Abba MC, Furdui C, Delbono O. BDA-410 Treatment Reduces Body Weight and Fat Content by Enhancing Lipolysis in Sedentary Senescent Mice. J Gerontol A Biol Sci Med Sci 2017; 72:1045-1053. [PMID: 27789616 DOI: 10.1093/gerona/glw192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/12/2016] [Indexed: 02/07/2023] Open
Abstract
Loss of muscle mass and force with age leads to fall risk, mobility impairment, and reduced quality of life. This article shows that BDA-410, a calpain inhibitor, induced loss of body weight and fat but not lean mass or skeletal muscle proteins in a cohort of sedentary 23-month-old mice. Food and water intake and locomotor activity were not modified, whereas BDA-410 treatment decreased intramyocellular lipid and perigonadal fat, increased serum nonesterified fatty acids, and upregulated the genes mediating lipolysis and oxidation, lean phenotype, muscle contraction, muscle transcription regulation, and oxidative stress response. This finding is consistent with our recent report that lipid accumulation in skeletal myofibers is significantly correlated with slower fiber-contraction kinetics and diminished power in obese older adult mice. A proteomic analysis and immunoblot showed downregulation of the phosphatase PPP1R12B, which increases phosphorylated myosin half-life and modulates the calcium sensitivity of the contractile apparatus. This study demonstrates that BDA-410 exerts a beneficial effect on skeletal muscle contractility through new, alternative mechanisms, including enhanced lipolysis, upregulation of "lean phenotype-related genes," downregulation of the PP1R12B phosphatase, and enhanced excitation-contraction coupling. This single compound holds promise for treating age-dependent decline in muscle composition and strength.
Collapse
Affiliation(s)
- Andrea S Pereyra
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Biochemistry Research Institute of La Plata (INIBIOLP)/CONICET, School of Medicine, National University of La Plata, Buenos Aires, Argentina
| | - Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Maria Laura Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Tan Zhang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Hanzhi Wu
- Molecular Medicine and Translational Science
| | - Thomas C Register
- Department of Neurobiology and Anatomy.,Department of Pathology, Section on Comparative Medicine
| | | | | | - Daniel Clark Files
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Pulmonary and Critical Care Allergy and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Martin C Abba
- Basic and Applied Immunological Research Center (CINIBA), School of Medicine, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | | | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
13
|
The Cooccurrence of Obesity, Osteoporosis, and Sarcopenia in the Ovariectomized Rat: A Study for Modeling Osteosarcopenic Obesity in Rodents. J Aging Res 2017; 2017:1454103. [PMID: 28656107 PMCID: PMC5471594 DOI: 10.1155/2017/1454103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/19/2017] [Accepted: 03/28/2017] [Indexed: 01/02/2023] Open
Abstract
Background Obesity, osteoporosis, and sarcopenia may individually occur due to age-related gradual alterations in body composition. This study investigates the cooccurrence of these age-related diseases in female animals with low levels of ovarian hormone in the absence of complex multifactorial process of chronological aging. Methods Thirty-six 5- and 10-month-old female rats were chosen to model pre- and postmenopausal women, respectively. Rats were divided into three treatment groups in each age category—sham, ovariectomized (ovx), and ovx + E2 (17β-estradiol, 10 μg/kg)—and were pair-fed. Volunteer wheel running activity, body composition, bone microstructure, serum C-telopeptides of type I collagen, bone specific alkaline phosphatase, E2, and gastrocnemius and soleus muscles were analyzed. Results The cooccurrence of osteoporosis, sarcopenia, and obesity was observed in the older ovx rats associated with a significant (p < 0.05) increased fat mass (30%), bone loss (9.6%), decreased normalized muscle mass-to-body-weight ratio (10.5%), and a significant decrease in physical activity (57%). The ratio of tibial bone mineral density to combined muscle mass was significantly decreased in both ovx age categories. Conclusion Ovariectomized rat could be used as an experimental model to examine the effect of loss of ovarian hormones, while controlling for energy intake and expenditure, to conduct obesity and body composition translational research in females without the confounding effect of genetic background.
Collapse
|
14
|
Pinto JR, Muller-Delp J, Chase PB. Will you still need me (Ca 2+ , TnT, and DHPR), will you still cleave me (calpain), when I'm 64? Aging Cell 2017; 16:202-204. [PMID: 28008709 PMCID: PMC5334566 DOI: 10.1111/acel.12560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2016] [Indexed: 10/25/2022] Open
Affiliation(s)
- José Renato Pinto
- Department of Biomedical Sciences; The Florida State University College of Medicine; 1115 West Call Street Tallahassee FL 32306-4300 USA
| | - Judy Muller-Delp
- Department of Biomedical Sciences; The Florida State University College of Medicine; 1115 West Call Street Tallahassee FL 32306-4300 USA
| | - P. Bryant Chase
- Department of Biological Science; The Florida State University; 81 Chieftain Way Tallahassee FL 32306-4370 USA
| |
Collapse
|
15
|
Zhang T, Pereyra AS, Wang Z, Birbrair A, Reisz JA, Files DC, Purcell L, Feng X, Messi ML, Feng H, Chalovich J, Jin J, Furdui C, Delbono O. Calpain inhibition rescues troponin T3 fragmentation, increases Cav1.1, and enhances skeletal muscle force in aging sedentary mice. Aging Cell 2016; 15:488-98. [PMID: 26892246 PMCID: PMC4854922 DOI: 10.1111/acel.12453] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2016] [Indexed: 01/19/2023] Open
Abstract
Loss of strength in human and animal models of aging can be partially attributed to a well-recognized decrease in muscle mass; however, starting at middle-age, the normalized force (force/muscle cross-sectional area) in the knee extensors and single muscle fibers declines in a curvilinear manner. Strength is lost faster than muscle mass and is a more consistent risk factor for disability and death. Reduced expression of the voltage sensor Ca(2+) channel α1 subunit (Cav1.1) with aging leads to excitation-contraction uncoupling, which accounts for a significant fraction of the decrease in skeletal muscle function. We recently reported that in addition to its classical cytoplasmic location, fast skeletal muscle troponin T3 (TnT3) is fragmented in aging mice, and both full-length TnT3 (FL-TnT3) and its carboxyl-terminal (CT-TnT3) fragment shuttle to the nucleus. Here, we demonstrate that it regulates transcription of Cacna1s, the gene encoding Cav1.1. Knocking down TnT3 in vivo downregulated Cav1.1. TnT3 downregulation or overexpression decreased or increased, respectively, Cacna1s promoter activity, and the effect was ablated by truncating the TnT3 nuclear localization sequence. Further, we mapped the Cacna1s promoter region and established the consensus sequence for TnT3 binding to Cacna1s promoter. Systemic administration of BDA-410, a specific calpain inhibitor, prevented TnT3 fragmentation, and Cacna1s and Cav1.1 downregulation and improved muscle force generation in sedentary old mice.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Biomechanical Phenomena/drug effects
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calpain/antagonists & inhibitors
- Calpain/metabolism
- Cell Line
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Electrophoretic Mobility Shift Assay
- Female
- Gene Knockdown Techniques
- Isometric Contraction/drug effects
- Mice, Inbred C57BL
- Muscle Fatigue/drug effects
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/physiology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/physiology
- Promoter Regions, Genetic/genetics
- Protein Binding/drug effects
- Protein Stability/drug effects
- Sulfonamides/pharmacology
- Transcription, Genetic/drug effects
- Troponin T/metabolism
Collapse
Affiliation(s)
- Tan Zhang
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNCUSA
- Molecular Medicine and Translational ScienceWake Forest School of MedicineWinston‐SalemNCUSA
| | - Andrea S. Pereyra
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNCUSA
- Present address: Biochemistry Research Institute of La Plata (INIBIOLP)/CONICETSchool of MedicineNational University of La Plata1900La PlataBAArgentina
| | - Zhong‐Min Wang
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNCUSA
| | - Alexander Birbrair
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNCUSA
- Present address: Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of MedicineNY10461USA
| | - Julie A. Reisz
- Molecular Medicine and Translational ScienceWake Forest School of MedicineWinston‐SalemNCUSA
- Present address: Department of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCO80045New YorkUSA
| | - Daniel Clark Files
- Pulmonary, Critical Care, Allergy and Immunologic DiseasesWake Forest School of MedicineWinston‐SalemNCUSA
| | - Lina Purcell
- Pulmonary, Critical Care, Allergy and Immunologic DiseasesWake Forest School of MedicineWinston‐SalemNCUSA
| | - Xin Feng
- Department of OtolaryngologyWake Forest School of MedicineWinston‐SalemNCUSA
| | - Maria L. Messi
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNCUSA
| | - Hanzhong Feng
- Wayne State University School of MedicineDetroitMIUSA
| | - Joseph Chalovich
- Department of Biochemistry and Molecular BiologyBrody School of MedicineEast Carolina UniversityGreenvilleNCUSA
| | - Jian‐Ping Jin
- Wayne State University School of MedicineDetroitMIUSA
| | - Cristina Furdui
- Molecular Medicine and Translational ScienceWake Forest School of MedicineWinston‐SalemNCUSA
| | - Osvaldo Delbono
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNCUSA
- J Paul Sticht Center on AgingWake Forest School of MedicineWinston‐SalemNCUSA
| |
Collapse
|
16
|
Chen H, Zhang J, Yu B, Li L, Shang Y. Molecular cloning, structural analysis, and tissue expression of the TNNT3 gene in Guizhou black goat. Gene 2015; 573:123-8. [PMID: 26187066 DOI: 10.1016/j.gene.2015.07.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate fast skeletal troponin T (TNNT3) protein is an important regulatory and structural component of thin filaments in skeletal muscle, which improves meat quality traits of livestock and poultry. In this study, the troponin T isoforms from adult goat (skeletal muscle mRNA) were identified. We isolated the full-length coding sequence of the goat TNNT3 gene (GenBank: KM042888), analyzed its structure, and investigated its expression in different tissues from different aged goats (10, 30, 90, 180, and 360 days old). Real-time quantitative reverse transcription-polymerase chain reaction analyses revealed that Guizhou black goat TNNT3 was highly expressed in the biceps femoris muscle, abdominal muscle, and longissimus dorsi muscle (P<0.01), and lowly expressed in the cardiac muscle, masseter muscle, and rumen tissue (P>0.05). Western blotting confirmed that the TNNT3 protein was expressed in the muscle tissues listed above, with the highest level found in the longissimus dorsi muscle, and the lowest level in the masseter muscle. In the 10 to 360day study period the TNNT3 protein expression level was the highest when the goats were 30 days old. A peptide, ASPPPAEVPEVHEEVH that may contribute to improved goat meat tenderness was identified. This study provides an insight into the molecular structure of the vertebrate TNNT3 gene.
Collapse
Affiliation(s)
- Haolin Chen
- Guizhou Animal Husbandry and Veterinary Research Institute, 2 Laolipo Street, Nanming District, Guiyang, Guizhou 550000, China
| | - Jinhua Zhang
- Guizhou Animal Husbandry and Veterinary Research Institute, 2 Laolipo Street, Nanming District, Guiyang, Guizhou 550000, China
| | - Bo Yu
- Guizhou Animal Husbandry and Veterinary Research Institute, 2 Laolipo Street, Nanming District, Guiyang, Guizhou 550000, China
| | - Liang Li
- Guizhou Animal Husbandry and Veterinary Research Institute, 2 Laolipo Street, Nanming District, Guiyang, Guizhou 550000, China
| | - Yishun Shang
- Guizhou Animal Husbandry and Veterinary Research Institute, 2 Laolipo Street, Nanming District, Guiyang, Guizhou 550000, China.
| |
Collapse
|
17
|
Zhang T, Taylor J, Jiang Y, Pereyra AS, Messi ML, Wang ZM, Hereñú C, Delbono O. Troponin T3 regulates nuclear localization of the calcium channel Cavβ1a subunit in skeletal muscle. Exp Cell Res 2015; 336:276-86. [PMID: 25981458 DOI: 10.1016/j.yexcr.2015.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/06/2015] [Indexed: 11/24/2022]
Abstract
The voltage-gated calcium channel (Cav) β1a subunit (Cavβ1a) plays an important role in excitation-contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Cavβ1a subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160-244 aa) and Cavβ1a NH2-terminus (1-99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Cavβ1a/YFP shows that TnT3 facilitates Cavβ1a nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation.
Collapse
Affiliation(s)
- Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jackson Taylor
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Yang Jiang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Andrea S Pereyra
- Department of Histology, National University of La Plata, 1900 La Plata, Argentina
| | - Maria Laura Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Claudia Hereñú
- Department of Histology, National University of La Plata, 1900 La Plata, Argentina
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
18
|
Files DC, Liu C, Pereyra A, Wang ZM, Aggarwal NR, D'Alessio FR, Garibaldi BT, Mock JR, Singer BD, Feng X, Yammani RR, Zhang T, Lee AL, Philpott S, Lussier S, Purcell L, Chou J, Seeds M, King LS, Morris PE, Delbono O. Therapeutic exercise attenuates neutrophilic lung injury and skeletal muscle wasting. Sci Transl Med 2015; 7:278ra32. [PMID: 25761888 PMCID: PMC4820823 DOI: 10.1126/scitranslmed.3010283] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Early mobilization of critically ill patients with the acute respiratory distress syndrome (ARDS) has emerged as a therapeutic strategy that improves patient outcomes, such as the duration of mechanical ventilation and muscle strength. Despite the apparent efficacy of early mobility programs, their use in clinical practice is limited outside of specialized centers and clinical trials. To evaluate the mechanisms underlying mobility therapy, we exercised acute lung injury (ALI) mice for 2 days after the instillation of lipopolysaccharides into their lungs. We found that a short duration of moderate intensity exercise in ALI mice attenuated muscle ring finger 1 (MuRF1)-mediated atrophy of the limb and respiratory muscles and improved limb muscle force generation. Exercise also limited the influx of neutrophils into the alveolar space through modulation of a coordinated systemic neutrophil chemokine response. Granulocyte colony-stimulating factor (G-CSF) concentrations were systemically reduced by exercise in ALI mice, and in vivo blockade of the G-CSF receptor recapitulated the lung exercise phenotype in ALI mice. Additionally, plasma G-CSF concentrations in humans with acute respiratory failure (ARF) undergoing early mobility therapy showed greater decrements over time compared to control ARF patients. Together, these data provide a mechanism whereby early mobility therapy attenuates muscle wasting and limits ongoing alveolar neutrophilia through modulation of systemic neutrophil chemokines in lung-injured mice and humans.
Collapse
Affiliation(s)
- D Clark Files
- Department of Internal Medicine-Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA. Wake Forest Critical Illness, Injury and Recovery Research Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Chun Liu
- Department of Internal Medicine-Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Andrea Pereyra
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA. National Scientific and Technical Research Council (CONICET) and School of Medicine, National University of La Plata, 1900 La Plata, Argentina
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Neil R Aggarwal
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21205, USA
| | - Franco R D'Alessio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21205, USA
| | - Brian T Garibaldi
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21205, USA
| | - Jason R Mock
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21205, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21205, USA
| | - Xin Feng
- Department of Otolaryngology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Raghunatha R Yammani
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Amy L Lee
- Department of Internal Medicine-Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Sydney Philpott
- Department of Internal Medicine-Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Stephanie Lussier
- Department of Internal Medicine-Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Lina Purcell
- Department of Internal Medicine-Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jeff Chou
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Michael Seeds
- Department of Internal Medicine-Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA. Wake Forest Critical Illness, Injury and Recovery Research Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Landon S King
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21205, USA
| | - Peter E Morris
- Department of Internal Medicine-Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA. Wake Forest Critical Illness, Injury and Recovery Research Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
19
|
Osteosarcopenic obesity and fall prevention strategies. Maturitas 2015; 80:126-32. [DOI: 10.1016/j.maturitas.2014.11.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 11/18/2014] [Indexed: 12/24/2022]
|
20
|
Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang ZM, Messi ML, Mintz A, Delbono O. Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 2014; 5:122. [PMID: 25376879 PMCID: PMC4445991 DOI: 10.1186/scrt512] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023] Open
Abstract
Introduction Fibrosis, or scar formation, is a pathological condition characterized by excessive production and accumulation of collagen, loss of tissue architecture, and organ failure in response to uncontrolled wound healing. Several cellular populations have been implicated, including bone marrow-derived circulating fibrocytes, endothelial cells, resident fibroblasts, epithelial cells, and recently, perivascular cells called pericytes. We previously demonstrated pericyte functional heterogeneity in skeletal muscle. Whether pericyte subtypes are present in other tissues and whether a specific pericyte subset contributes to organ fibrosis are unknown. Methods Here, we report the presence of two pericyte subtypes, type-1 (Nestin-GFP-/NG2-DsRed+) and type-2 (Nestin-GFP+/NG2-DsRed+), surrounding blood vessels in lungs, kidneys, heart, spinal cord, and brain. Using Nestin-GFP/NG2-DsRed transgenic mice, we induced pulmonary, renal, cardiac, spinal cord, and cortical injuries to investigate the contributions of pericyte subtypes to fibrous tissue formation in vivo. Results A fraction of the lung’s collagen-producing cells corresponds to type-1 pericytes and kidney and heart pericytes do not produce collagen in pathological fibrosis. Note that type-1, but not type-2, pericytes increase and accumulate near the fibrotic tissue in all organs analyzed. Surprisingly, after CNS injury, type-1 pericytes differ from scar-forming PDGFRβ + cells. Conclusions Pericyte subpopulations respond differentially to tissue injury, and the production of collagen by type-1 pericytes is organ-dependent. Characterization of the mechanisms underlying scar formation generates cellular targets for future anti-fibrotic therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/scrt512) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, Delbono O. Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 2014; 307:C25-38. [PMID: 24788248 DOI: 10.1152/ajpcell.00084.2014] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue growth and function depend on vascularization, and vascular insufficiency or excess exacerbates many human diseases. Identification of the biological processes involved in angiogenesis will dictate strategies to modulate reduced or excessive vessel formation. We examine the essential role of pericytes. Their heterogeneous morphology, distribution, origins, and physiology have been described. Using double-transgenic Nestin-GFP/NG2-DsRed mice, we identified two pericyte subsets. We found that Nestin-GFP(-)/NG2-DsRed(+) (type-1) and Nestin-GFP(+)/NG2-DsRed(+) (type-2) pericytes attach to the walls of small and large blood vessels in vivo; in vitro, type-2, but not type-1, pericytes spark endothelial cells to form new vessels. Matrigel assay showed that only type-2 pericytes participate in normal angiogenesis. Moreover, when cancer cells were transplanted into Nestin-GFP/NG2-DsRed mice, type-1 pericytes did not penetrate the tumor, while type-2 pericytes were recruited during its angiogenesis. As inhibition of angiogenesis is a promising strategy in cancer therapy, type-2 pericytes may provide a cellular target susceptible to signaling and pharmacological manipulation in treating malignancy. This work also reports the potential of type-2 pericytes to improve blood perfusion in ischemic hindlimbs, indicating their potential for treating ischemic illnesses.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Maria Laura Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - John D Olson
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina; and Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina;
| |
Collapse
|
22
|
Files DC, Xiao K, Zhang T, Liu C, Qian J, Zhao W, Morris PE, Delbono O, Feng X. The posterior cricoarytenoid muscle is spared from MuRF1-mediated muscle atrophy in mice with acute lung injury. PLoS One 2014; 9:e87587. [PMID: 24498144 PMCID: PMC3909200 DOI: 10.1371/journal.pone.0087587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/30/2013] [Indexed: 01/11/2023] Open
Abstract
Background Skeletal muscle wasting in acute lung injury (ALI) patients increases the morbidity and mortality associated with this critical illness. The contribution of laryngeal muscle wasting to these outcomes is unknown, though voice impairments and aspiration are common in intensive care unit (ICU) survivors. We evaluated the intrinsic laryngeal abductor (PCA, posterior cricoarytenoid), adductor (CT, cricothyroid) and limb (EDL, extensor digitorum longus) muscles in a mouse model of ALI. Methods Escherichia coli lipopolysaccharides were instilled into the lungs of adult male C57Bl6J mice (ALI mice). Limb and intrinsic laryngeal muscles were analyzed for fiber size, type, protein expression and myosin heavy chain (MyHC) composition by SDS-PAGE and mass spectroscopy. Results Marked muscle atrophy occurred in the CT and EDL muscles, while the PCA was spared. The E3 ubiquitin ligase muscle ring finger-1 protein (MuRF1), a known mediator of limb muscle atrophy in this model, was upregulated in the CT and EDL, but not in the PCA. Genetic inhibition of MuRF1 protected the CT and EDL from ALI-induced muscle atrophy. MyHC-Extraocular (MyHC-EO) comprised 27% of the total MyHC in the PCA, distributed as hybrid fibers throughout 72% of PCA muscle fibers. Conclusion The vocal cord abductor (PCA) contains a large proportion of fibers expressing MyHC-EO and is spared from muscle atrophy in ALI mice. The lack of MuRF1 expression in the PCA suggests a previously unrecognized mechanism whereby this muscle is spared from atrophy. Atrophy of the vocal cord adductor (CT) may contribute to the impaired voice and increased aspiration observed in ICU survivors. Further evaluation of the sparing of muscles involved in systemic wasting diseases may lead to potential therapeutic targets for these illnesses.
Collapse
Affiliation(s)
- D. Clark Files
- Internal Medicine-Pulmonary, Critical Care, Allergy and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Wake Forest Critical Care Translational Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Kunhong Xiao
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Tan Zhang
- Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Chun Liu
- Internal Medicine-Pulmonary, Critical Care, Allergy and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jiang Qian
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Weiling Zhao
- Department of Radiation Oncology and Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Peter E. Morris
- Internal Medicine-Pulmonary, Critical Care, Allergy and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Wake Forest Critical Care Translational Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Osvaldo Delbono
- Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Xin Feng
- Department of Otolaryngology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
23
|
Chaves DFS, Carvalho PC, Lima DB, Nicastro H, Lorenzeti FM, Siqueira-Filho M, Hirabara SM, Alves PHM, Moresco JJ, Yates JR, Lancha AH. Comparative proteomic analysis of the aging soleus and extensor digitorum longus rat muscles using TMT labeling and mass spectrometry. J Proteome Res 2013; 12:4532-46. [PMID: 24001182 PMCID: PMC3845496 DOI: 10.1021/pr400644x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Sarcopenia describes an age-related decline in skeletal muscle mass, strength, and function that ultimately impairs metabolism and leads to poor balance, frequent falling, limited mobility, and a reduction in quality of life. Here we investigate the pathogenesis of sarcopenia through a proteomic shotgun approach. In brief, we employed tandem mass tags to quantitate and compare the protein profiles obtained from young versus old rat slow-twitch type of muscle (soleus) and a fast-twitch type of muscle (extensor digitorum longus, EDL). Our results disclose 3452 and 1848 proteins identified from soleus and EDL muscles samples, of which 78 and 174 were found to be differentially expressed, respectively. In general, most of the proteins were structural related and involved in energy metabolism, oxidative stress, detoxification, or transport. Aging affected soleus and EDL muscles differently, and several proteins were regulated in opposite ways. For example, pyruvate kinase had its expression and activity different in both soleus and EDL muscles. We were able to verify with existing literature many of our differentially expressed proteins as candidate aging biomarkers and, most importantly, disclose several new candidate biomarkers such as the glioblastoma amplified sequence, zero β-globin, and prolargin.
Collapse
Affiliation(s)
- Daniela F S Chaves
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sports, University of São Paulo , Av. Prof. Mello Moraes, 65, 05508-900 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. Am J Physiol Cell Physiol 2013; 305:C1098-113. [PMID: 24067916 DOI: 10.1152/ajpcell.00171.2013] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In older adults, changes in skeletal muscle composition are associated with increased fibrosis, loss of mass, and decreased force, which can lead to dependency, morbidity, and mortality. Understanding the biological mechanisms responsible is essential to sustaining and improving their quality of life. Compared with young mice, aged mice take longer to recover from muscle injury; their tissue fibrosis is more extensive, and regenerated myofibers are smaller. Strong evidence indicates that cells called pericytes, embedded in the basement membrane of capillaries, contribute to the satellite-cell pool and muscle growth. In addition to their role in skeletal muscle repair, after tissue damage, they detach from capillaries and migrate to the interstitial space to participate in fibrosis formation. Here we distinguish two bona fide pericyte subtypes in the skeletal muscle interstitium, type-1 (Nestin-GFP(-)/NG2-DsRed(+)) and type-2 (Nestin-GFP(+)/NG2-DsRed(+)), and characterize their heretofore unknown specific roles in the aging environment. Our in vitro results show that type-1 and type-2 pericytes are either fibrogenic or myogenic, respectively. Transplantation studies in young animals indicate that type-2 pericytes are myogenic, while type-1 pericytes remain in the interstitial space. In older mice, however, the muscular regenerative capacity of type-2 pericytes is limited, and type-1 pericytes produce collagen, contributing to fibrous tissue deposition. We conclude that in injured muscles from aging mice, the pericytes involved in skeletal muscle repair differ from those associated with scar formation.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | | | | | | |
Collapse
|
25
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O. Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev 2013; 22:2298-314. [PMID: 23517218 PMCID: PMC3730538 DOI: 10.1089/scd.2012.0647] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 03/20/2013] [Indexed: 02/06/2023] Open
Abstract
Stem cells ensure tissue regeneration, while overgrowth of adipogenic cells may compromise organ recovery and impair function. In myopathies and muscle atrophy associated with aging, fat accumulation increases dysfunction, and after chronic injury, the process of fatty degeneration, in which muscle is replaced by white adipocytes, further compromises tissue function and environment. Some studies suggest that pericytes may contribute to muscle regeneration as well as fat formation. This work reports the presence of two pericyte subpopulations in the skeletal muscle and characterizes their specific roles. Skeletal muscle from Nestin-GFP/NG2-DsRed mice show two types of pericytes, Nestin-GFP-/NG2-DsRed+ (type-1) and Nestin-GFP+/NG2-DsRed+ (type-2), in close proximity to endothelial cells. We also found that both Nestin-GFP-/NG2-DsRed+ and Nestin-GFP+/NG2-DsRed+ cells colocalize with staining of two pericyte markers, PDGFRβ and CD146, but only type-1 pericyte express the adipogenic progenitor marker PDGFRα. Type-2 pericytes participate in muscle regeneration, while type-1 contribute to fat accumulation. Transplantation studies indicate that type-1 pericytes do not form muscle in vivo, but contribute to fat deposition in the skeletal muscle, while type-2 pericytes contribute only to the new muscle formation after injury, but not to the fat accumulation. Our results suggest that type-1 and type-2 pericytes contribute to successful muscle regeneration which results from a balance of myogenic and nonmyogenic cells activation.
Collapse
MESH Headings
- Adipogenesis/genetics
- Animals
- Antigens/genetics
- Antigens/metabolism
- CD146 Antigen/genetics
- CD146 Antigen/metabolism
- Cell Lineage/genetics
- Endothelial Cells/cytology
- Female
- Gene Expression
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Male
- Mice
- Mice, Nude
- Mice, Transgenic
- Muscle, Skeletal/cytology
- Muscle, Skeletal/injuries
- Muscle, Skeletal/metabolism
- Nestin/genetics
- Nestin/metabolism
- Pericytes/cytology
- Pericytes/metabolism
- Pericytes/transplantation
- Proteoglycans/genetics
- Proteoglycans/metabolism
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Regeneration/genetics
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Maria Laura Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Grigori N. Enikolopov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- NBIC, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Akiva Mintz
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
26
|
Nuclear tropomyosin and troponin in striated muscle: new roles in a new locale? J Muscle Res Cell Motil 2013; 34:275-84. [DOI: 10.1007/s10974-013-9356-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/23/2013] [Indexed: 01/03/2023]
|
27
|
Zhang T, Birbrair A, Delbono O. Nonmyofilament-associated troponin T3 nuclear and nucleolar localization sequence and leucine zipper domain mediate muscle cell apoptosis. Cytoskeleton (Hoboken) 2013; 70:134-47. [PMID: 23378072 DOI: 10.1002/cm.21095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 11/07/2022]
Abstract
Troponin T (TnT) plays a major role in striated muscle contraction. We recently demonstrated that the fast skeletal muscle TnT3 isoform is localized in the muscle nucleus, and either its full-length or COOH-terminus leads to muscle cell apoptosis. Here, we further explored the mechanism by which it enters the nucleus and promotes cytotoxicity. Amino acid truncation and substitution showed that its COOH-terminus contains a dominant nuclear/nucleolar localization sequence (KLKRQK) and the basic lysine and arginine residues might play an important role in the nuclear retention and nucleolar enrichment of KLKRQK-DsRed fusion proteins. Deleting this domain or substituting lysine and arginine residues (KLAAQK) resulted in a dramatic loss of TnT3 nuclear and nucleolar localization. In contrast, the GATAKGKVGGRWK domain-DsRed construct localized exclusively in the cytoplasm, indicating that a nuclear exporting sequence is possibly localized in this region. Additionally, we identified a classical DNA-binding leucine zipper domain (LZD) which is conserved among TnT isoforms and species. Deletion of LZD or KLKRQK sequence significantly reduced cell apoptosis compared to full-length TnT3. We conclude that TnT3 contains both a nuclear localization signal and a DNA-binding domain, which may mediate nuclear/nucleolar signaling and muscle cell apoptosis.
Collapse
Affiliation(s)
- Tan Zhang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
28
|
Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res 2012; 10:67-84. [PMID: 23128780 DOI: 10.1016/j.scr.2012.09.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 12/16/2022] Open
Abstract
Neural progenitor cells have been proposed as a therapy for central nervous system disorders, including neurodegenerative diseases and trauma injuries, however their accessibility is a major limitation. We recently isolated Tuj1+ cells from skeletal muscle culture of Nestin-GFP transgenic mice however whether they form functional neurons in the brain is not yet known. Additionally, their isolation from nontransgenic species and identification of their ancestors is unknown. This gap of knowledge precludes us from studying their role as a valuable alternative to neural progenitors. Here, we identified two pericyte subtypes, type-1 and type-2, using a double transgenic Nestin-GFP/NG2-DsRed mouse and demonstrated that Nestin-GFP+/Tuj1+ cells derive from type-2 Nestin-GFP+/NG2-DsRed+/CD146+ pericytes located in the skeletal muscle interstitium. These cells are bipotential as they generate either Tuj1+ cells when cultured with muscle cells or become "classical" α-SMA+pericytes when cultured alone. In contrast, type-1 Nestin-GFP-/NG2-DsRed+/CD146+ pericytes generate α-SMA+pericytes but not Tuj1+ cells. Interestingly, type-2 pericyte derived Tuj1+ cells retain some pericytic markers (CD146+/PDGFRβ+/NG2+). Given the potential application of Nestin-GFP+/NG2-DsRed+/Tuj1+ cells for cell therapy, we found a surface marker, the nerve growth factor receptor, which is expressed exclusively in these cells and can be used to identify and isolate them from mixed cell populations in nontransgenic species for clinical purposes.
Collapse
|
29
|
Skeletal muscle neural progenitor cells exhibit properties of NG2-glia. Exp Cell Res 2012; 319:45-63. [PMID: 22999866 DOI: 10.1016/j.yexcr.2012.09.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/13/2012] [Accepted: 09/15/2012] [Indexed: 12/16/2022]
Abstract
Reversing brain degeneration and trauma lesions will depend on cell therapy. Our previous work identified neural precursor cells derived from the skeletal muscle of Nestin-GFP transgenic mice, but their identity, origin, and potential survival in the brain are only vaguely understood. In this work, we show that Nestin-GFP+ progenitor cells share morphological and molecular markers with NG2-glia, including NG2, PDGFRα, O4, NGF receptor (p75), glutamate receptor-1(AMPA), and A2B5 expression. Although these cells exhibit NG2, they do not express other pericyte markers, such as α-SMA or connexin-43, and do not differentiate into the muscle lineage. Patch-clamp studies displayed outward potassium currents, probably carried through Kir6.1 channels. Given their potential therapeutic application, we compared their abundance in tissues and concluded that skeletal muscle is the richest source of predifferentiated neural precursor cells. We found that these cells migrate toward the neurogenic subventricular zone displaying their typical morphology and nestin-GFP expression two weeks after brain injection. For translational purposes, we sought to identify these neural progenitor cells in wild-type species by developing a DsRed expression vector under Nestin-Intron II control. This approach revealed them in nonhuman primates and aging rodents throughout the lifespan.
Collapse
|