1
|
Santacroce L, Bottalico L, Charitos IA, Castellaneta F, Gaxhja E, Topi S, Palmirotta R, Jirillo E. Exploitation of Natural By-Products for the Promotion of Healthy Outcomes in Humans: Special Focus on Antioxidant and Anti-Inflammatory Mechanisms and Modulation of the Gut Microbiota. Antioxidants (Basel) 2024; 13:796. [PMID: 39061865 PMCID: PMC11273986 DOI: 10.3390/antiox13070796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Daily, a lot of food is wasted, and vegetables, fruit, and cereals as well as marine products represent the major sources of unwanted by-products. The sustainability, waste recovery, and revalorization of food by-products have been proposed as the main goals of the so-called circular economy. In fact, food wastes are enriched in by-products endowed with beneficial effects on human health. Grape, olives, vegetables, and rice contain different compounds, such as polyphenols, dietary fibers, polysaccharides, vitamins, and proteins, which exert antioxidant and anti-inflammatory activities, inhibiting pro-oxidant genes and the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kβ) pathway, as demonstrated by in vitro and in vivo experiments. Dietary fibers act upon the gut microbiota, expanding beneficial bacteria, which contribute to healthy outcomes. Furthermore, marine foods, even including microalgae, arthropods, and wastes of fish, are rich in carotenoids, polyphenols, polyunsaturated fatty acids, proteins, and chitooligosaccharides, which afford antioxidant and anti-inflammatory protection. The present review will cover the major by-products derived from food wastes, describing the mechanisms of action involved in the antioxidant and anti-inflammatory activities, as well as the modulation of the gut microbiota. The effects of some by-products have also been explored in clinical trials, while others, such as marine by-products, need more investigation for their full exploitation as bioactive compounds in humans.
Collapse
Affiliation(s)
- Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (R.P.); (E.J.)
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania (E.G.); (S.T.)
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, Institute of Bari, 70124 Bari, Italy;
| | - Francesca Castellaneta
- School of Clinical Biochemistry and Pathology, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Elona Gaxhja
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania (E.G.); (S.T.)
| | - Skender Topi
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania (E.G.); (S.T.)
| | - Raffaele Palmirotta
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (R.P.); (E.J.)
| | - Emilio Jirillo
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (R.P.); (E.J.)
| |
Collapse
|
2
|
Qaisar R. Targeting neuromuscular junction to treat neuromuscular disorders. Life Sci 2023; 333:122186. [PMID: 37858716 DOI: 10.1016/j.lfs.2023.122186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The integrity and preservation of the neuromuscular junction (NMJ), the interface between the motor neuron and skeletal muscle, is critical for maintaining a healthy skeletal muscle. The structural and/or functional defects in the three cellular components of NMJ, namely the pre-synaptic terminal, synaptic cleft, and post-synaptic region, negatively affect skeletal muscle mass and/or strength. Therefore, NMJ repair appears to be an appropriate therapy for muscle disorders. Mouse models provide a detailed molecular characterization of various cellular components of NMJ with relevance to human diseases. This review discusses different molecular targets on the three cellular components of NMJ for treating muscle diseases. The potential effects of these therapies on NMJ morphology and motor performance, their therapeutic efficacy, and clinical relevance are discussed. Collectively, the available data supports targeting NMJ alone or as an adjunct therapy in treating muscle disorders. However, the potential impact of such interventions on human patients with muscle disorders requires further investigation.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Space Medicine Research Group, Sharjah Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Cardiovascular Research Group, Sharjah Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
3
|
Albini A, Albini F, Corradino P, Dugo L, Calabrone L, Noonan DM. From antiquity to contemporary times: how olive oil by-products and waste water can contribute to health. Front Nutr 2023; 10:1254947. [PMID: 37908306 PMCID: PMC10615083 DOI: 10.3389/fnut.2023.1254947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Since antiquity, numerous advantages of olive oil and its by-products have been recognized in various domains, including cooking, skincare, and healthcare. Extra virgin olive oil is a crucial component of the Mediterranean diet; several of its compounds exert antioxidant, anti-proliferative, anti-angiogenic and pro-apoptotic effects against a variety of cancers, and also affect cellular metabolism, targeting cancer cells through their metabolic derangements. Numerous olive tree parts, including leaves, can contribute metabolites useful to human health. Olive mill waste water (OMWW), a dark and pungent liquid residue produced in vast amounts during olive oil extraction, contains high organic matter concentrations that may seriously contaminate the soil and surrounding waters if not managed properly. However, OMWW is a rich source of phytochemicals with various health benefits. In ancient Rome, the farmers would employ what was known as amurca, a mulch-like by-product of olive oil production, for many purposes and applications. Several studies have investigated anti-angiogenic and chemopreventive activities of OMWW extracts. The most prevalent polyphenol in OMWW extracts is hydroxytyrosol (HT). Verbascoside and oleuperin are also abundant. We assessed the impact of one such extract, A009, on endothelial cells (HUVEC) and cancer cells. A009 was anti-angiogenic in several in vitro assays (growth, migration, adhesion) and inhibited angiogenesis in vivo, outperforming HT alone. A009 inhibited cells from several tumors in vitro and in vivo and showed potential cardioprotective effects mitigating cardiotoxicity induced by chemotherapy drugs, commonly used in cancer treatment, and reducing up-regulation of pro-inflammatory markers in cardiomyocytes. Extracts from OMWW and other olive by-products have been evaluated for biological activities by various international research teams. The results obtained make them promising candidates for further development as nutraceutical and cosmeceutical agents or dietary supplement, especially in cancer prevention or even in co-treatments with anti-cancer drugs. Furthermore, their potential to offer cardioprotective benefits opens up avenues for application in the field of cardio-oncology.
Collapse
Affiliation(s)
- Adriana Albini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), European Institute of Oncology IEO, Milan, Italy
| | - Francesca Albini
- Royal Society for the Encouragement of Arts, Manufactures and Commerce, London, United Kingdom
| | - Paola Corradino
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), European Institute of Oncology IEO, Milan, Italy
| | - Laura Dugo
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Roma, Italy
| | | | - Douglas M. Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
4
|
Micheli L, Bertini L, Bonato A, Villanova N, Caruso C, Caruso M, Bernini R, Tirone F. Role of Hydroxytyrosol and Oleuropein in the Prevention of Aging and Related Disorders: Focus on Neurodegeneration, Skeletal Muscle Dysfunction and Gut Microbiota. Nutrients 2023; 15:1767. [PMID: 37049607 PMCID: PMC10096778 DOI: 10.3390/nu15071767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Aging is a multi-faceted process caused by the accumulation of cellular damage over time, associated with a gradual reduction of physiological activities in cells and organs. This degeneration results in a reduced ability to adapt to homeostasis perturbations and an increased incidence of illnesses such as cognitive decline, neurodegenerative and cardiovascular diseases, cancer, diabetes, and skeletal muscle pathologies. Key features of aging include a chronic low-grade inflammation state and a decrease of the autophagic process. The Mediterranean diet has been associated with longevity and ability to counteract the onset of age-related disorders. Extra virgin olive oil, a fundamental component of this diet, contains bioactive polyphenolic compounds as hydroxytyrosol (HTyr) and oleuropein (OLE), known for their antioxidant, anti-inflammatory, and neuroprotective properties. This review is focused on brain, skeletal muscle, and gut microbiota, as these systems are known to interact at several levels. After the description of the chemistry and pharmacokinetics of HTyr and OLE, we summarize studies reporting their effects in in vivo and in vitro models of neurodegenerative diseases of the central/peripheral nervous system, adult neurogenesis and depression, senescence and lifespan, and age-related skeletal muscle disorders, as well as their impact on the composition of the gut microbiota.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Agnese Bonato
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| |
Collapse
|
5
|
Salucci S, Bartoletti-Stella A, Bavelloni A, Aramini B, Blalock WL, Fabbri F, Vannini I, Sambri V, Stella F, Faenza I. Extra Virgin Olive Oil (EVOO), a Mediterranean Diet Component, in the Management of Muscle Mass and Function Preservation. Nutrients 2022; 14:nu14173567. [PMID: 36079827 PMCID: PMC9459997 DOI: 10.3390/nu14173567] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 12/25/2022] Open
Abstract
Aging results in a progressive decline in skeletal muscle mass, strength and function, a condition known as sarcopenia. This pathological condition is due to multifactorial processes including physical inactivity, inflammation, oxidative stress, hormonal changes, and nutritional intake. Physical therapy remains the standard approach to treat sarcopenia, although some interventions based on dietary supplementation are in clinical development. In this context, thanks to its known anti-inflammatory and antioxidative properties, there is great interest in using extra virgin olive oil (EVOO) supplementation to promote muscle mass and health in sarcopenic patients. To date, the molecular mechanisms responsible for the pathological changes associated with sarcopenia remain undefined; however, a complete understanding of the signaling pathways that regulate skeletal muscle protein synthesis and their behavior during sarcopenia appears vital for defining how EVOO might attenuate muscle wasting during aging. This review highlights the main molecular players that control skeletal muscle mass, with particular regard to sarcopenia, and discusses, based on the more recent findings, the potential of EVOO in delaying/preventing loss of muscle mass and function, with the aim of stimulating further research to assess dietary supplementation with EVOO as an approach to prevent or delay sarcopenia in aging individuals.
Collapse
Affiliation(s)
- Sara Salucci
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- Correspondence:
| | - Anna Bartoletti-Stella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine-DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy
| | - William L. Blalock
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ivan Vannini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Vittorio Sambri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
- Unit of Microbiology, Greater Romagna Hub Laboratory, 47522 Pievesestina, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine-DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
6
|
Metabolic Pathways and Ion Channels Involved in Skeletal Muscle Atrophy: A Starting Point for Potential Therapeutic Strategies. Cells 2022; 11:cells11162566. [PMID: 36010642 PMCID: PMC9406740 DOI: 10.3390/cells11162566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle tissue has the important function of supporting and defending the organism. It is the largest apparatus in the human body, and its function is important for contraction and movements. In addition, it is involved in the regulation of protein synthesis and degradation. In fact, inhibition of protein synthesis and/or activation of catabolism determines a pathological condition called muscle atrophy. Muscle atrophy is a reduction in muscle mass resulting in a partial or complete loss of function. It has been established that many physiopathological conditions can cause a reduction in muscle mass. Nevertheless, it is not well known that the molecular mechanisms and signaling processes caused this dramatic event. There are multiple concomitant processes involved in muscle atrophy. In fact, the gene transcription of some factors, oxidative stress mechanisms, and the alteration of ion transport through specific ion channels may contribute to muscle function impairment. In this review, we focused on the molecular mechanisms responsible for muscle damage and potential drugs to be used to alleviate this disabling condition.
Collapse
|
7
|
Nie C, Li T, Fan M, Wang Y, Sun Y, He R, Zhang X, Qian H, Ying H, Wang L, Li Y. Polyphenols in Highland barley tea inhibit the production of Advanced glycosylation end-products and alleviate the skeletal muscle damage. Mol Nutr Food Res 2022; 66:e2200225. [PMID: 35894228 DOI: 10.1002/mnfr.202200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/23/2022] [Indexed: 11/10/2022]
Abstract
SCOPE Highland barley tea is a kind of caffeine-free cereal tea. Previous studies have shown that it was rich in polyphenol flavonoids. Here, the effect of Highland barley tea polyphenols (HBP) on the production of advanced glycosylation end-products and alleviate the skeletal muscle damage is systematically investigated. METHODS and results: HBP effectively inhibited the formation of AGEs in vitro, and 12 phenolic compounds were identified. In addition, D-galactose was used to construct a mouse senescence model and intervened with different doses of HBP. It was found that high doses of HBP effectively inhibited AGEs in serum and flounder muscle species and increased muscle mass in flounder muscle; also, high doses of HBP increased the expression of the mitochondrial functional protein SIRT3 and decreased the expression of myasthenia-related proteins. Furthermore, cellular experiments showed that AGEs could significantly increase oxidative stress in skeletal muscle. CONCLUSION These data indicate that the relationship between the biological activity and HBP properties is relevant since Highland barley could be a potential functional food to prevent AGEs-mediated skeletal muscle damage. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Tingting Li
- Department of Food Science and Technology, College of Light Industry and Food Engineer, Nanjing Forestry University, Nanjing, 210037, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, No.3 Kehui 3rd Street, No.99 Kexue Avenue Central, Huangpu District, 510663, China
| | - Xuguang Zhang
- BYHEALTH Institute of Nutrition & Health, No.3 Kehui 3rd Street, No.99 Kexue Avenue Central, Huangpu District, 510663, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
8
|
Samadi M, Khosravy T, Azadbakht L, Rezaei M, Mosafaghadir M, Kamari N, Bagheri A, Pasdar Y, Najafi F, Hamze B, Soleimani D. Major dietary patterns in relation to muscle strength status among middle-aged people: A cross-sectional study within the RaNCD cohort. Food Sci Nutr 2021; 9:6672-6682. [PMID: 34925797 PMCID: PMC8645754 DOI: 10.1002/fsn3.2617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 11/15/2022] Open
Abstract
Grip strength in midlife can predict physical disability in senior years. Recent evidence shows the critical role of nutritional status on muscle function. We aimed to elucidate whether adherence to a particular dietary pattern would be associated with abnormal muscle strength among middle-aged people. In this cross-sectional study, a semiquantitative Food Frequency Questionnaire was used to assess the dietary intake of 2781 participants in the Ravansar Non-Communicable Chronic Disease (RaNCD) cohort. Major dietary patterns from 28 main food groups were extracted using principal component analysis. Binary logistic regression was used to determine the association between the tertiles of the major dietary patterns and muscle strength status. Two major dietary patterns were identified: the "mixed dietary pattern" that heavily loaded with fruits, vegetables, nuts, dairies, sweets, legumes, dried fruits, fish, red meat, butter, whole grains, natural juices, poultry, pickles, olive, industrial juice, egg, processed meat, and snacks and "unhealthy dietary pattern" that heavily loaded by fats, sugar, refined grains, soft drink, salt, organ meat, tea, and coffee. Adherence to the mixed dietary pattern (OR = 1.03, 95% CI = 0.8-1.33, P for trend = 0.77) and the unhealthy dietary pattern (OR = 1.01, 95% CI = 0.79-0.13, P for trend = 0.89) did not associate with abnormal muscle strength. This study suggests that the dietary pattern involving the consumption of healthy and unhealthy food does not have an effect on muscle strength in middle-aged adults.
Collapse
Affiliation(s)
- Mehnoosh Samadi
- Department of Nutritional SciencesSchool of Nutritional Sciences and Food TechnologyKermanshah University of Medical SciencesKermanshahIran
- Department of Nutritional SciencesResearch Center for Environmental Determinants of Health (RCEDH)Health InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Tina Khosravy
- Department of Health and NutritionLorestan University of Medical ScienceLorestanIran
| | - Leila Azadbakht
- Department of Community NutritionSchool of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
| | - Mansour Rezaei
- Biostatistics and Epidemiology DepartmentSchool of Public HealthKermanshah University of Medical SciencesKermanshahIran
| | - Mohammad Mosafaghadir
- Department of Nutritional SciencesSchool of Nutritional Sciences and Food TechnologyKermanshah University of Medical SciencesKermanshahIran
| | - Negin Kamari
- Department of Nutritional SciencesSchool of Nutritional Sciences and Food TechnologyKermanshah University of Medical SciencesKermanshahIran
| | - Amir Bagheri
- Department of Nutritional SciencesResearch Center for Environmental Determinants of Health (RCEDH)Health InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Yahya Pasdar
- Department of Nutritional SciencesSchool of Nutritional Sciences and Food TechnologyKermanshah University of Medical SciencesKermanshahIran
| | - Farid Najafi
- Department of EpidemiologyResearch Center for Environmental Determinants of Health (RCEDH)Health instituteKermanshah University of Medical SciencesKermanshahIran
| | - Behrouz Hamze
- Department of Public HealthKermanshah University of Medical SciencesKermanshahIran
| | - Davood Soleimani
- Department of Nutritional SciencesSchool of Nutritional Sciences and Food TechnologyKermanshah University of Medical SciencesKermanshahIran
- Research Center of Oils and FatsKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
9
|
Physical Activity and Redox Balance in the Elderly: Signal Transduction Mechanisms. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reactive Oxygen Species (ROS) are molecules naturally produced by cells. If their levels are too high, the cellular antioxidant machinery intervenes to bring back their quantity to physiological conditions. Since aging often induces malfunctioning in this machinery, ROS are considered an effective cause of age-associated diseases. Exercise stimulates ROS production on one side, and the antioxidant systems on the other side. The effects of exercise on oxidative stress markers have been shown in blood, vascular tissue, brain, cardiac and skeletal muscle, both in young and aged people. However, the intensity and volume of exercise and the individual subject characteristics are important to envisage future strategies to adequately personalize the balance of the oxidant/antioxidant environment. Here, we reviewed the literature that deals with the effects of physical activity on redox balance in young and aged people, with insights into the molecular mechanisms involved. Although many molecular pathways are involved, we are still far from a comprehensive view of the mechanisms that stand behind the effects of physical activity during aging. Although we believe that future precision medicine will be able to transform exercise administration from wellness to targeted prevention, as yet we admit that the topic is still in its infancy.
Collapse
|
10
|
Nardi M, Baldelli S, Ciriolo MR, Costanzo P, Procopio A, Colica C. Oleuropein Aglycone Peracetylated (3,4-DHPEA-EA(P)) Attenuates H 2O 2-Mediated Cytotoxicity in C2C12 Myocytes via Inactivation of p-JNK/p-c-Jun Signaling Pathway. Molecules 2020; 25:E5472. [PMID: 33238414 PMCID: PMC7700591 DOI: 10.3390/molecules25225472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
Oleuropein, a glycosylated secoiridoid present in olive leaves, is known to be an important antioxidant phenolic compound. We studied the antioxidant effect of low doses of oleuropein aglycone (3,4-DHPEA-EA) and oleuropein aglycone peracetylated (3,4-DHPEA-EA(P)) in murine C2C12 myocytes treated with hydrogen peroxide (H2O2). Both compounds were used at a concentration of 10 μM and were able to inhibit cell death induced by the H2O2 treatment, with 3,4-DHPEA-EA(P) being more. Under our experimental conditions, H2O2 efficiently induced the phosphorylated-active form of JNK and of its downstream target c-Jun. We demonstrated, by Western blot analysis, that 3,4-DHPEA-EA(P) was efficient in inhibiting the phospho-active form of JNK. This data suggests that the growth arrest and cell death of C2C12 proceeds via the JNK/c-Jun pathway. Moreover, we demonstrated that 3,4-DHPEA-EA(P) affects the myogenesis of C2C12 cells; because MyoD mRNA levels and the differentiation process are restored with 3,4-DHPEA-EA(P) after treatment. Overall, the results indicate that 3,4-DHPEA-EA(P) prevents ROS-mediated degenerative process by functioning as an efficient antioxidant.
Collapse
Affiliation(s)
- Monica Nardi
- Dipartimento di Scienze Della Salute, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy; (P.C.); (A.P.)
| | - Sara Baldelli
- Department of Human Sciences and Promotion of the Quality of Life, IRCCS San Raffaele Pisana, San Raffaele Roma Open University, 00163 Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Paola Costanzo
- Dipartimento di Scienze Della Salute, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy; (P.C.); (A.P.)
| | - Antonio Procopio
- Dipartimento di Scienze Della Salute, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy; (P.C.); (A.P.)
| | - Carmela Colica
- CNR, IBFM UOS, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy;
| |
Collapse
|
11
|
Zullo A, Fleckenstein J, Schleip R, Hoppe K, Wearing S, Klingler W. Structural and Functional Changes in the Coupling of Fascial Tissue, Skeletal Muscle, and Nerves During Aging. Front Physiol 2020; 11:592. [PMID: 32670080 PMCID: PMC7327116 DOI: 10.3389/fphys.2020.00592] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Aging is a one-way process associated with profound structural and functional changes in the organism. Indeed, the neuromuscular system undergoes a wide remodeling, which involves muscles, fascia, and the central and peripheral nervous systems. As a result, intrinsic features of tissues, as well as their functional and structural coupling, are affected and a decline in overall physical performance occurs. Evidence from the scientific literature demonstrates that senescence is associated with increased stiffness and reduced elasticity of fascia, as well as loss of skeletal muscle mass, strength, and regenerative potential. The interaction between muscular and fascial structures is also weakened. As for the nervous system, aging leads to motor cortex atrophy, reduced motor cortical excitability, and plasticity, thus leading to accumulation of denervated muscle fibers. As a result, the magnitude of force generated by the neuromuscular apparatus, its transmission along the myofascial chain, joint mobility, and movement coordination are impaired. In this review, we summarize the evidence about the deleterious effect of aging on skeletal muscle, fascial tissue, and the nervous system. In particular, we address the structural and functional changes occurring within and between these tissues and discuss the effect of inflammation in aging. From the clinical perspective, this article outlines promising approaches for analyzing the composition and the viscoelastic properties of skeletal muscle, such as ultrasonography and elastography, which could be applied for a better understanding of musculoskeletal modifications occurring with aging. Moreover, we describe the use of tissue manipulation techniques, such as massage, traction, mobilization as well as acupuncture, dry needling, and nerve block, to enhance fascial repair.
Collapse
Affiliation(s)
- Alberto Zullo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Johannes Fleckenstein
- Department of Sports Medicine, Institute of Sports Sciences, Goethe-University Frankfurt, Frankfurt, Germany
| | - Robert Schleip
- Department of Sport and Health Sciences, Technical University Munich, Munich, Germany
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller University Jena, Jena, Germany
| | - Kerstin Hoppe
- Department of Anaesthesiology, Würzburg University, Würzburg, Germany
| | - Scott Wearing
- Department of Sport and Health Sciences, Technical University Munich, Munich, Germany
- Faculty of Health School, Queensland University of Technology, Brisbane, QLD, Australia
| | - Werner Klingler
- Department of Sport and Health Sciences, Technical University Munich, Munich, Germany
- Faculty of Health School, Queensland University of Technology, Brisbane, QLD, Australia
- Fascia Research Group, Department of Experimental Anaesthesiology, Ulm University, Ulm, Germany
- Department of Anaesthesiology, SRH Hospital Sigmaringen, Sigmaringen, Germany
| |
Collapse
|
12
|
Conte E, Fonzino A, Cibelli A, De Benedictis V, Imbrici P, Nicchia GP, Pierno S, Camerino GM. Changes in Expression and Cellular Localization of Rat Skeletal Muscle ClC-1 Chloride Channel in Relation to Age, Myofiber Phenotype and PKC Modulation. Front Pharmacol 2020; 11:714. [PMID: 32499703 PMCID: PMC7243361 DOI: 10.3389/fphar.2020.00714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
The ClC-1 chloride channel 1 is important for muscle function as it stabilizes resting membrane potential and helps to repolarize the membrane after action potentials. We investigated the contribution of ClC-1 to adaptation of skeletal muscles to needs induced by the different stages of life. We analyzed the ClC-1 gene and protein expression as well as mRNA levels of protein kinase C (PKC) alpha and theta involved in ClC-1 modulation, in soleus (SOL) and extensor digitorum longus (EDL) muscles of rats in all stage of life. The cellular localization of ClC-1 in relation to age was also investigated. Our data show that during muscle development ClC-1 expression differs according to phenotype. In fast-twitch EDL muscles ClC-1 expression increased 10-fold starting at 7 days up to 8 months of life. Conversely, in slow-twitch SOL muscles ClC-1 expression remained constant until 33 days of life and subsequently increased fivefold to reach the adult value. Aging induced a downregulation of gene and protein ClC-1 expression in both muscle types analyzed. The mRNA of PKC-theta revealed the same trend as ClC-1 except in old age, whereas the mRNA of PKC-alpha increased only after 2 months of age. Also, we found that the ClC-1 is localized in both membrane and cytoplasm, in fibers of 12-day-old rats, becoming perfectly localized on the membrane in 2-month-old rats. This study could represent a point of comparison helpful for the identification of accurate pharmacological strategies for all the pathological situations in which ClC-1 protein is altered.
Collapse
Affiliation(s)
- Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Adriano Fonzino
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Cibelli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Vito De Benedictis
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Sabata Pierno
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
13
|
Altamura C, Desaphy JF, Conte D, De Luca A, Imbrici P. Skeletal muscle ClC-1 chloride channels in health and diseases. Pflugers Arch 2020; 472:961-975. [PMID: 32361781 DOI: 10.1007/s00424-020-02376-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
In 1970, the study of the pathomechanisms underlying myotonia in muscle fibers isolated from myotonic goats highlighted the importance of chloride conductance for skeletal muscle function; 20 years later, the human ClC-1 chloride channel has been cloned; last year, the crystal structure of human protein has been solved. Over the years, the efforts of many researchers led to significant advances in acknowledging the role of ClC-1 in skeletal muscle physiology and the mechanisms through which ClC-1 dysfunctions lead to impaired muscle function. The wide spectrum of pathophysiological conditions associated with modification of ClC-1 activity, either as the primary cause, such as in myotonia congenita, or as a secondary adaptive mechanism in other neuromuscular diseases, supports the idea that ClC-1 is relevant to preserve not only for skeletal muscle excitability, but also for skeletal muscle adaptation to physiological or harmful events. Improving this understanding could open promising avenues toward the development of selective and safe drugs targeting ClC-1, with the aim to restore normal muscle function. This review summarizes the most relevant research on ClC-1 channel physiology, associated diseases, and pharmacology.
Collapse
Affiliation(s)
- Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Diana Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
14
|
Polyphenols and their potential role in preventing skeletal muscle atrophy. Nutr Res 2020; 74:10-22. [DOI: 10.1016/j.nutres.2019.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/18/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022]
|
15
|
Camerino GM, Fonzino A, Conte E, De Bellis M, Mele A, Liantonio A, Tricarico D, Tarantino N, Dobrowolny G, Musarò A, Desaphy JF, De Luca A, Pierno S. Elucidating the Contribution of Skeletal Muscle Ion Channels to Amyotrophic Lateral Sclerosis in search of new therapeutic options. Sci Rep 2019; 9:3185. [PMID: 30816241 PMCID: PMC6395744 DOI: 10.1038/s41598-019-39676-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/25/2019] [Indexed: 12/11/2022] Open
Abstract
The discovery of pathogenetic mechanisms is essential to identify new therapeutic approaches in Amyotrophic Lateral Sclerosis (ALS). Here we investigated the role of the most important ion channels in skeletal muscle of an ALS animal model (MLC/SOD1G93A) carrying a mutated SOD1 exclusively in this tissue, avoiding motor-neuron involvement. Ion channels are fundamental proteins for muscle function, and also to sustain neuromuscular junction and nerve integrity. By a multivariate statistical analysis, using machine learning algorithms, we identified the discriminant genes in MLC/SOD1G93A mice. Surprisingly, the expression of ClC-1 chloride channel, present only in skeletal muscle, was reduced. Also, the expression of Protein Kinase-C, known to control ClC-1 activity, was increased, causing its inhibition. The functional characterization confirmed the reduction of ClC-1 activity, leading to hyperexcitability and impaired relaxation. The increased expression of ion channel coupled AMPA-receptor may contribute to sustained depolarization and functional impairment. Also, the decreased expression of irisin, a muscle-secreted peptide protecting brain function, may disturb muscle-nerve connection. Interestingly, the in-vitro application of chelerythrine or acetazolamide, restored ClC-1 activity and sarcolemma hyperexcitability in these mice. These findings show that ion channel function impairment in skeletal muscle may lead to motor-neuron increased vulnerability, and opens the possibility to investigate on new compounds as promising therapy.
Collapse
Affiliation(s)
- Giulia Maria Camerino
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Adriano Fonzino
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Michela De Bellis
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Antonietta Mele
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Domenico Tricarico
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Nancy Tarantino
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Gabriella Dobrowolny
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Polyclinic, 70124, Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Sabata Pierno
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125, Bari, Italy.
| |
Collapse
|
16
|
Conterno L, Martinelli F, Tamburini M, Fava F, Mancini A, Sordo M, Pindo M, Martens S, Masuero D, Vrhovsek U, Dal Lago C, Ferrario G, Morandini M, Tuohy K. Measuring the impact of olive pomace enriched biscuits on the gut microbiota and its metabolic activity in mildly hypercholesterolaemic subjects. Eur J Nutr 2019; 58:63-81. [PMID: 29124388 PMCID: PMC6424929 DOI: 10.1007/s00394-017-1572-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE Olive pomace is a major waste product of olive oil production but remains rich in polyphenols and fibres. We measured the potential of an olive pomace-enriched biscuit formulation delivering 17.1 ± 4.01 mg/100 g of hydroxytyrosol and its derivatives, to modulate the composition and metabolic activity of the human gut microbiota. METHODS In a double-blind, controlled parallel dietary intervention 62 otherwise healthy hypercholesterolemic (total plasma cholesterol 180-240 mg/dl) subjects were randomly assigned to eat 90 g of olive pomace-enriched biscuit (olive-enriched product, OEP) or an isoenergetic control (CTRL) for 8 weeks. Fasted blood samples, 24-h urine and faecal samples were collected before and after dietary intervention for measurement of microbiota, metabolites and clinical parameters. RESULTS Consumption of OEP biscuits did not impact on the diversity of the faecal microbiota and there was no statistically significant effect on CVD markers. A trend towards reduced oxidized LDL cholesterol following OEP ingestion was observed. At the genus level lactobacilli and Ruminococcus were reduced in OEP compared to CTRL biscuits. A trend towards increased bifidobacteria abundance was observed after OEP ingestion in 16S rRNA profiles, by fluorescent in situ hybridization and by qPCR. Targeted LC-MS revealed significant increases phenolic acid concentrations in 24-h urine following OEP ingestion and 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid, derivatives of hydroxytyrosol, were elevated in blood. A sex effect was apparent in urine small phenolic acid concentrations, and this sex effect was mirrored by statistically significant differences in relative abundances of faecal bacteria between men and women. CONCLUSION Ingestion of OEP biscuits led to a significant increase in the metabolic output of the gut microbiota with an apparent sex effect possibly linked to differences in microbiota makeup. Increased levels of homovanillic acid and DOPAC, thought to be involved in reducing oxidative LDL cholesterol, were observed upon OEP ingestion. However, OEP did not induce statistically significant changes in either ox-LDL or urinary isoprostane in this study.
Collapse
Affiliation(s)
- Lorenza Conterno
- OlioCRU s.r.l. Research and Development Group, Via Aldo Moro 1, 38062, Arco, TN, Italy
| | - Francesca Martinelli
- OlioCRU s.r.l. Research and Development Group, Via Aldo Moro 1, 38062, Arco, TN, Italy
| | - Matteo Tamburini
- OlioCRU s.r.l. Research and Development Group, Via Aldo Moro 1, 38062, Arco, TN, Italy
| | - Francesca Fava
- Department of Food Quality and Nutrition, Research and Innovation Centre-Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Andrea Mancini
- Department of Food Quality and Nutrition, Research and Innovation Centre-Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Maddalena Sordo
- Department of Food Quality and Nutrition, Research and Innovation Centre-Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Massimo Pindo
- Genomics and Advanced Biology Unit, Research and Innovation Centre-Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Stefan Martens
- Department of Food Quality and Nutrition, Research and Innovation Centre-Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Domenico Masuero
- Department of Food Quality and Nutrition, Research and Innovation Centre-Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre-Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Claudia Dal Lago
- Casa di Cura Eremo di Arco s.r.l., Via XXI Aprile 1, 38062, Arco, TN, Italy
| | - Gabriele Ferrario
- Casa di Cura Eremo di Arco s.r.l., Via XXI Aprile 1, 38062, Arco, TN, Italy
| | - Mario Morandini
- OlioCRU s.r.l. Research and Development Group, Via Aldo Moro 1, 38062, Arco, TN, Italy
| | - Kieran Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre-Fondazione Edmund Mach, San Michele all'Adige, Italy.
| |
Collapse
|
17
|
Changes in Redox Signaling in the Skeletal Muscle with Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4617801. [PMID: 30800208 PMCID: PMC6360032 DOI: 10.1155/2019/4617801] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 01/01/2023]
Abstract
Reduction in muscle strength with aging is due to both loss of muscle mass (quantity) and intrinsic force production (quality). Along with decreased functional capacity of the muscle, age-related muscle loss is associated with corresponding comorbidities and healthcare costs. Mitochondrial dysfunction and increased oxidative stress are the central driving forces for age-related skeletal muscle abnormalities. The increased oxidative stress in the aged muscle can lead to altered excitation-contraction coupling and calcium homeostasis. Furthermore, apoptosis-mediated fiber loss, atrophy of the remaining fibers, dysfunction of the satellite cells (muscle stem cells), and concomitant impaired muscle regeneration are also the consequences of increased oxidative stress, leading to a decrease in muscle mass, strength, and function of the aged muscle. Here we summarize the possible effects of oxidative stress in the aged muscle and the benefits of physical activity and antioxidant therapy.
Collapse
|
18
|
Capogrosso RF, Mantuano P, Uaesoontrachoon K, Cozzoli A, Giustino A, Dow T, Srinivassane S, Filipovic M, Bell C, Vandermeulen J, Massari AM, De Bellis M, Conte E, Pierno S, Camerino GM, Liantonio A, Nagaraju K, De Luca A. Ryanodine channel complex stabilizer compound S48168/ARM210 as a disease modifier in dystrophin-deficient mdx mice: proof-of-concept study and independent validation of efficacy. FASEB J 2018; 32:1025-1043. [PMID: 29097503 PMCID: PMC5888399 DOI: 10.1096/fj.201700182rrr] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022]
Abstract
Muscle fibers lacking dystrophin undergo a long-term alteration of Ca2+ homeostasis, partially caused by a leaky Ca2+ release ryanodine (RyR) channel. S48168/ARM210, an RyR calcium release channel stabilizer (a Rycal compound), is expected to enhance the rebinding of calstabin to the RyR channel complex and possibly alleviate the pathologic Ca2+ leakage in dystrophin-deficient skeletal and cardiac muscle. This study systematically investigated the effect of S48168/ARM210 on the phenotype of mdx mice by means of a first proof-of-concept, short (4 wk), phase 1 treatment, followed by a 12-wk treatment (phase 2) performed in parallel by 2 independent laboratories. The mdx mice were treated with S48168/ARM210 at two different concentrations (50 or 10 mg/kg/d) in their drinking water for 4 and 12 wk, respectively. The mice were subjected to treadmill sessions twice per week (12 m/min for 30 min) to unmask the mild disease. This testing was followed by in vivo forelimb and hindlimb grip strength and fatigability measurement, ex vivo extensor digitorum longus (EDL) and diaphragm (DIA) force contraction measurement and histologic and biochemical analysis. The treatments resulted in functional (grip strength, ex vivo force production in DIA and EDL muscles) as well as histologic improvement after 4 and 12 wk, with no adverse effects. Furthermore, levels of cellular biomarkers of calcium homeostasis increased. Therefore, these data suggest that S48168/ARM210 may be a safe therapeutic option, at the dose levels tested, for the treatment of Duchenne muscular dystrophy (DMD).-Capogrosso, R. F., Mantuano, P., Uaesoontrachoon, K., Cozzoli, A., Giustino, A., Dow, T., Srinivassane, S., Filipovic, M., Bell, C., Vandermeulen, J., Massari, A. M., De Bellis, M., Conte, E., Pierno, S., Camerino, G. M., Liantonio, A., Nagaraju, K., De Luca, A. Ryanodine channel complex stabilizer compound S48168/ARM210 as a disease modifier in dystrophin-deficient mdx mice: proof-of-concept study and independent validation of efficacy.
Collapse
Affiliation(s)
| | - Paola Mantuano
- Pharmacology Unit, Department of Pharmacy–Drug Sciences, University of Bari, Bari, Italy
| | | | - Anna Cozzoli
- Pharmacology Unit, Department of Pharmacy–Drug Sciences, University of Bari, Bari, Italy
| | - Arcangela Giustino
- Pharmacology Unit, Department of Pharmacy–Drug Sciences, University of Bari, Bari, Italy
| | - Todd Dow
- Agada Biosciences Incorporated, Halifax, Nova Scotia, Canada; and
| | | | - Marina Filipovic
- Agada Biosciences Incorporated, Halifax, Nova Scotia, Canada; and
| | - Christina Bell
- Agada Biosciences Incorporated, Halifax, Nova Scotia, Canada; and
| | | | - Ada Maria Massari
- Pharmacology Unit, Department of Pharmacy–Drug Sciences, University of Bari, Bari, Italy
| | - Michela De Bellis
- Pharmacology Unit, Department of Pharmacy–Drug Sciences, University of Bari, Bari, Italy
| | - Elena Conte
- Pharmacology Unit, Department of Pharmacy–Drug Sciences, University of Bari, Bari, Italy
| | - Sabata Pierno
- Pharmacology Unit, Department of Pharmacy–Drug Sciences, University of Bari, Bari, Italy
| | - Giulia Maria Camerino
- Pharmacology Unit, Department of Pharmacy–Drug Sciences, University of Bari, Bari, Italy
| | - Antonella Liantonio
- Pharmacology Unit, Department of Pharmacy–Drug Sciences, University of Bari, Bari, Italy
| | - Kanneboyina Nagaraju
- Agada Biosciences Incorporated, Halifax, Nova Scotia, Canada; and
- Binghamton University, School of Pharmacy and Pharmaceutical Sciences, Binghamton, New York, USA
| | - Annamaria De Luca
- Pharmacology Unit, Department of Pharmacy–Drug Sciences, University of Bari, Bari, Italy
| |
Collapse
|
19
|
De Bellis M, Sanarica F, Carocci A, Lentini G, Pierno S, Rolland JF, Conte Camerino D, De Luca A. Dual Action of Mexiletine and Its Pyrroline Derivatives as Skeletal Muscle Sodium Channel Blockers and Anti-oxidant Compounds: Toward Novel Therapeutic Potential. Front Pharmacol 2018; 8:907. [PMID: 29379434 PMCID: PMC5770958 DOI: 10.3389/fphar.2017.00907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022] Open
Abstract
Mexiletine (Mex) has been recently appointed as an orphan-drug in myotonic-syndromes, being a potent use-dependent blocker of skeletal-muscle sodium channels (NaV1.4). Available evidences about a potential anti-oxidant effect of Mex and its tetramethyl-pyrroline-derivatives in vivo, suggest the possibility to further enlarge the therapeutic potential of Mex-like compounds in myopathies in which alteration of excitation-contraction coupling is paralleled by oxidative stress. In line with this and based on our previous structure-activity-relationship studies, we synthesized new compounds with a tetramethyl-pyrroline-ring on the amino-group of both Mex (VM11) and of its potent use-dependent isopropyl-derivative (CI16). The compounds were tested for their ability to block native NaV1.4 and to exert cyto-protective effects against oxidative-stress injury in myoblasts. Voltage-clamp-recordings on adult myofibers were performed to assess the tonic and use-dependent block of peak sodium-currents (INa) by VM11 and CI16, as well as Mex, VM11 and CI16 were 3 and 6-fold more potent than Mex in producing a tonic-block of peak sodium-currents (INa), respectively. Interestingly, CI16 showed a 40-fold increase of potency with respect to Mex during high-frequency stimulation (10-Hz), resulting the strongest use-dependent Mex-like compound so far. The derivatives also behaved as inactivated channel blockers, however the voltage dependent block was modest. The experimental data fitted with the molecular-modeling simulation based on previously proposed interaction of main pharmacophores with NaV1.4 binding-site. CI16 and VM11 were then compared to Mex and its isopropyl derivative (Me5) for the ability to protect C2C12-cells from H2O2-cytotoxicity in the concentration range effective on Nav1.4. Mex and Me5 showed a moderate cyto-protective effect in the presence of H2O2, Importantly, CI16 and VM11 showed a remarkable cyto-protection at concentrations effective for use-dependent block of NaV1.4. This effect was comparable to that of selected anti-oxidant drugs proved to exert protective effect in preclinical models of progressive myopathies such as muscular dystrophies. Then, the tetramethyl-pyrroline compounds have increased therapeutic profile as sodium channel blockers and an interesting cyto-protective activity. The overall profile enlarges therapeutic potential from channelopathies to myopathies in which alteration of excitation-contraction coupling is paralleled by oxidative-stress, i.e., muscular dystrophies.
Collapse
Affiliation(s)
- Michela De Bellis
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Francesca Sanarica
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Carocci
- Unit of Medicinal Chemistry, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Lentini
- Unit of Medicinal Chemistry, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Sabata Pierno
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Diana Conte Camerino
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
20
|
Characterization of minoxidil/hydroxypropyl-β-cyclodextrin inclusion complex in aqueous alginate gel useful for alopecia management: Efficacy evaluation in male rat. Eur J Pharm Biopharm 2018; 122:146-157. [DOI: 10.1016/j.ejpb.2017.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/26/2017] [Accepted: 10/23/2017] [Indexed: 01/26/2023]
|
21
|
Abiri B, Vafa M. Nutrition and sarcopenia: A review of the evidence of nutritional influences. Crit Rev Food Sci Nutr 2017; 59:1456-1466. [DOI: 10.1080/10408398.2017.1412940] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Behnaz Abiri
- Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Proteome analysis in dystrophic mdx mouse muscle reveals a drastic alteration of key metabolic and contractile proteins after chronic exercise and the potential modulation by anti-oxidant compounds. J Proteomics 2017; 170:43-58. [PMID: 28966053 DOI: 10.1016/j.jprot.2017.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 11/21/2022]
Abstract
Weakness and fatigability are typical features of Duchenne muscular dystrophy patients and are aggravated in dystrophic mdx mice by chronic treadmill exercise. In the present study, we describe, the pattern of differentially abundant spots that is associated to the worsening of dystrophy phenotype induced by chronic exercise. Our proteomic analysis pointed out 34 protein spots with different abundance between sedentary and exercised mdx mice. These proteins belong mostly to glucose metabolism, energy production and sarcomere structure categories. Interestingly exercise induced an increase of typical fast twitch fiber proteins (Troponin T fast skeletal muscle, Troponin I fast skeletal muscle and Myozenin-1) combined with an increase of several glycolytic enzymes. Concerning energy transfer, Adenylate kinase, showed a marked decrease when compared with non-exercised mdx. The decline of this enzyme correlates with increased Creatin kinase enzyme, suggesting that a compensatory energy metabolism mechanism could be activated in mdx mouse skeletal muscle following exercise. In addition, we analysed muscles from exercised mdx mice treated with two natural anti-oxidant compounds, apocynin and taurine, that in our previous study, were proved to be beneficial on some pathology related parameters, and we showed that these compounds can counteract exercise-induced changes in the abundance of several proteins. SIGNIFICANCE Mdx mouse model of Duchenne muscular dystrophy shows a phenotype of the disorder milder than in human sufferers. This phenotype can be worsened by a different protocols of chronic exercise. These protocols can mimic the muscle progressive damage observed in humans, can allow studying the effects of inadequate training on dystrophic muscles and have been largely used to assess the ability of a drug to reduce the damage induced by exercise. In this study, we describe for the first time, the pattern of protein variation associated with the worsening of dystrophy phenotype induced by chronic exercise. Our proteomic analysis pointed out 34 protein spots with different amount between sedentary and exercised mdx mice. These proteins belong mostly to glucose metabolism, energy production and sarcomere structure categories and their variation indicates that mdx exercised muscle are not able to carry out the metabolic changes associated to fast-to-slow transition typically observed in aerobically trained muscle.
Collapse
|
23
|
Camerino GM, Musumeci O, Conte E, Musaraj K, Fonzino A, Barca E, Marino M, Rodolico C, Tricarico D, Camerino C, Carratù MR, Desaphy JF, De Luca A, Toscano A, Pierno S. Risk of Myopathy in Patients in Therapy with Statins: Identification of Biological Markers in a Pilot Study. Front Pharmacol 2017; 8:500. [PMID: 28798690 PMCID: PMC5529355 DOI: 10.3389/fphar.2017.00500] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/14/2017] [Indexed: 11/24/2022] Open
Abstract
Statin therapy may induce skeletal muscle damage ranging from myalgia to severe rhabdomyolysis. Our previous preclinical studies showed that statin treatment in rats involves the reduction of skeletal muscle ClC-1 chloride channel expression and related chloride conductance (gCl). An increase of the activity of protein kinase C theta (PKC theta) isoform, able to inactivate ClC-1, may contribute to destabilize sarcolemma excitability. These effects can be detrimental for muscle function leading to drug-induced myopathy. Our goal is to study the causes of statin-induced muscle side effects in patients at the aim to identify biological markers useful to prevent and counteract statin-induced muscle damage. We examined 10 patients, who experienced myalgia and hyper-CK-emia after starting statin therapy compared to 9 non-myopathic subjects not using lipid-lowering drugs. Western Blot (WB) analysis showed a 40% reduction of ClC-1 protein and increased expression of phosphorylated PKC in muscle biopsies of statin-treated patients with respect to untreated subjects, independently from their age and statin type. Real-time PCR analysis showed that despite reduction of the protein, the ClC-1 mRNA was not significantly changed, suggesting post-transcriptional modification. The mRNA expression of a series of genes was also evaluated. MuRF-1 was increased in accord with muscle atrophy, MEF-2, calcineurin (CN) and GLUT-4 transporter were reduced, suggesting altered transcription, alteration of glucose homeostasis and energy deficit. Accordingly, the phosphorylated form of AMPK, measured by WB, was increased, suggesting cytoprotective process activation. In parallel, mRNA expression of Notch-1, involved in muscle cell proliferation, was highly expressed in statin-treated patients, indicating active regeneration. Also, PGC-1-alpha and isocitrate-dehydrogenase increased expression together with increased activity of mitochondrial citrate-synthase, measured by spectrophotometric assay, suggests mitochondrial biogenesis. Thus, the reduction of ClC-1 protein and consequent sarcolemma hyperexcitability together with energy deficiency appear to be among the most important alterations to be associated with statin-related risk of myopathy in humans. Thus, it may be important to avoid statin treatment in pathologies characterized by energy deficit and chloride channel malfunction. This study validates the measure of ClC-1 expression as a reliable clinical test for assessing statin-dependent risk of myopathy.
Collapse
Affiliation(s)
- Giulia M Camerino
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo MoroBari, Italy
| | - Olimpia Musumeci
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo MoroBari, Italy
| | - Kejla Musaraj
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo MoroBari, Italy
| | - Adriano Fonzino
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo MoroBari, Italy
| | - Emanuele Barca
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Marco Marino
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo MoroBari, Italy
| | - Claudia Camerino
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical SchoolBari, Italy
| | - Maria R Carratù
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical SchoolBari, Italy
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical SchoolBari, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo MoroBari, Italy
| | - Antonio Toscano
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo MoroBari, Italy
| |
Collapse
|
24
|
Maqoud F, Cetrone M, Mele A, Tricarico D. Molecular structure and function of big calcium-activated potassium channels in skeletal muscle: pharmacological perspectives. Physiol Genomics 2017; 49:306-317. [DOI: 10.1152/physiolgenomics.00121.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/08/2017] [Accepted: 04/10/2017] [Indexed: 11/22/2022] Open
Abstract
The large-conductance Ca2+-activated K+ (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intracellular calcium ion (Ca2+). The BK channel is subjected to many mechanisms that add diversity to the BK channel α-subunit gene. These channels are indeed subject to alternative splicing, auxiliary subunits modulation, posttranslational modifications, and protein-protein interactions. BK channels can be modulated by diverse molecules that may induce either an increase or decrease in channel activity. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, have been found to be relevant in many physiological processes. BK channel diversity is obtained by means of alternative splicing and modulatory β- and γ-subunits. The association of the α-subunit with β- or with γ-subunits can change the BK channel phenotype, functional diversity, and pharmacological properties in different tissues. In the case of the skeletal muscle BK channel (sarco-BK channel), we established that the main mechanism regulating BK channel diversity is the alternative splicing of the KCNMA1/slo1 gene encoding for the α-subunit generating different splicing isoform in the muscle phenotypes. This finding helps to design molecules selectively targeting the skeletal muscle subtypes. The use of drugs selectively targeting the skeletal muscle BK channels is a promising strategy in the treatment of familial disorders affecting muscular skeletal apparatus including hyperkalemia and hypokalemia periodic paralysis.
Collapse
Affiliation(s)
- Fatima Maqoud
- Department of Pharmacy-Drug Science, University of Bari, Bari, Italy
- Faculty of Science, Chouaib Doukkali University, El Jadida, Morocco
| | - Michela Cetrone
- Istituto Tumori Giovanni Paolo II, Istituto di Ricovero e Cura a Carattere Scientifico, National Cancer Institute, Bari, Italy; and
| | - Antonietta Mele
- Department of Pharmacy-Drug Science, University of Bari, Bari, Italy
| | | |
Collapse
|
25
|
Conte E, Camerino GM, Mele A, De Bellis M, Pierno S, Rana F, Fonzino A, Caloiero R, Rizzi L, Bresciani E, Ben Haj Salah K, Fehrentz J, Martinez J, Giustino A, Mariggiò MA, Coluccia M, Tricarico D, Lograno MD, De Luca A, Torsello A, Conte D, Liantonio A. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin-induced cachexia. J Cachexia Sarcopenia Muscle 2017; 8:386-404. [PMID: 28294567 PMCID: PMC5703021 DOI: 10.1002/jcsm.12185] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cachexia is a wasting condition associated with cancer types and, at the same time, is a serious and dose-limiting side effect of cancer chemotherapy. Skeletal muscle loss is one of the main characteristics of cachexia that significantly contributes to the functional muscle impairment. Calcium-dependent signaling pathways are believed to play an important role in skeletal muscle decline observed in cachexia, but whether intracellular calcium homeostasis is affected in this situation remains uncertain. Growth hormone secretagogues (GHS), a family of synthetic agonists of ghrelin receptor (GHS-R1a), are being developed as a therapeutic option for cancer cachexia syndrome; however, the exact mechanism by which GHS interfere with skeletal muscle is not fully understood. METHODS By a multidisciplinary approach ranging from cytofluorometry and electrophysiology to gene expression and histology, we characterized the calcium homeostasis in fast-twitch extensor digitorum longus (EDL) muscle of adult rats with cisplatin-induced cachexia and established the potential beneficial effects of two GHS (hexarelin and JMV2894) at this level. Additionally, in vivo measures of grip strength and of ultrasonography recordings allowed us to evaluate the functional impact of GHS therapeutic intervention. RESULTS Cisplatin-treated EDL muscle fibres were characterized by a ~18% significant reduction of the muscle weight and fibre diameter together with an up-regulation of atrogin1/Murf-1 genes and a down-regulation of Pgc1-a gene, all indexes of muscle atrophy, and by a two-fold increase in resting intracellular calcium, [Ca2+ ]i , compared with control rats. Moreover, the amplitude of the calcium transient induced by caffeine or depolarizing high potassium solution as well as the store-operated calcium entry were ~50% significantly reduced in cisplatin-treated rats. Calcium homeostasis dysregulation parallels with changes of functional ex vivo (excitability and resting macroscopic conductance) and in vivo (forelimb force and muscle volume) outcomes in cachectic animals. Administration of hexarelin or JMV2894 markedly reduced the cisplatin-induced alteration of calcium homeostasis by both common as well as drug-specific mechanisms of action. This effect correlated with muscle function preservation as well as amelioration of various atrophic indexes, thus supporting the functional impact of GHS activity on calcium homeostasis. CONCLUSIONS Our findings provide a direct evidence that a dysregulation of calcium homeostasis plays a key role in cisplatin-induced model of cachexia gaining insight into the etiopathogenesis of this form of muscle wasting. Furthermore, our demonstration that GHS administration efficaciously prevents cisplatin-induced calcium homeostasis alteration contributes to elucidate the mechanism of action through which GHS could potentially ameliorate chemotherapy-associated cachexia.
Collapse
Affiliation(s)
- Elena Conte
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | | | - Antonietta Mele
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | - Michela De Bellis
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | - Sabata Pierno
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | - Francesco Rana
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | - Adriano Fonzino
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | - Roberta Caloiero
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | - Laura Rizzi
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaVia Cadore 4820900MonzaItaly
| | - Elena Bresciani
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaVia Cadore 4820900MonzaItaly
| | - Khoubaib Ben Haj Salah
- Max Mousseron Institute of Biomolecules UMR5247, CNRSUniversity of Montpellier, ENSCMAvenue Charles Flahault BP 14491Montpellier Cedex 5France
| | - Jean‐Alain Fehrentz
- Max Mousseron Institute of Biomolecules UMR5247, CNRSUniversity of Montpellier, ENSCMAvenue Charles Flahault BP 14491Montpellier Cedex 5France
| | - Jean Martinez
- Max Mousseron Institute of Biomolecules UMR5247, CNRSUniversity of Montpellier, ENSCMAvenue Charles Flahault BP 14491Montpellier Cedex 5France
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human OncologyUniversity of BariPiazza Giulio Cesare70125BariItaly
| | - Maria Addolorata Mariggiò
- Department of Biomedical Sciences and Human OncologyUniversity of BariPiazza Giulio Cesare70125BariItaly
| | - Mauro Coluccia
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | - Domenico Tricarico
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | | | - Annamaria De Luca
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | - Antonio Torsello
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaVia Cadore 4820900MonzaItaly
| | - Diana Conte
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| | - Antonella Liantonio
- Department of Pharmacy – Drug SciencesUniversity of BariVia Orabona 470125BariItaly
| |
Collapse
|
26
|
Tricarico D, Mele A. Commentary: A BK (Slo1) channel journey from molecule to physiology. Front Pharmacol 2017; 8:188. [PMID: 28424624 PMCID: PMC5380717 DOI: 10.3389/fphar.2017.00188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/23/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Antonietta Mele
- Department of Pharmacy-Drug Science, University of BariBari, Italy
| |
Collapse
|
27
|
Yao Q, He G, Guo X, Hu Y, Shen Y, Gou X. Antioxidant activity of olive wine, a byproduct of olive mill wastewater. PHARMACEUTICAL BIOLOGY 2016; 54:2276-2281. [PMID: 26971783 DOI: 10.3109/13880209.2016.1153661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context Although olive mill wastewater (OMWW) is a good source of bioactive phenolic compounds, disposing OMWW is a serious environmental challenge. Production of wine via fermenting OMWW may be a promising alternative to deal with OMWW. However, whether or not olive wine from OMWW still reserves its original bioactivities remains unclear. Objective This study examines antioxidant activity of olive wine fermented from OMWW. Materials and methods Hydroxytyrosol in olive oil was determined by HPLC. Total flavonoid, total polyphenol and in vitro antioxidant activities were measured by spectrophotometry. Aged mice were intragastricly administered 7, 14 and 28 mL/kg olive wine consecutively for 30 d. Afterward, levels of malonaldehyde (MDA), protein carbonyl, reduced glutathione (GSH) and activity of superoxide dismutase (SOD) were assayed in mouse plasma and liver. Results Contents of hydroxytyrosol, total flavonoid and total polyphenol in olive wine were 0.14 ± 0.01, 0.29 ± 0.06 and 0.43 ± 0.03 mg/mL, respectively. The IC50 value of olive wine to scavenge DPPH and hydroxyl free radicals was 2.5% and 3.2% (v/v), respectively. Compared with the solvent control group, olive wine with a dose of 28 mL/kg remarkably lowered mouse MDA concentration in liver, and reduced protein carbonyl level in plasma (p < 0.05). Meanwhile, olive wine at doses of 7 and 28 mL/kg notably enhanced SOD activity in both mouse plasma and liver (p < 0.05). The beneficial effect on liver was superior to that of γ-tocopherol. Conclusion The study demonstrated that olive wine from OMWW has potential for treating oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Qian Yao
- a Department of Key Laboratory of Medicinal and Edible Plant Resource Development of Sichuan Education , Chengdu University , Chengdu , China
| | - Gang He
- a Department of Key Laboratory of Medicinal and Edible Plant Resource Development of Sichuan Education , Chengdu University , Chengdu , China
| | - Xiaoqiang Guo
- a Department of Key Laboratory of Medicinal and Edible Plant Resource Development of Sichuan Education , Chengdu University , Chengdu , China
| | - Yibing Hu
- a Department of Key Laboratory of Medicinal and Edible Plant Resource Development of Sichuan Education , Chengdu University , Chengdu , China
| | - Yuanfu Shen
- a Department of Key Laboratory of Medicinal and Edible Plant Resource Development of Sichuan Education , Chengdu University , Chengdu , China
| | - Xiaojun Gou
- a Department of Key Laboratory of Medicinal and Edible Plant Resource Development of Sichuan Education , Chengdu University , Chengdu , China
| |
Collapse
|
28
|
Sung B, Hwang SY, Kim MJ, Kim M, Jeong JW, Kim CM, Chung HY, Kim ND. Loquat leaf extract enhances myogenic differentiation, improves muscle function and attenuates muscle loss in aged rats. Int J Mol Med 2015; 36:792-800. [PMID: 26178971 DOI: 10.3892/ijmm.2015.2286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/03/2015] [Indexed: 11/06/2022] Open
Abstract
A main characteristic of aging is the debilitating, progressive and generalized impairment of biological functions, resulting in an increased vulnerability to disease and death. Skeletal muscle comprises approximately 40% of the human body; thus, it is the most abundant tissue. At the age of 30 onwards, 0.5‑1% of human muscle mass is lost each year, with a marked acceleration in the rate of decline after the age of 65. Thus, novel strategies that effectively attenuate skeletal muscle loss and enhance muscle function are required to improve the quality of life of older subjects. The aim of the present study was to determine whether loquat (Eriobotrya japonica) leaf extract (LE) can prevent the loss of skeletal muscle function in aged rats. Young (5-month-old) and aged (18‑19-month-old) rats were fed LE (50 mg/kg/day) for 35 days and the changes in muscle mass and strength were evaluated. The age‑associated loss of grip strength was attenuated, and muscle mass and muscle creatine kinase (CK) activity were enhanced following the administration of LE. Histochemical analysis also revealed that LE abrogated the age‑associated decrease in cross‑sectional area (CSA) and decreased the amount of connective tissue in the muscle of aged rats. To investigate the mode of action of LE, C2C12 murine myoblasts were used to evaluate the myogenic potential of LE. The expression levels of myogenic proteins (MyoD and myogenin) and functional myosin heavy chain (MyHC) were measured by western blot analysis. LE enhanced MyoD, myogenin and MyHC expression. The changes in the expression of myogenic genes corresponded with an increase in the activity of CK, a myogenic differentiation marker. Finally, LE activated the Akt/mammalian target of rapamycin (mTOR) signaling pathway, which is involved in muscle protein synthesis during myogenesis. These findings suggest that LE attenuates sarcopenia by promoting myogenic differentiation and subsequently promoting muscle protein synthesis.
Collapse
Affiliation(s)
- Bokyung Sung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Seong Yeon Hwang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Min Jo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Minjung Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Ji Won Jeong
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Cheol Min Kim
- Research Center for Anti‑Aging Technology Development, Pusan National University, Busan 609‑735, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| |
Collapse
|
29
|
Imbrici P, Altamura C, Pessia M, Mantegazza R, Desaphy JF, Camerino DC. ClC-1 chloride channels: state-of-the-art research and future challenges. Front Cell Neurosci 2015; 9:156. [PMID: 25964741 PMCID: PMC4410605 DOI: 10.3389/fncel.2015.00156] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/08/2015] [Indexed: 01/06/2023] Open
Abstract
The voltage-dependent ClC-1 chloride channel belongs to the CLC channel/transporter family. It is a homodimer comprising two individual pores which can operate independently or simultaneously according to two gating modes, the fast and the slow gate of the channel. ClC-1 is preferentially expressed in the skeletal muscle fibers where the presence of an efficient Cl(-) homeostasis is crucial for the correct membrane repolarization and propagation of action potential. As a consequence, mutations in the CLCN1 gene cause dominant and recessive forms of myotonia congenita (MC), a rare skeletal muscle channelopathy caused by abnormal membrane excitation, and clinically characterized by muscle stiffness and various degrees of transitory weakness. Elucidation of the mechanistic link between the genetic defects and the disease pathogenesis is still incomplete and, at this time, there is no specific treatment for MC. Still controversial is the subcellular localization pattern of ClC-1 channels in skeletal muscle as well as its modulation by some intracellular factors. The expression of ClC-1 in other tissues such as in brain and heart and the possible assembly of ClC-1/ClC-2 heterodimers further expand the physiological properties of ClC-1 and its involvement in diseases. A recent de novo CLCN1 truncation mutation in a patient with generalized epilepsy indeed postulates an unexpected role of this channel in the control of neuronal network excitability. This review summarizes the most relevant and state-of-the-art research on ClC-1 chloride channels physiology and associated diseases.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari “Aldo Moro”,Bari, Italy
| | - Concetta Altamura
- Department of Pharmacy - Drug Sciences, University of Bari “Aldo Moro”,Bari, Italy
| | - Mauro Pessia
- Department of Pharmacy - Drug Sciences, University of Bari “Aldo Moro”,Bari, Italy
| | - Renato Mantegazza
- Department of Pharmacy - Drug Sciences, University of Bari “Aldo Moro”,Bari, Italy
| | | | - Diana Conte Camerino
- Department of Pharmacy - Drug Sciences, University of Bari “Aldo Moro”,Bari, Italy
| |
Collapse
|
30
|
Rigacci S. Olive Oil Phenols as Promising Multi-targeting Agents Against Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 863:1-20. [PMID: 26092624 DOI: 10.1007/978-3-319-18365-7_1] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amyloid diseases are characterized by the deposition of typically aggregated proteins/peptides in tissues, associated with degeneration and progressive functional impairment. Alzheimer's disease is one of the most studied neurodegenerative amyloid diseases and, in Western countries, a significant cause of dementia in the elderly. The so-called "Mediterranean diet" has been considered for long as the healthier dietary regimen, characterised by a great abundance in vegetables and fruits, extra virgin olive oil as the main source of fat, a moderate consumption of red wine and a reduced intake of proteins from red meat. Recent epidemiological studies support the efficacy of the Mediterranean diet not only against cardiovascular and cancer diseases (as previously demonstrated) but also against the cognitive decline associated with ageing, and several data are highlighting the role played by natural phenols, of which red wine and extra virgin olive oil are rich, in such context. In the meantime, studies conducted both in vivo and in vitro have started to reveal the great potential of the phenolic component of extra virgin olive oil (mainly oleuropein aglycone and oleocanthal) in counteracting amyloid aggregation and toxicity, with a particular emphasis on the pathways involved in the onset and progression of Alzheimer's disease: amyloid precursor protein processing, amyloid-beta (Aβ) peptide and tau aggregation, autophagy impairment, neuroinflammation. The aim of this review is to summarize the results of such research efforts, showing how the action of these phenols goes far beyond their renowned antioxidant activity and revealing their potential as multi-targeting agents against Alzheimer's disease.
Collapse
Affiliation(s)
- Stefania Rigacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy,
| |
Collapse
|
31
|
Wang X, Li H, Zheng A, Yang L, Liu J, Chen C, Tang Y, Zou X, Li Y, Long J, Liu J, Zhang Y, Feng Z. Mitochondrial dysfunction-associated OPA1 cleavage contributes to muscle degeneration: preventative effect of hydroxytyrosol acetate. Cell Death Dis 2014; 5:e1521. [PMID: 25393477 PMCID: PMC4260731 DOI: 10.1038/cddis.2014.473] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/27/2014] [Accepted: 10/06/2014] [Indexed: 01/15/2023]
Abstract
Mitochondrial dysfunction contributes to the development of muscle disorders, including muscle wasting, muscle atrophy and degeneration. Despite the knowledge that oxidative stress closely interacts with mitochondrial dysfunction, the detailed mechanisms remain obscure. In this study, tert-butylhydroperoxide (t-BHP) was used to induce oxidative stress on differentiated C2C12 myotubes. t-BHP induced significant mitochondrial dysfunction in a time-dependent manner, accompanied by decreased myosin heavy chain (MyHC) expression at both the mRNA and protein levels. Consistently, endogenous reactive oxygen species (ROS) overproduction triggered by carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), a mitochondrial oxidative phosphorylation inhibitor, was accompanied by decreased membrane potential and decreased MyHC protein content. However, the free radical scavenger N-acetyl-L-cysteine (NAC) efficiently reduced the ROS level and restored MyHC content, suggesting a close association between ROS and MyHC expression. Meanwhile, we found that both t-BHP and FCCP promoted the cleavage of optic atrophy 1 (OPA1) from the long form into short form during the early stages. In addition, the ATPase family gene 3-like 2, a mitochondrial inner membrane protease, was also markedly increased. Moreover, OPA1 knockdown in myotubes was accompanied by decreased MyHC content, whereas NAC failed to prevent FCCP-induced MyHC decrease with OPA1 knockdown, suggesting that ROS might affect MyHC content by modulating OPA1 cleavage. In addition, hydroxytyrosol acetate (HT-AC), an important compound in virgin olive oil, could significantly prevent t-BHP-induced mitochondrial membrane potential and cell viability loss in myotubes. Specifically, HT-AC inhibited t-BHP-induced OPA1 cleavage and mitochondrial morphology changes, accompanied by improvement on mitochondrial oxygen consumption capacity, ATP productive potential and activities of mitochondrial complex I, II and V. Moreover, both t-BHP- and FCCP-induced MyHC decrease was sufficiently inhibited by HT-AC. Taken together, our data provide evidence indicating that mitochondrial dysfunction-associated OPA1 cleavage may contribute to muscle degeneration, and olive oil compounds could be effective nutrients for preventing the development of muscle disorders.
Collapse
Affiliation(s)
- X Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - H Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - A Zheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - L Yang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - J Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - C Chen
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Y Tang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - X Zou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Y Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - J Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - J Liu
- 1] Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China [2] Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin 300381, China
| | - Y Zhang
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin 300381, China
| | - Z Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Liantonio A, Camerino GM, Scaramuzzi A, Cannone M, Pierno S, De Bellis M, Conte E, Fraysse B, Tricarico D, Conte Camerino D. Calcium homeostasis is altered in skeletal muscle of spontaneously hypertensive rats: cytofluorimetric and gene expression analysis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2803-15. [PMID: 25084345 DOI: 10.1016/j.ajpath.2014.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 11/25/2022]
Abstract
Hypertension is often associated with skeletal muscle pathological conditions related to function and metabolism. The mechanisms underlying the development of these pathological conditions remain undefined. Because calcium homeostasis is a biomarker of muscle function, we assessed whether it is altered in hypertensive muscles. We measured resting intracellular calcium and store-operated calcium entry (SOCE) in fast- and slow-twitch muscle fibers from normotensive Wistar-Kyoto rats and spontaneously hypertensive rats (SHRs) by cytofluorimetric technique and determined the expression of SOCE gene machinery by real-time PCR. Hypertension caused a phenotype-dependent dysregulation of calcium homeostasis; the resting intracellular calcium of extensor digitorum longus and soleus muscles of SHRs were differently altered with respect to the related muscle of normotensive animals. In addition, soleus muscles of SHR showed reduced activity of the sarcoplasmic reticulum and decreased sarcolemmal calcium permeability at rest and after SOCE activation. Accordingly, we found an alteration of the expression levels of some SOCE components, such as stromal interaction molecule 1, calcium release-activated calcium modulator 1, and transient receptor potential canonical 1. The hypertension-induced alterations of calcium homeostasis in the soleus muscle of SHRs occurred with changes of some functional outcomes as excitability and resting chloride conductance. We provide suitable targets for therapeutic interventions aimed at counterbalancing muscle performance decline in hypertension, and propose the reported calcium-dependent parameters as indexes to predict how the antihypertensive drugs could influence muscle function.
Collapse
Affiliation(s)
- Antonella Liantonio
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy.
| | - Giulia M Camerino
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Antonia Scaramuzzi
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Maria Cannone
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Bodvael Fraysse
- INRA UMR703, LUNAM Université, Oniris, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique, Nantes, France
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Diana Conte Camerino
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| |
Collapse
|
33
|
Mele A, Calzolaro S, Cannone G, Cetrone M, Conte D, Tricarico D. Database search of spontaneous reports and pharmacological investigations on the sulfonylureas and glinides-induced atrophy in skeletal muscle. Pharmacol Res Perspect 2014; 2:e00028. [PMID: 25505577 PMCID: PMC4186404 DOI: 10.1002/prp2.28] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 12/14/2022] Open
Abstract
The ATP-sensitive K(+) (KATP) channel is an emerging pathway in the skeletal muscle atrophy which is a comorbidity condition in diabetes. The "in vitro" effects of the sulfonylureas and glinides were evaluated on the protein content/muscle weight, fibers viability, mitochondrial succinic dehydrogenases (SDH) activity, and channel currents in oxidative soleus (SOL), glycolitic/oxidative flexor digitorum brevis (FDB), and glycolitic extensor digitorum longus (EDL) muscle fibers of mice using biochemical and cell-counting Kit-8 assay, image analysis, and patch-clamp techniques. The sulfonylureas were: tolbutamide, glibenclamide, and glimepiride; the glinides were: repaglinide and nateglinide. Food and Drug Administration-Adverse Effects Reporting System (FDA-AERS) database searching of atrophy-related signals associated with the use of these drugs in humans has been performed. The drugs after 24 h of incubation time reduced the protein content/muscle weight and fibers viability more effectively in FDB and SOL than in the EDL. The order of efficacy of the drugs in reducing the protein content in FDB was: repaglinide (EC50 = 5.21 × 10(-6)) ≥ glibenclamide(EC50 = 8.84 × 10(-6)) > glimepiride(EC50 = 2.93 × 10(-5)) > tolbutamide(EC50 = 1.07 × 10(-4)) > nateglinide(EC50 = 1.61 × 10(-4)) and it was: repaglinide(7.15 × 10(-5)) ≥ glibenclamide(EC50 = 9.10 × 10(-5)) > nateglinide(EC50 = 1.80 × 10(-4)) ≥ tolbutamide(EC50 = 2.19 × 10(-4)) > glimepiride(EC50=-) in SOL. The drug-induced atrophy can be explained by the KATP channel block and by the enhancement of the mitochondrial SDH activity. In an 8-month period, muscle atrophy was found in 0.27% of the glibenclamide reports in humans and in 0.022% of the other not sulfonylureas and glinides drugs. No reports of atrophy were found for the other sulfonylureas and glinides in the FDA-AERS. Glibenclamide induces atrophy in animal experiments and in human patients. Glimepiride shows less potential for inducing atrophy.
Collapse
Affiliation(s)
- Antonietta Mele
- Departments of Pharmacy-Drug Science, University of Bari Bari, Italy
| | - Sara Calzolaro
- Departments of Pharmacy-Drug Science, University of Bari Bari, Italy
| | - Gianluigi Cannone
- Departments of Pharmacy-Drug Science, University of Bari Bari, Italy
| | - Michela Cetrone
- Departments of Pharmacovigilance, University-Hospital Policlinico, Ministry of Health Bari, Italy
| | - Diana Conte
- Departments of Pharmacy-Drug Science, University of Bari Bari, Italy
| | | |
Collapse
|